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Solution of first iterative differential equations

Monica Lauran

Abstract. In this paper we shall establish an existence result for a first order differential
equation in CL. The main tool used in our study is the nonexpansive operator technique and
Browder-Ghode-Kirk’s fixed point theorem.
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1. Introduction

Several works deal with first iterative initial value problems, see [1], [3], [4], [6-9],
[11-14]. The general form of these equations is

y′(t) = f(x, y(y(t))). (1.1)

Starting from this equations in [11] we prove an existence result from the following
equations

y′(x) = f(x, y(x), y(λx)) (1.2)

with initial condition

y(x0) = y0,

where x0, y0 ∈ [a, b] and f ∈ C([a, b]× [a, b]× [a, b]).
Our main aim in this paper is to use the technique of nonexpansive operators

introduced in [3] for more general iterative first order differential equations of type

y′(x) = f(x, y(x), y(λ1x), y(λ2x)) (1.3)

and

y′(x) = f(x, y(x), y(λ1y(x)), y(λ2y(x)) (1.4)

respectively.

2. Preliminaries

We introduce the definitions and a fixed point theorem for nonexpansive mappings
which will play an important role in this paper, see [2].

Let (X, d) be a metric space. A mapping T : X → X is said to be an α−contraction
if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X.
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In the case when α = 1, the mapping T is said to be nonexpansive. Let K be a
nonempty subset of a real normed linear space E and T : K → K be a map. In this
setting, T is nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ , ∀x, y ∈ K.

Although the nonexpansive mappings are generalizations of α- contractions, they
do not inherit properties of contractive mappings. One of the most important fixed
point theorems for nonexpansive mappings, due to Browder, Ghode and Kirk, see e.g.
[3], states as follows.

Theorem 2.1. ([3]) Let K be a nonempty closed convex and bounded subset of an
uniformly Banach space E. Then any nonexpansive mapping T : K → K has at least
a fixed point.

Remark 2.2. The fixed points of T can be approximated by Krasnoselskij sequence,
defined as follows.

Let K be a convex subset of a normed linear space E and let T : K → K be a
self-mapping. Given an x0 ∈ K and a real numbers λ ∈ [0, 1], the sequence xn defined
by the formula

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, ....

is usually called Krasnoselskij iteration or Krasnoselskij-Mann iteration.
For x0 ∈ K the sequence xn defined by

xn+1 = (1− λn) · xn + λn · Txn, n = 0, 1, 2... (2.1)

where (λn)n ⊂ [0, 1] is a sequence of real numbers satisfying some appropriate con-
dition, is called Mann iteration. Edelstein [7] proved that strict convexity of E is
sufficient for the Krasnoselskij iteration to converge to a fixed point of T . The ques-
tion of whether or not strict convexity can be removed has been answered in the
affirmative by Ishikawa [10] by the following result.

Theorem 2.3. ([10]) Let K be a subset of a Banach E and let T : K → K be a
nonexpansive mapping. For arbitrary x0 ∈ K, consider the Mann iteration process
xn given by (2.1) under the following assumptions:
(a) xn ∈ K for all positive integers n;
(b) 0 ≤ λn ≤ b < 1 for all positive integers n;
(c)

∑∞
n=0 λn = ∞. If xn is bounded, then xn − Txn → 0 as n → ∞.

The following corollaries of Theorem 2.3 will be particularly important for the
application part of our paper.

Corollary 2.4. ([5]) Let K be a convex and compact subset of a Banach space E and
let T : K → K be a nonexpansive mapping. If the Mann iteration process xn satisfies
assumptions (a)-(c) in Theorem 2.3, then xn converges strongly to a fixed point of T.

Proof. See Theorem 6.17 in Chidume [5]. �

Corollary 2.5. ([5]) Let K be a closed bounded convex subset of a real normed space E
and T : K → K be a nonexpansive mapping. If I−T maps closed bounded subsets of E
into closed subsets of E and xn is the Mann iteration, with λn satisfying assumptions
(a)-(c) in Theorem 2.3, then xn converges strongly to a fixed point of T in K.

Proof. See Corollary 6.19 in Chidume [5]. �
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3. Main results

Starting from equation (2) we study the following problem:{
y′(x) = f(x, y(x), y(λ1x), y(λ2x))
y(x0) = y0

(3.1)

where x0, y0 ∈ [a, b], λ1, λ2 ∈ (0, 1) and f ∈ C([a, b]×[a, b]×[a, b]×[a, b]). This problem
extends equation (2). We formulate the first result for the existence of solutions to
initial value problem (3.1).
For x ∈ [a, b] denote

Cx = max{x− a, b− x},
and

(∗) CL = {y ∈ C([a, b], [a, b]) : |y(t1)− y(t2)| ≤ L · |t1 − t2| ,∀t1, t2 ∈ [a, b]},

where L > 0 is given.

Theorem 3.1. Assume that the following conditions are satisfied for initial value
problem (3.1)

(i) f ∈ C([a, b]× [a, b]× [a, b]× [a, b]);
(ii) there exists L1 > 0 such that

|f(s, u1, v1, w1)− f(s, u2, v2, w2)| ≤ L1(|u1 − v2|+ |v1 − v2|+ |w1 − w2|)

for any s, ui, vi, wi ∈ [a, b], i = 1, 2;
(iii) if L is the Lipschitz constant involved in (*), then

M = max {|f(s, u, v, w)| : (s, u, v, w) ∈ [a, b]} ≤ L;

(iv) one of the following conditions holds:
a) M · Cx0 ≤ Cy0 ;
b) x0 = 0, M(b− a) ≤ b− y0, f(s, u, v, w) ≥ 0, ∀s, u, v, w ∈ [a, b];
c) x0 = b, M(b− a) ≤ y0 − a, f(s, u, v, w) ≥ 0, ∀s, u, v, w ∈ [a, b];

(v) 3L1 · Cx0 ≤ 1.
Then the problem (3.1) has at least one solution in CL, which can be approximated

by the Krasnoselskij iteration

yn+1(t) = (1− µ)yn(t) + µy0 + µ

∫ t

x0

f(s, yn(s), yn(λ1s), yn(λ2s))ds, t ∈ [a, b], n ≥ 1,

where µ ∈ (0, 1) and y1 ∈ CL is arbitrary.

Proof. As a consequence of Arzela-Ascoli or from [4, Lemma 1], CL is a nonempty
convex and compact subset of the Banach space (C[a, b], ∥·∥) where ∥x∥ = sup

t∈[a,b]

|x(t)|.

Consider the integral operator F : CL → C[a, b] defined by

(Fy) (t) = y0 +

t∫
x0

f(s, y(s), y(λ1s), y(λ2s))ds, t ∈ [a, b].

Any fixed point of the equation y = Fy is a solution of initial value problem (3.1).
We prove that CL is an invariant set with respect to F , i.e., we have F (CL) ⊂ CL.
If condition (a) holds, then for any y ∈ CL and t ∈ [a, b] we have

|(Fy)(t)| ≤ |y0|+
∣∣∣∣∫ t

x0

f(s, y(s), y(λ1s), y(λ2s))ds

∣∣∣∣ ≤ |y0|+M · |x0 − t| ≤ b,
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|(Fy)(t)| ≥ |y0| −
∣∣∣∣∫ t

x0

f(s, y(s), y(λ1s), y(λ2s))ds

∣∣∣∣ ≥ |y0| −M · |x0 − t|

≥ |y0| −M · Cx0 ≥ |y0| − Cy0 ≥ a.

So, Fy ∈ [a, b] for any y ∈ CL.
Now, for any t1, t2 ∈ [a, b] we have

|(Fy)(t1)− (Fy)(t2)| ≤
∣∣∣∣∫ t2

t1

f(s, y(s), y(λ1s), y(λ2s))ds

∣∣∣∣
≤ M · |t1 − t2| ≤ L · |t1 − t2| .

Thus, Fy ∈ CL for any y ∈ CL. In a similar way we treat the cases (b) and (c).
Therefore F : CL → CL (i.e. F is a self-mapping of CL).

We prove that F is nonexpansive operator. Let y, z ∈ CL and t ∈ [a, b]. Then

|(Fy)(t)− (Fz)(t)| ≤
∣∣∣∣∫ t

x0

f(s, y(s), y(λ1s), y(λ2s))− f(s, z(s), z(λ1s), z(λ2s))

∣∣∣∣ ds
≤

∫ t

x0

L1(|y(s)− z(s)|+ |y(λ1s)− z(λ1s)|+ |y(λ2s)− z(λ2s)|)ds

≤ 3 · L1 · Cx0 · ∥y − z∥ .
Now, by taking the norm, we get

∥Fy − Fz∥ ≤ 3L1 · Cx0 · ∥y − z∥ ,
which in view of condition (v), proves that F is nonexpansive operator hence contin-
uous.

It now remains to apply the Browder-Ghode-Kirk’s fixed point theorem and obtain
the first part of the conclusion and Corollary 2.4 or 2.5 to get the second one. �

Now we are applying the same technique for an extra-iterative differential equation
which extends problem (3.1), namely

y′(x) = f(x, y(x), y(λ1y(x)), y(λ2y(x))) (3.2)

with initial condition

y(x0) = y0, (3.3)

where x0, y0 ∈ [a, b], λ1, λ2 ∈ (0, 1) and f ∈ C([a, b]× [a, b]× [a, b]× [a, b]) are given.
We formulate the second result on the existence of solutions to initial value problem

(3.2)+(3.3) in CL.

Theorem 3.2. Assume that
(i) f ∈ C([a, b]× [a, b]× [a, b]× [a, b]);
(ii) there exists L1 > 0 such that

(∗∗) |f(s, u1, v1, w1)− f(s, u2, v2, w2)| ≤ L(|u1 − u2|+ |v1 − v2|+ |w1 − w2|),
for any s, ui, vi, wi ∈ [a, b], i = 1, 2;

(iii) if L is the Lipschitz constant involved in (*), then

M = max {|f(s, u, v, w)| : (s, u, v, w) ∈ [a, b]} ≤ L

(iv) one of the following conditions holds:
a) M · Cx0 ≤ Cy0 ;
b) x0 = a, M(b− a) ≤ b− y0, f(s, u, v, w) ≥ 0, ∀s, u, v, w ∈ [a, b];
c) x0 = b, M(b− a) ≤ y0 − a, f(s, u, v, w) ≥ 0, ∀s, u, vw ∈ [a, b];

(v) L1 · [1 + L(λ1 + λ2)] · Cx0 ≤ 1.
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Then the initial value problem (3.2)+(3.3) has at least one solution in CL, which
can be approximated by the Krasnoselskij iteration

yn+1(t) = (1− µ)yn(t) + µy0 + µ

t∫
x0

f(s, yn(s), yn(λ1yn(s)), yn(λ2yn(s)))ds,

t ∈ [a, b], n ≥ 1, where µ ∈ [a, b] and y1 ∈ CL are arbitrary.

Proof. We define the integral operator F : CL → C[a, b], by

(Fy)(t) = y0 +

∫ t

x0

f(s, y(s), y(λ1y(s)), y(λ2y(s)))ds, t ∈ [a, b].

In the same way as Theorem 3.1 we prove that CL is an invariant set with respect to
F, which means F (CL) ⊂ CL. We deduce

|(Fy)(t)| ≤ |y0|+
∣∣∣∣∫ t

x0

f(s, y(s), y(λ1y(s)), y(λ2y(s)))ds

∣∣∣∣ ≤ |y0|+M · |t− x0| ≤ b,

|(Fy)(t)| ≥ |y0| −
∣∣∣∣∫ t

x0

f(s, y(s), y(λ1y(s)), y(λ2y(s)))ds

∣∣∣∣ ≥ |y0| −M · |t− x0|

≥ |y0| −M · Cx0 ≥ y0 − Cy0 ≥ a.

Thus, Fy ∈ [a, b] for any y ∈ CL. For any t1, t2 ∈ [a, b] we have:

|(Fy)(t1)− (Fy)(t2)| ≤
∣∣∣∣∫ t2

t1

f(s, y(s), y(λ1y(s)), y(λ2y(s)))ds

∣∣∣∣
≤ M · |t1 − t2| ≤ L · |t1 − t2| .

So, Fy ∈ CL for any y ∈ CL. In a similar way we treat the cases (b) and (c).
We consider y, z ∈ CL and t ∈ [a, b] in order to prove that F is nonexpansive

operator.

|(Fy)(t)− (Fz)(t)|

≤
∫ t

x0

|f(s, y(s), y(λ1y(s), y(λ2y(s)))− f(s, z(s), z(λ1z(s)), z(λ2z(s)))| ds

≤
∫ t

x0

L1(|y(s)− z(s)|+ |y(λ1y(s))− z(λ1z(s))|+ |y(λ2y(s))− z(λ2z(s))|)ds

≤ L1

∫ t

x0

(|y(s)− z(s)|+ |λ1| · L · |y(s)− z(s)|+ |λ2| · L · |y(s)− z(s)|)ds

≤ L1 · [1 + L (λ1 + λ2)] · |t− x0| · ∥y − z∥ ≤ [1 + L (λ1 + λ2)] · Cx0 · ∥y − z∥ .

Now, by taking the maximum in the last inequality, we get

∥Fy − Fz∥ ≤ L1 · [1 + L (λ1 + λ2)] · Cx0 · ∥y − z∥ ,

which in view of condition (v), proves that F is nonexpansive operator hence contin-
uous.

Applying the Browder-Ghode-Kirk or Schauder’s fixed point theorems we obtain
the first part of conclusion and Corollary 2.4 or 2.5 to get the second part of conclusion.

�
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4. An example

We conclude the paper by presenting an example to illustrate the generality of our
results.

Example 4.1. Consider the following initial value problem associated to an extra-
iterative differential equation:{

y′(x) = −3 + y(x) + y( 12y(x)) + y( 12y(x))
y( 12 ) = 1

(4.1)

where x ∈ [0, 1], y ∈ C1 ([0, 1], [0, 1]) , λ1 = λ2 = 1
2 . We are interested to study the

solutions y ∈ C1([0, 1], [0, 1]) belonging to the set

C1 = {y ∈ C ([0, 1], [0, 1]) : |y(t1)− y(t2)| ≤ |t1 − t2|} ,
for any t1, t2 ∈ [0, 1] which, in view of our notations, means that L = 1. We have

a = 0, b = 1, x0 =
1

2
hence Cx0 = max {x0 − a, b− x0} =

1

2
.

The function f(x, u, v, w) = −3+u+v+w is Lipschitzian in the sense of (**) with re-
spect to u, v and w, with Lipschitz constant L1 = 1. This shows that L1 [1 + L (λ1 + λ2)]·
Cx0 = 1, so the condition (v) in Theorem 3.2 is satisfied. Note also that y(x) = 1, x ∈
[0, 1] is a solution to initial value problem (4.1). By Theorem 3.2 initial value problem
(4.1) has at least a solution in C1 that can be approximated by Krasnoselskji iteration

yn+1(t) = (1− µ)yn(t) + µy0 + µ

t∫
x0

[
−3 + yn(s) + 2 · yn(

1

2
yn(s))

]
ds, t ∈ [0, 1], n ≥ 1,

where µ ∈ (0, 1) and y1 ∈ C1 are arbitrary.

Particular case
If f = f(t, u, v), we find the differential equation studied in [11].
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