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Weak convergence theorem for Lipschitzian pseudocontraction
semigroups in Banach spaces
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Abstract. In this work, theorems of weak convergence of an implicit iterative algorithm with

errors for treating a nonexpansive semigroup and a Lipschitzian pseudocontractive semigroup
are estabilshed in the framework of real Banach spaces.
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1. Introduction

Let E be a real Banach space and let J denote the normalized duality mapping
from E into 2E

∗
given by J(x) : {f ∈ E∗, ⟨x, f⟩ = ∥x∥∥f∥, ∥x∥ = ∥f∥},∀x ∈ E, where

E∗ denotes the dual space of E and ⟨., .⟩ denotes the generalized duality pairing. In
the following, we shall denote the single-valued duality mapping by j, and denote
F (T ) = {x ∈ E;Tx = x}. When {xn} is a sequence in E, then ωw (xn) denote the
weak ω-limit set.

Definition 1.1. One-parameter family {T (t) : t ≥ 0} of mappings from K into itself
is said to be a pseudo-contraction semigroup on K, if the following conditions are
satisfied:
(1) T (0)x = x for each x ∈ K;
(2) T (t+ s)x = T (t)T (s)x for any t, s ∈ R+ and x ∈ K;
(3) for each x ∈ E, the mapping T (.)x from R+ into K is continuous;
(4) for any x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

⟨T (t)x− T (t)y, j(x− y)⟩ ≤ ∥x− y∥2, for each t > 0.

A pseudocontraction semigroup {T (t) : t ≥ 0} is said to be Lipschitzian [4], if
the conditions (1)-(4) and the following condition (5) are satisfied:

(5) There exists a bounded measurable function L : (0,∞) → [0,∞) such that, for
any x, y ∈ K then

∥T (t)x− T (t)y∥ ≤ L(t)∥x− y∥, for each t > 0. (1)

In the sequel, we denote

M := sup
t≥0

L(t) < ∞ and F := ∩
t≥0

Fix(T (t)).
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Recently, the problems of convergence of an implicit iterative algorithm to a com-
mon fixed point for a family of nonexpansive mappings and its extensions to Hilbert
spaces or Banach spaces have been considered by several authors; see [1-10] for more
details.

In 2008, Hao [3] considered the implicit iterative algorithm for treating a family of
Lipschitz pseudocontractions {T1, T2, ..., TN} in a Banach space:

x0 ∈ K, xn = αnxn−1 + βnTnxn + γnun, ∀n ≥ 1, (2)

where {αn}, {βn} and {γn} are three sequences in (0, 1) such that αn + βn + γn = 1
and un is a bounded sequence in K. Theorems of weak convergence to common fixed
points are estabilshed in a uniformly convex Banach space.

In 2010, X. Qin and S. Y. Cho [7] considered the implicit iterative algorithm (2) for
treating strongly continuous semigrous of Lipschit pseudocontractions in a reflexive
Banach sapce.

In this work, motivated by recent work going in this direction, we consider the
weak convergence of a implicit iterative algorithm for a nonexpansive semigroup and
a Lipschitzian pseudocontractive semigroup {T (t) : t ≥ 0} on K as follows:

x0 ∈ K, xn = f(xn) + βnf(xn) + γnun.

In the sequel, we will need the following definition and results.

Definition 1.2. A Banach space E is said to satisfy Opial’s condition if whenever
{xn} is a sequence in E which converges weakly to x, as n → ∞, then

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀y ∈ E, y ̸= x. (3)

Lemma 1.1. ([9], Lemma 1). Let {tn} be a real sequence and τ be a real number
such that lim inf

n→∞
tn ≤ lim sup

n→∞
tn. Suppose that either of the following holds:

i) lim sup
n→∞

(tn+1 − tn) ≤ 0, or

ii) lim inf
n→∞

(tn+1 − tn) ≥ 0.

Then τ is a cluter point of {tn}. Moreover, for ϵ > 0, k,m ∈ N, there exists m0 ≥ m
such that |tj − τ | < ϵ for every integer j with m0 ≤ j ≤ m0 + k.

Lemma 1.2. (Zhou [13]). Let E be a real reflexive Banach space with the Opial
condition. Let C be a nonempty closed convex subset of E and T : C → C be a
continuous pseudocontractive mapping. Then T is demiclosed at zero, i.e., for any
sequence {xn} ⊂ E, if xn ⇀ y and ∥(I − T )xn∥ → 0, then (I − T )y = 0.

2. Main results

Theorem 2.1. Let E be a reflexive Banach space which satisfies Opial’s condition,
suppose K is a nonempty closed convex subset of E. Let {T (t) : t ≥ 0} be a nonex-
pansive semigroup on K such that F := ∩

t≥0
Fix(T (t)) ̸= ∅, and f : K → K be a fixed

contractive mapping with contractive coefficient α ∈ (0, 1). Define a sequence {xn} in
K by

xn = αnf(xn) + βnT (tn)xn + γnun. (4)

where {αn}, {βn} and {γn} are sequences in (0, 1), tn > 0 and {un} is a bounded
sequence in K. Assume that the following conditions are satisfied:
a) αn + βn + γn = 1, ∀n ≥ 1;
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b) lim
n→∞

tn = lim
n→∞

αn + γn
tn

= 0.

Then {xn} converges weakly to a common fixed point of the semigroup {T (t) : t ≥ 0}.

Proof. First, it is easy to see that {xn} is well defined. Now fix p ∈ F we have

∥xn − p∥ ≤ αn∥f(xn)− f(p)∥+ αn∥f(p)− p∥+ βn∥T (tn)xn − p∥
+ γn∥un − p∥

≤ ααn∥xn − p∥+ αn∥f(p)− p∥+ βn∥xn − p∥+ γn∥un − p∥.
Therefore

∥xn − p∥ ≤ 1

1− α
∥f(p)− p∥+ ∥un − p∥.

This implies the sequence {xn} is bounded, and so are {T (tn)xn} and {f(xn)}. Since
{xn} is bounded, without loss of generality we assume that a subsequence {xnj} of
{xn} which converges weakly to q ∈ K. Now, we prove that q = T (t)q for a fixed
t > 0. Indeed,

∥xnj − T (t)q∥ ≤

[
t

tnj

]
−1∑

k=0

∥T ((k + 1)tnj )xnj − T (ktnj )xnj∥

+

∥∥∥∥T ([
t

tnj

]
tnj

)
xnj − T

([
t

tnj

]
tnj

)
q

∥∥∥∥
+

∥∥∥∥T ([
t

tnj

]
tnj

)
q − T (t)q

∥∥∥∥
≤ t

tnj

∥T (tnj )xnj − xnj∥+ ∥xnj − q∥

+

∥∥∥∥T (
t−

[
t

tnj

]
sj

)
q − q

∥∥∥∥
≤ t

αnj + γnj

tnj

(
∥f(xnj − T (tnj )xnj∥+ ∥unj − T (tnj )xnj∥

)
+ ∥xnj − x∥+ max

0≤s≤tnj

{∥T (s)q − q∥}

for all j ∈ N, we have

lim sup
n→∞

∥xnj − T (t)q∥ ≤ lim sup
n→∞

∥xnj − q∥.

Therefore T (t)q = q i.e., q ∈ F. Since the space E satisfies Opial’s condition, we see
that ωw(xn) is a singleton. This completes the proof. �
Theorem 2.2. Let E be a reflexive Banach space which satisfies Opial’s condition,
suppose K is a nonempty closed convex subset of E. Let {T (t) : t ≥ 0} be a Lip-
schitzian pseudocontractive semigroup on K such that F := ∩

t≥0
Fix(T (t)) ̸= ∅, and

f : K → K be a fixed contractive mapping with contractive coefficient α ∈ (0, 1).
Suppose that for any bounded subset C ⊂ K,

lim
s→0

sup
x∈C

∥T (s)x− x∥ = 0. (5)

Define a sequence {xn} in K by

xn = αnf(xn) + βnT (tn)xn + γnun. (6)
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where {αn}, {βn} and {γn} are sequences in (0, 1), tn > 0 and {un} is a bounded
sequence in K. Assume that the following conditions are satisfied:
a) αn + βn + γn = 1, ∀n ≥ 1;
b) lim

n→∞
αn = lim

n→∞
γn = 0;

c) lim inf
n→∞

tn = 0, lim sup
n→∞

tn > 0, lim
n→∞

(tn+1 − tn) = 0.

Then {xn} converges weakly to a common fixed point of the semigroup {T (t) : t ≥ 0}.

Proof. First, we show that {xn} is well defined. For each n ≥ 1, define a mapping
Sn : K → K by

Snx = αnf(x) + βnT (tn)x+ γnun, ∀x ∈ K.

We see that Sn is a continuous strong pesudocontraction for each n ≥ 1. Indeed, for
every x, y ∈ K, we have

⟨Snx− Sny, j(x− y)⟩ = βn⟨T (tn)x− T (tn)y, j(y − x)⟩ ≤ βn∥x− y∥2.

By [2, Corollary 2] then there exists a unique fixed point xn for each n ≥ 1 such that

xn = αnf(xn) + βnT (tn)xn + γnun.

That is, the sequence {xn} is well defined. Fix p ∈ F , we have

∥xn − p∥2 = αn⟨f(xn)− p, j(xn − p)⟩+ βn⟨T (tn)xn − p, j(xn − p)⟩
+ γn⟨un − p, j(xn − p)⟩

≤ αn⟨f(xn)− f(p), j(xn − p)⟩+ αn⟨f(p)− p, j(xn − p)⟩
+ βn∥xn − p∥2 + γn∥un − p∥∥xn − p∥

≤ ααn∥xn − p∥2 + αn∥f(p)− p∥∥xn − p∥
+ βn∥xn − p∥2 + γn∥un − p∥∥xn − p∥.

Therefore

∥xn − p∥ ≤ αn

(1− α)αn + γn
∥f(p)− p∥+ γn

(1− α)αn + γn
∥un − p∥

≤ 1

1− α
∥f(p)− p∥+ ∥un − p∥.

This implies the sequence {xn} is bounded, and so are {T (tn)xn} and {f(xn)}. We
have

∥xn − T (tn)xn∥ ≤ αn∥f(xn)− T (tn)xn∥+ γn∥un − T (tn)xn∥.
Therefore

∥xn − T (tn)xn∥ → 0 as n → ∞. (7)

We choose a sequence {tnj} of positive real number such that

tnj → 0,
1

tnj

∥xnj − T (tnj )xnj∥ → 0. (8)

We now show that how such a special subsequence can be constructed. Fixed δ > 0
such that

lim inf
n→∞

tn = 0 < δ < lim sup
n→∞

tn.

From (7), there exists m1 ∈ N such that ∥T (tn)xn − xn∥ <
1

32
for all n ≥ m1. By

Lemma 1.1,
δ

2
is a cluster point of {tn}. In particular, there exists n1 > m1 such
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that
δ

3
< tn1 < δ. Next, we choose m2 > n1 such that ∥T (tn)xn − xn∥ <

1

42
for all

n ≥ m2. Again, by Lemma 1.1,
δ

3
is a cluster point of {tn} and this implies that

there exists n2 > m2 such that
δ

4
< tn2

<
δ

2
. Continuing in this way, we obtain a

subsequence {nj} of n satisfying

∥T (tnj )xnj − xnj∥ <
1

(j + 2)2
,

δ

j + 2
< tnj <

δ

j
for all j ∈ N.

Consequently, (8) is satisfied.
Since {xn} is bounded, without loss of generality we assume that a subsequence

{xnj} of {xn} which converges weakly to q ∈ K. Now, we prove that q = T (t)q for a
fixed t > 0. Indeed,

∥xnj − T (t)xnj∥ ≤

[
t

tnj

]
−1∑

k=0

∥T ((k + 1)tnj )uj − T (ktnj )xnj∥

+

∥∥∥∥T ([
t

tnj

]
tnj

)
xnj − T (t)xnj

∥∥∥∥
≤

[
t

tnj

]
M∥T (tnj )xnj − xnj∥

+M

∥∥∥∥T (
t−

[
t

tnj

]
tnj

)
xnj − xnj

∥∥∥∥
≤ Mt

∥T (tnj )xnj − xnj∥
tnj

+M max
0≤s≤tnj

{∥T (s)xnj
− xnj

∥}

for all j ∈ N. From (8) and the continuity of mapping t 7→ T (t)x, x ∈ K, we get

lim
j→∞

∥xnj
− T (t)xnj

∥ = 0.

By Lemma 1.2, then T (t)q = q, therefore q ∈ F . On the other hand, since the space
E satisfies Opial’s condition, we see that ωw(xn) is a singleton. This completes the
proof. �
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