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Analytic solution of fractional integro-differential equations

Fadi Awawdeh, E.A. Rawashdeh and H.M. Jaradat

Abstract. This paper is focused on deriving an analytic solution for the fractional integro-
differential equations, commonly used in the mathematical modeling of various physical phe-
nomena. In this contribution, based on the homotopy analysis method, a new solution strategy
for the fractional integro-differential equations is proposed. Different from all other analytic
techniques, this approach provides a simple way to ensure the convergence of series of solution
so that one can always get accurate enough approximations.
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1. Introduction

The fractional calculus has a long history from 30 September 1695, when the deriva-
tive of order α = 1/2 has been described by Leibniz [10, 12]. The theory of derivatives
and integrals of non-integer order goes back to Leibniz, Liouville, Grünwald, Letnikov
and Riemann. There are many interesting books about fractional calculus and frac-
tional differential equations [10, 12, 3, 14]. The use of fractional differentiation for
the mathematical modeling of real world physical problems has been widespread in
recent years, e.g. the modeling of earthquake, the fluid dynamic traffic model with
fractional derivatives, measurement of viscoelastic material properties, etc.

Derivatives of non-integer order can be defined in different ways, e.g. Riemann–
Liouville, Grünwald–Letnikow, Caputo and Generalized Functions Approach [12]. In
this paper we focus attention on Caputo’s definition which turns out to be more useful
in real-life applications since it can be coupled with initial conditions having a clear
physical meaning.

There are only a few techniques for the solution of fractional integro-differential
equations, since it is relatively a new subject in mathematics. Some of these meth-
ods are; Adomian decomposition method (ADM) [9], fractional differential transform
method (FDTM) [11] and the collocation method [13].

In this paper, we will suggest an approach to the search for an explicit analytical
solution for the fractional integro-differential equation of the type:

Dαy(t) = p(t)y(t) + f(t) +
∫ t

0

K(t, s)y(s)ds, t ∈ I = [0, 1], (1)

y(0) = a,

by homotopy analysis method (HAM) [1, 2, 4, 5, 6, 7, 8]. In particular, the derived
explicit expression for the problem is mathematically and computationally friendly.
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2. Preliminaries and notations

In this section, let us recall essentials of fractional calculus. The fractional calculus
is a name for the theory of integrals and derivatives of arbitrary order, which unifies
and generalizes the notions of integer-order differentiation and n-fold integration. For
the purpose of this paper the Caputo’s definition of fractional differentiation will
be used, taking the advantage of Gaputo’s approach that the initial conditions for
fractional differential equations with Caputo’s derivatives take on the traditional form
as for integer-order differential equations.

Definition 2.1. Caputo’s definition of the fractional-order derivative is defined as

Dαf(t) =
1

Γ(n− α)

t∫

a

(t− τ)n−α−1f (n)(τ)dτ,

where n− 1 < α ≤ n, n ∈ N, α is the order of the derivative and a is the initial value
of function f .

For the Caputo’s derivative we have:

DαC = 0, C is constant,

Dαtβ = {.0 β ≤ α− 1
Γ(β + 1)

Γ(β − α + 1)
tβ−α β > α− 1

Caputo’s fractional differentiation is a linear operation and if f(τ) is continuous in
[a, t] and g(τ) has n+1 continuous derivatives in [a, t], it satisfies the so-called Leibnitz
rule:

Dα(f(t)g(t)) =
∞∑

k=0

(
α

k

)
g(k)(t)Dα−kf(t)

For establishing our results, we also necessarily introduce the following Riemann–
Liouville fractional integral operator.

Definition 2.2. The Riemann–Liouville fractional integral operator of order α ≥ 0,
of a function f ∈ Cµ, µ ≥ −1, is defined as

Jαf(t) =
1

Γ(α)

t∫

a

(t− τ)α−1f(τ)dτ

We mention only some properties of the operator Jα: For f ∈ Cµ, µ, γ ≥ −1,
α, β ≥ 0 :

J0f(t) = f(t), JαJβf(t) = Jα+βf(t), JαJβf(t) = JβJαf(t),

Jαtγ =
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α

Also, we need here two of its basic properties. m− 1 < α ≤ m, m ∈ N, and f ∈ Cm
µ ,

µ ≥ −1, then

DαJαf(t) = f(t), JαDαf(t) = f(t)−
m−1∑

i=0

f (i)(0+)
ti

i!
, t > 0.

For more information on the mathematical properties of fractional derivatives and
integrals, one can consult [14].
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3. Numerical schemes

3.1. Approach based on the HAM. In this paper, we present analytic solution
of an integro-differential equation with fractional derivative of the type:

Dαy(t) = p(t)y(t) + f(t) +
∫ t

0

K(t, s)y(s)ds, t ∈ I = [0, 1], (2a)

y(0) = a. (2b)

Here, the given functions f, p : I → R and K : S → R (with S = {(t, s) : 0 ≤ s ≤ t ≤
1}) are supposed to be sufficiently smooth, with 0 < α ≤ 1. According to Eqs. 2a
and 2b, the solution y(t) can be expressed by the base functions

{tαn : n ≥ 1, n ∈ N} (3)

as

y(t) =
∞∑

n=1

bntαn, (4)

where bn is a coefficient. It provides us the so-called Solution Expression of y(t).
According to Eq. 2a, we define a nonlinear operator

N [φ(t; q)] = Dαφ(t; q)− p(t)φ(t; q)− f(t)−
∫ t

0

K(t, s)φ(s; q)ds, (5)

where q ∈ [0, 1] denotes the embedding parameter. Let y0(t) denote an initial guess
of the exact solution y(t) which satisfies the initial condition 2b. Also, h 6= 0 an
auxiliary parameter and L an auxiliary linear operator. All of y0(x), L and h will
be chosen later with great freedom. Then, we construct a one-parameter family of
differential equations

(1− q)L[φ(t; q)− y0(t)] = qhN [φ(t; q)] (6)

subject to the boundary conditions

φ(0; q) = a. (7)

Obviously, when q = 0, because of the property L(0) = 0 of any linear operator L,
Eqs. 6 and 7 have the solution

φ(t; 0) = y0(t), (8)
and when q = 1, since h 6= 0, Eqs. 6 and 7 are equivalent to the original ones, 2a and
2b, provided

φ(t; 1) = y(t). (9)
Thus, according to 8 and 9, as the embedding parameter q increases from 0 to 1,
φ(t; q) varies continuously from the initial approximation y0(t) to the exact solution
y(t). This kind of deformation φ(t; q) is totally determined by the so-called zeroth-
order deformation equations 6 and 7.

By Taylor’s theorem, φ(t; q) can be expanded in a power series of q as follows

φ(t; q) = y0(t) +
∞∑

m=1

ym(t)qm, (10)

where

ym(t) = Dm[φ(t; q)] =
1
m!

∂mφ(t; q)
∂qm

|q=0.

Dm is called the mth-order homotopy-derivative of φ.
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Fortunately, the homotopy-series 10 contains an auxiliary parameter h, and besides
we have great freedom to choose the auxiliary linear operator L, as illustrated by Liao
[6]. If the auxiliary linear parameter L and the nonzero auxiliary parameter h are
properly chosen so that the power series 10 of φ(t; q) converges at q = 1. Then, we
have under these assumptions the the so-called homotopy-series solution

y(t) = y0(t) +
∞∑

m=1

ym(t). (11)

According to the fundamental theorems in calculus, each coefficient of the Taylor
series of a function is unique. Thus, ym(t) is unique, and is determined by φ(t; q).
Therefore, the governing equations and boundary conditions of ym(t) can be deduced
from the zeroth-order deformation equations 6 and 7. For brevity, define the vectors

−→y n(t) = {y0(t), y1(t), y2(t), . . . , yn(t)}.
Differentiating the zero-order deformation equation 6 m times with respective to

q and then dividing by m! and finally setting q = 0, we have the so-called high-order
deformation equation

L[ym(t)− χmym−1(t)] = h<m(−→y m−1(x)), (12)
ym(0) = 0,

where

<m(−→y m−1(x)) = Dm−1(N [φ]) =
1

(m− 1)!
∂m−1N [φ(x; q)]

∂qm−1
|q=0 (13)

and

χm =
{

0, m ≤ 1
1, m > 1 .

In this line we have that,

<m(−→y m−1(t)) = Dαym−1(t)−p(t)ym−1(t)−f(t)(1−χm)−
∫ t

0

K(t, s)ym−1(s)ds. (14)

So, by means of symbolic computation software such as Mathematica, Maple, Matlab
and so on, it is not difficult to get <m(−→y m−1(t)) for large value of m.

Note that the high-order deformation equations 12 are linear ODEs with fractional
derivatives. So, according to 12, the original nonlinear problem is transferred into
an infinite number of linear ODEs. However, unlike perturbation techniques, we do
not need any small physical parameters to do such a kind of transformation. Besides,
unlike the traditional ”non-perturbation techniques”, we have great freedom to choose
the auxiliary linear operator L and the initial guess y0(t).

Both the auxiliary linear operator L and the initial guess y0(t) are chosen under
the so-called Rule of Solution Expression: the auxiliary linear operator L and the
initial guess y0(t) must be chosen so that the solutions of the high-order deformation
equations 12 exist and besides they obey the Solution Expression 4. So, for the
solutions to obey the Solution Expression 4 and the boundary conditions 2b, we
choose the initial guess of the solution:

y0(t) = a. (15)

Because the original equation 2a is of order α, we simply choose such an auxiliary
linear operator

Ly = Dαy, (16)
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with the property

L[C] = 0,

where C is an integral constant. By taking the inverse of the linear operator L in 12,
then we get for m ≥ 1,

ym(t) = χmym−1(t)− χm

n−1∑

k=0

y
(k)
m−1(0)

tk

k!
+ hJα[<m(−→y m−1(t))], (17)

where n − 1 < α ≤ n, n ∈ N. In this way, we get ym(t) one by one in the order
m = 1, 2, 3, .... Thus, it is easy to get approximations at high enough order, especially
by means of the symbolic computation software.

3.2. Series solution.

Theorem 3.1. As long as the series 11 converges, it must be the exact solution of
the integral equation 2a-2b.

Proof. If the series 11 converges, we can write

S(t) =
∞∑

m=0

ym(t),

and it holds that

lim
m→∞

ym(t) = 0. (18)

We can verify that
n∑

m=1

[ym(t)− χmym−1(t)] = y1 + (y2 − y1) + · · ·+ (yn − yn−1)

= yn(t),

which gives us, according to 18,
∞∑

m=1

[ym(t)− χmym−1(t)] = lim
n→∞

yn(t) = 0. (19)

Furthermore, using 19 and the definition of the linear operator L, we have
∞∑

m=1

L[ym(t)− χmym−1(t)] = L[
∞∑

m=1

[ym(t)− χmym−1(t)]] = 0.

In this line, we can obtain that
∞∑

m=1

L[ym(t)− χmym−1(t)] = h

∞∑
m=1

<m−1(−→y m−1(t)) = 0

which gives, since h 6= 0, that
∞∑

m=1

<m−1(−→y m−1(t)) = 0. (20)
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Substituting <m−1(−→y m−1(x)) into the above expression and simplifying it, we have

∞∑
m=1

<m−1 =
∞∑

m=1

[Dαym−1 − p(t)ym−1 − f(t)(1− χm)−
∫ t

0

K(t, s)ym−1(s)ds]

=
∞∑

m=0

Dαym − p(t)
∞∑

m=0

ym − f(t)−
∫ t

0

K(t, s)
∞∑

m=0

ym(s)ds

= DαS(t)− p(t)S(t)− f(t)−
∫ t

0

K(t, s)S(s)ds (21)

From 20 and 21, we have

DαS(t) = p(t)S(t) + f(t) +
∫ t

0

K(t, s)S(s)ds,

and so, S(t) must be the exact solution of 2a, 2b. ¤

Note that we have great freedom to choose the value of the auxiliary parameter h.
Mathematically the value of y(t) at any finite order of approximation is dependent
upon the auxiliary parameter h, because the zeroth and highorder deformation equa-
tions contain h. Let Rh denote the set of all values of h which ensure the convergence
of the HAM series solution 11 of y(t). According to Theorem 3, all of these series
solutions must converge to the solution of the original equations 2a and 2b. Let h be
the variable of the horizontal axis and the limit of the series solution 11 of y(t) be
the variable of vertical axis. Plot the curve y(t) vs h, where y(t) denotes the limit
of the series 11. Because the limit of all convergent series solutions 11 is the same
for a given a, there exists a horizontal line segment above the region h ∈ Rh. So, by
plotting the curve y(t) vs h at a high enough order approximation, one can find an
approximation of the set Rh.

4. Applications

In this part, we introduce some applications on HAM to solve integro-differential
equations with fractional derivatives.

4.1. Example 1. First we consider the following fractional integro-differential equa-
tion, for t ∈ I = [0, 1]

D(0.5)y(t) = y(t) +
8

3Γ(0.5)
t1.5 − t2 − 1

3
t3 +

∫ t

0

y(s)ds, (22a)

y(0) = 0,

which has the exact solution y(t) = t2. From 22a, it is sraightforward to use the set
of base functions

{t0.5n : n ≥ 1, n ∈ N},
to represent y(t),

y(t) =
∞∑

k=1

bkt0.5k, (23)
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where bk is a coefficient to be determined later. According to 6, the zeroth-order
deformation can be given by

(1− q)L[φ(t; q)− y0(t)] = qh(D(0.5)φ(t; q)− φ(t; q) +
8

3Γ(0.5)
t1.5 − t2 − 1

3
t3 +

∫ t

0

φ(s; q)ds).

Under the rule of solution expression denoted by 23 and according to the initial
condition in 22a, we can choose the initial guess of y(t) as follows:

y0(t) = 0,

and we choose the auxiliary linear operator

L[φ(t; q)] = D(0.5)φ(t; q),

with the property
L[C] = 0,

where C is an integral constant. Hence, the mth-order deformation equation can be
given by

ym(t) = χmym−1(t) + hJ0.5[D(0.5)ym−1(t)− ym−1(t)−
∫ t

0

ym−1(s)ds−

(
8

3Γ(0.5)
t1.5 − t2 − 1

3
t3)(1− χm)].

Consequently, the HAM series solution is

y(t) = y0(t) +
K∑

m=1

ym(t), (24)

where K is the number of terms. Eq. 24 is a family of solution expression in the
auxiliary parameter h. As Liao suggested [7], to investigate the influence of h on the
convergent of the solution series 24, we plot the so-called h-curve of y′(0.2) as shown
in Fig. 4.1.

Figure 1. Curve y′(0.2)∼h at the 5th order of approximation.

According to this h-curve, it is easy to decide that (−1.6,−1) is the valid region
of h. which corresponds to the line segments nearly parallel to the horizontal axis.

A proper value of h = −1.4 is found from the h-curve shown in Fig. 4.1. Then the
ten terms from the series solution expression by HAM is

y(t) ≈ t2,
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which is in good agreement with the exact solution as shown in Fig. 4.1.

Figure 2. Comparison of the numerical solution. Hollow dots: 5th-
order HAM approximation; solid stars: 10th-order HAM approxima-
tion; continued solid lines: exact solution.

4.2. Example 2. Consider the fractional integro-differential equation for t ∈ I =
[0, 1],

D(0.75)y(t) =
1

Γ(1.25)
t0.25 + (t cos t− sin t)y(t) +

∫ t

0

t sin s y(s)ds, (25a)

y(0) = 0,

which has the exact solution y(t) = t. From 25a, we use the set of base functions

{t0.75n : n ≥ 1, n ∈ N},
to represent y(t),

y(t) =
∞∑

k=1

bkt0.75k,

where bk is a coefficient to be determined later. We choose

y0(t) = 0,

as our initial approximation of y(t). Besides that we select the the auxiliary linear
operator

L[φ(t; q)] = D(0.75)φ(t; q),
with property

L[C] = 0,

in which C is an integral constant. Using 14, we have

<m(−→y m−1(t)) = D(0.75)ym−1(t)− (t cos t− sin t)ym−1(t)−∫ t

0

t sin s ym−1(s)ds− (1− χm)
1

Γ(1.25)
t0.25,

so that the mth order deformation equation is

ym(t) = χmym−1(t) + hJ0.75[<m(−→y m−1(t))],

subject to the initial condition
ym(0) = 0.
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Now we successfully obtain

y1(t) = h(t2 − Γ(3)
Γ(3.5)

t2.5 − Γ(4)
3Γ(4.5)

t3.5)

By the same manner we can get y1(t), y2(t), . . . , ym(t). In order to find range of
admissible values of h, the h-curve is plotted in Fig. 4.2 for 5th-order approximation.
We can see that the range of values for h is between −1.5 ≤ h ≤ −0.5.

Figure 3. Curve y(0.3)∼h at the 5th order of approximation.

Then, we may conclude that we have achieved a good approximation with the
numerical solution of the equation by using the first few terms only of the linear
equations derived above. It is evident that the overall errors can be made smaller by
adding new terms of the HAM series solution. Fig. 4.2 presents a Comparison of the
numerical solution of 10th-order HAM approximation and the exact solution.

Figure 4. Comparison of the numerical solution. Hollow dots: 10th-
order HAM approximation; continued solid lines: exact solution.

5. Conclusion

Solving fractional integro-differential problems lack of analytical or closed form
solutions. Based on the fact, this study has focused on developing a simple procedure
to obtain an explicit analytical solution concerning the fractional integro-differential
equations. The method presented was applied to problems that exist in the literature.
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The results evaluated are in very good agreement with the already existing ones,
besides that even much more accurate. A series solution is evaluated in a very fast
convergence rate where the accuracy is improved by increasing the number of terms
considered. Shortly, from now on, with proven theorems, HAM can be used as a
powerful solver for the solution of fractional integro-differential equations.
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