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Nonlinear elliptic equations with divergence term and without
sign condition

Jaouad Igbida

Abstract. This paper aims at bounded solutions for nonlinear Dirichlet problems with di-
vergence term in a bounded domains. Our results is obtained without imposing any sign
condition on the term which growth quadratically to the gradient. For a given source term in
a suitable Lebesgue spaces and with less regularity on the divergence term, We establish an

existence and regularity results of solutions. Our approach falls within the scope of Schauder
fixed point theorem, some properties of a priori estimates and Stampacchia’s L∞-regularity.
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1. Introduction

Let Ω be a bounded domain in RN , N > 2. Considering the non linear Dirichlet
problem whose simplest model is

−div(∇u−Θ) + a(x)u|u|r−1 + g(x, u)|∇u|2 = f(x) in Ω, (1.1)

u|∂Ω = 0,

under suitable conditions on the source term f and the divergence term with
Θ. Without imposing any sign condition and any limitation on the growth of the
Carathéodory function g we are interested in existence of bounded solutions.

Considering a Carathéodory function g(., .) : Ω × (0,+∞) → R which my change
of sign and may have a singularity at s = 0. Let us note that the real function
a (.) is nonnegative and bounded in L∞ (Ω). Using suitable conditions on the data,
we establish existence and regularity of solutions for problem (P ). In general the
boundedness and then the existence of u cannot be obtained if one does not put any
restriction on Θ, a, g, f and |Ω|. Indeed, one can exhibit problems like (1.1) which
do not have any solution (see [2, 17, 27]).

This work is considered without any restriction on the growth of g and with the
presence of the less regular elements Θ(.) and a(.). We prove existence of bounded
weak solutions by assuming that

f ∈ Lm, m >
N

2
,

and the function Θ : R → RN is such that

Θ ∈ (Lq)
N
, q > N.

In addition of the complications introduced by Θ which provokes several difficulties
in the controllability of the integrals, other difficulties will be introduced by g(x, s)
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which is a Carathéodory function on Ω×(0,+∞) changing of sign having a singularity
at s = 0, and a is a nonnegative bounded real function. We shall obtain solution by
approximating process. Using a priori estimates, Schauder fixed point theorem and
Stampacchia’s L∞-regularity results we shall show that the approximated solutions
converges to a solution of problem (P ).

In some papers (see, for example, [5] and the references contained therein), it is
proved existence of solutions when the source therm f is small in a suitable norm.
On the other hand, condition on the function g have been considered in order to
get a solution for f in a given Lebesgue space. This last case is considered in [13]
under a restricted hypotheses: g is a Carathéodory function non increasing in u and
g(x, 0) = 0.

There is many works starting from the classical references of Ladyzenskaja and
Lions (see [23] and [24]), many other works have been devoted to elliptic problems
with lower order terms having quadratic growth with respect to the gradients (see
e.g. [7], [9], [10], [18], [20], [21], [22], [27] and the references therein).

This kind of problems though being physically natural, does not seem to have
been studied in the literature. The particular situations where on has the following
condition

g(x, s) s ≥ 0,

for almost every x in Ω, for every s in R, existence results in H1
0 (Ω) ∩ L∞ (Ω) have

been given (see, for example, [5] and the references contained therein). In our case
there is now sign condition on g.

Finally, we give some remarks for problem in the general form

−div a(x, u,∇u) = H(x, u,∇u)− div f, in D′(Ω), (1.2)

u ∈ H1
0 (Ω) ∩ L∞ (Ω) ,

where a(x, u, ξ) and H(x, u, ξ) are Carathéodory functions satisfying suitable growth
conditions on |ξ|. The question of finding estimates for solution of the general prob-
lems like (1.2) has been studied by many authors, under various assumptions on H
(see e.g. [27, 2, 17]). We would like to remark that there exist various papers where
estimates and existence results are proved for problems of the form (1.2) when H
satisfies a sign condition (see e.g. [5, 7, 8, 11, 30]). The uniqueness results have been
shown in [3]. Estimates, existence and regularity results (like Hölder-continuity) for
variational problems are contained for example in [7, 6, 10, 28, 29, 31].

2. Notations assumptions and main result

Let us consider the following elliptic problem

a(x)u|u|r−1 − div(∇u−Θ) + g(x, u)|∇u|2 = f(x) in Ω,

u|∂Ω = 0.

Where Ω is a bounded domain of RN with N > 2, with boundary Γ = ∂Ω and r is
a constant, such that r > 1.

The elements f and Θ satisfies the following hypotheses

f ∈ Lm(Ω), m >
N

2
,

and

Θ ∈ (Lq(Ω))
N
, q > N.
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Let us assume that there exist an increasing function b : (0×+∞) → (0×+∞) and
β ∈ (0, 1) such that the Carathéodory function g satisfies the following hypothesis

−β ≤ s g(x, s) ≤ b(s), ∀s > 0, and a.e. x ∈ Ω. (2.1)

There is no sign condition imposed on g and any condition on the upper growth of
g(x, s) as s goes to infinity is imposed.

The function a(.) satisfies{
a ∈ L∞ (Ω) ,

∃ a0 such that a ≥ a0 > 0, a.e in Ω.
(2.2)

We recall the definition of a truncated function Tk(s) defined, for all k ∈ R+, by

Tk(z) =

 z if |z| ≤ k
k if z > k
−k if z < −k

,

and the corresponding tail function

Gk(z) = z − Tk (z) = (|z| − k)
+
sign (z) .

We begin by proving an existence result when the source term is regular.

Theorem 2.1. Let f in L∞(Ω), and Θ be a function in (Lq(Ω))
N
, q > N. We

assume that r > 1, then there exist a solution u ∈ H1
0 (Ω) ∩ L∞ (Ω) of

a(x)u|u|r−1 − div(∇u−Θ) + g(x, u)|∇u|2 = f(x) in Ω, (2.3)

u|∂Ω = 0.

In the sense that∫
Ω

a(x)u|u|r−1ϕ+

∫
Ω

(∇u−Θ)∇ϕ+

∫
Ω

g(x, u)|∇u|2ϕ =

∫
Ω

f ϕ, (2.4)

for any test function ϕ in C∞
0 (Ω).

Remark 2.1. The result of the precedent theorem is still new on the literature. Indeed,
existence results in H1

0 (Ω) ∩ L∞ (Ω) have been given under a sign condition on g :
namely,

g(x, s) s ≥ 0,

for almost every x in Ω, for every s in R (see, for example, [5] and the references
contained therein). In our case there is now sign condition on g.

Theorem 2.2. Let r > 1. If we assume that f ∈ Lm(Ω), m > N
2 , and Θ ∈

(Lq(Ω))
N
, q > N. Then there exist a solution u of

a(x)u|u|r−1 − div(∇u−Θ) + g(x, u)|∇u|2 = f(x) in Ω,

u|∂Ω = 0.

In the sense that u belongs to H1
0 (Ω), g(x, u) |∇u|2 and a(x)u|u|r−1 are integrable,

and the following equality holds∫
Ω

a(x)u|u|r−1ϕ+

∫
Ω

(∇u−Θ)∇ϕ+

∫
Ω

g(x, u)|∇u|2ϕ =

∫
Ω

f ϕ, (2.5)

for any test function ϕ in C∞
0 (Ω).

Furthermore, any solution of the problem (P ) belongs to H1
0 (Ω) ∩ L∞ (Ω).
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3. Proof of the main results

We will give a proof of the first result. We denote by c a positive constant which
may only depend on the parameters of our problem, its value my vary from line to
line.We consider the following operator

A(x, s) = a(x)s|s|r−1.

For any n ∈ N we set

An(x, s) = an(x, s)
|s|r−1

1 + 1
n |s|r−1

,

where

an(x, s) = a(x)Tn(s).

Let us define the Carathéodory function G : Ω× R× RN → R+ as follows:

G(x, s, ζ) = g(x, s)|ζ|2.

We define also the following Carathéodory function

Gn(x, s, ζ) = gn(x, s)
|ζ|2

1 + 1
n |ζ|2

,

where

gn(x, s) =

 0 if s ≤ 0
n2s2Tng(x, s) if 0 < s < 1

n
Tng(x, s) if 1

n ≤ s
.

Let us remark that gn(x, s) is bounded and

gn(x, s) → g(x, s), as n tend to infinity, for all x ∈ Ω and all s > 0.

We consider now the operator defined by

hn(x, s, ζ) = Gn(x, s, ζ) +An(x, s).

This operator is bounded. Indeed, gn(x, s), a(x) and
|ζ|2

1+ 1
n |ζ|2 are bounded.

Then we have the following problem

−div(∇u−Θ) + hn(x, u,∇u) = f(x) in Ω. (3.1)

By classical results (see for example [24]) there exists a solution un in H1
0 (Ω) of

this problem, in the sense that∫
Ω

(∇u−Θ).∇ϑ+

∫
Ω

hn(x, u,∇u)ϑ =

∫
Ω

f ϑ,

for any test function ϑ in H1
0 (Ω).

Let us now consider the function Gk(s) = s−Tk(s) and we teste the approximating
problem by Gk(un) we obtain

(1− β)

∫
Ω

|∇Gk(un)|2 +
∫
Ω

[gn(x, un)
|∇un|2

1 + 1
n |∇un|2

Gk(un) + β|∇Gk(un)|2]

≤
∫
Ω

f Gk(un) +

∫
Ω

Θ.∇Gk(un).

Denoting by ßk,n the set

ßk,n = {|un| ≥ k}.
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From Young inequality, on has∫
Ω

Θ.∇Gk(un) ≤ c

∫
ßk,n

|Θ|2
′

− β

∫
Ω

|∇Gk(un)|2.

Using the fact that |Θ| belongs to Lq(Ω), with q > N > 2, we have by Hölder
inequality that ∫

ßk,n

|Θ|2
′

≤ ||Θ||(Lq(Ω))N |ßk,n|1−
2
q ,

where |ßk,n| denote the measure of ßk,n. Using the Sobolev embedding, on obtain∫
Ω

|∇Gk(un)|2 ≥ c (

∫
Ω

|∇Gk(un)|2
∗
)

2
2∗ .

It follows that

(

∫
Ω

|∇Gk(un)|2
∗
)

2
2∗ ≤ c|ßk,n|1−

2
q .

Using the fact that |Gk(un)| ≥ h− k on ßh,n, for h such that h > k, on obtain

(h− k)2|ßh,n|
2
q ≤ c |ßk,n|1−

2
q , for all h > k ≥ σ.

Then on has

|ßh,n| ≤
c

(h− k)2
|ßk,n|

2∗
2 (1− 2

q ) for all h > k ≥ σ.

By a well-known result of G. Stampacchia on has, there exist a constant c such that

|ßk,n| = 0, for all k ≥ c+ σ.

Which means that
||un||∞ ≤ c. (3.2)

Then, the proof of the first theorem is concluded. In deed, it is possible to extract a
subsequence which converges strongly in H1

0 (Ω) to a solution u of (2.3).

To prove the next result, for f ∈ Lm(Ω) with m > N/2 and Θ ∈ (Lq(Ω))
N
, q > N,

we consider two sequences fn ⊂ L∞(Ω) and Θn ⊂ (L∞(Ω))
N

such that

fn → f strongly in Lm(Ω),

and
Θn → Θ strongly in (Lq(Ω))

N
.

The following mapping
Hn : H1

0 (Ω) → Lm(Ω),

is defined by
Hn(u) = Υn(x, u,∇u) +zn.

Where

Υn(x, u,∇u) = −an(x, u)
|u|r−1

1 + 1
n |u|r−1

− gn(x, u)
|∇u|2

1 + 1
n |∇u|2

),

and
zn = fn(x)− div(Θn).

Denoting

T 1
k =

∫
Ω

∣∣∣∣[gn(x, uk) |∇uk|2

1 + 1
n |∇uk|2

− gn(x, u)
|∇u|2

1 + 1
n |∇u|2

]∣∣∣∣m ,

and

T 2
k =

∫
Ω

∣∣∣∣[an(x, u) |uk|r−1

1 + 1
n |uk|r−1

− an(x, u)
|u|r−1

1 + 1
n |u|r−1

]∣∣∣∣m .
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As an application of the dominated convergence theorem, if uk → u in H1
0 (Ω) we

infer, from the convergence uk → u and ∇uk → ∇u a.e. x ∈ Ω and the boundedness
of the operators gn(x, u), an(x, u) that

lim
k→∞

T 1
k = 0,

and
lim T 2

k
k→∞

= 0.

It follows that

Υn(x, uk,∇uk)−Υn(x, u,∇u) → 0, as k tend to infinity.

Then,
Hn uk → Hn u in Lm(Ω), as k tend to infinity.

Therefor, Hn is continuous.
We consider now the operator

(−∆)−1 : Lm(Ω) → H1
0 (Ω).

Then, the solutions of (3.1) are the fixed points of the composition operator

Γn ≡ (−∆)−1 ◦Hn.

Since m > N/2, we deduce that the operator (−∆)−1 is compact and hence the
composition of it with the continuous operator Hn i.e. that Tn is also compact.

let us now observe that,

||Hn u||m ≤ ||gn(x, u)
|∇u|2

1 + 1
n |∇u|2

||m + ||an(x, u)
|u|r−1

1 + 1
n |u|r−1

||m

+ ||f ||m + ||Θ||(Lq(Ω))N

≤ ||f ||m + ||Θ||(Lq(Ω))N + 2n2|Ω|.

By the continuity of (−∆)−1, this implies that there exist R > 0 such that

||Γn u||H1
0 (Ω) ≤ R.

So that, The operator Γn maps the ball in H1
0 (Ω) centrad at zero and with radius

R into it self. Finally from the Schauder fixed point theorem there exists a fixed point
un ∈ H1

0 (Ω) of Tn.
Denoting by 2∗ = 2N

N−2 and by λ the Sobolev constant:

λ = inf
w∈H1

0(Ω)−{0}

||w||2

||w||22∗
.

Next, proving that there exist a constant c > 0 such that∫
Ω

|un|r + ||∇un||2 ≤ c ||f ||m ||un||m′ + c||Θ||(Lq(Ω))N , (3.3)

where m′ is the conjugate exponent of m (m′ = m
m−1 ).

We denote now by

γ = 2∗
[

1

(2∗)′
− 1

q

]
,

and
η = λ−2∗22

∗ γ
γ−1 λ−2∗(1− β)−2∗ ||f ||2

∗

m |Ω|γ−1. (3.4)

Let us note that, there exist κ > 1 such that

sgn(x, s) ≤ κ, ∀s ∈]0, η], a.ex ∈ Ω, (3.5)
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and from (2.1) that

sgn(x, s) + β ≥ 0, a.ex ∈ Ω, ∀s ∈ R, (3.6)

for every n.
From the approximated problem it follows that∫
Ω

|∇un|2 +
∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

un

+

∫
Ω

an(x, un)
|un|r−1

1 + 1
n |un|r−1

un

≤
∫
Ω

f nun +

∫
Ω

Θ.∇un.

Which is equivalent to

(1− β)

∫
Ω

|∇un|2 +
∫
Ω

[gn(x, un)
|∇un|2

1 + 1
n |∇un|2

un + β|∇un|2]

+

∫
Ω

an(x, un)
|un|r−1

1 + 1
n |un|r−1

un

≤
∫
Ω

fn un +

∫
Ω

Θ.∇un.

Using Young and Hlder inequality as above, on obtain∫
Ω

|∇un|2 +
∫
Ω

[gn(x, un)
|∇un|2

1 + 1
n |∇un|2

un + β|∇un|2]

+

∫
Ω

an(x, un)
|un|r−1

1 + 1
n |un|r−1

un

≤ c ||f ||m ||un||m′ + c||Θ||(Lq(Ω))N .

Taking a conte to (3.6) on has

ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

+ β
|∇un|2

1 + 1
n |∇un|2

≥ 0, a.e x ∈ Ω.

By consequence

ungn(x, un)
|∇un|2

1 + 1
n |∇un|2

+ β|∇un|2 ≥ 0.

From the estimate (3.3) and by the use of Sobolev embedding theorem the sequence
un is bounded in H1

0 (Ω)∩Lr(Ω). Then there exist a function u ∈ H1
0 (Ω)∩Lr(Ω) and

a subsequence, still denoted by un, such that

un → u weakly in H1
0 (Ω), (3.7)

un → u almost every where in Ω , (3.8)

and

an(x, un) → a(x, u) almost every where in Ω. (3.9)

From the construction of fn and Θnwe have for n tending to infinity

Θn → Θ in (Lq(Ω))
N
, (3.10)

and

fn → f in L1(Ω). (3.11)
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Taking into account the equi-integrability of un in Lr (Ω) , it follows that of
an(x, un)|un|r−1 in L1 (Ω) . Hence, we have

an(x, un)|un|r−1 → a(x, u)|u|r−1 in L1 (Ω) . (3.12)

Since on has up to a subsequence un, that

∇un → ∇u almost every where in Ω, (3.13)

and ∇un is bounded in L2 (Ω) , then on has

∇un → ∇u in L2 (Ω) .

We conclude that

∆un → ∆u in L1 (Ω) .

Considering now the following function

ϕ = ψµ(un − u)φ,

where φ is a positive function in C∞
0 (Ω) and

ψµ(s) = s eµs
2

, µ is a positive constant.

We have

ψ′
µ(s)− c|ψµ(s)| = eµs

2

[1 + 2µs2 − c|s|].
Then for large value of µ we have

eµs
2

[1 + 2µs2 − c|s|] ≥ 1

2
, ∀s ∈ R. (3.14)

Testing the approximated problem by ϕ = ψµ(un − u)φ we obtain∫
Ω

∇un ∇(un − u)ψ′
µ(un − u)φ+

∫
Ω

∇un∇φψµ(un − u)

+ I1n ≤
∫
Ω

f ψµ(un − u)φ+ I2n + I3n,

where

I1,n =

∫
Ω

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

ψµ(un − u)φ,

I2,n =

∫
Ω

Θn .∇(un − u)ψ′
µ(un − u)φ,

and

I3,n =

∫
Ω

Θn.∇φψµ(un − u).

It follows∫
Ω

|∇(un − u)|2ψ′
µ(un − u)φ+

∫
Ω

∇u∇(un − u)ψ′
µ(un − u)φ

+

∫
Ω

∇un∇φψµ(un − u) + I1,n

≤
∫
Ω

fn ψµ(un − u)φ+ I2n + I3n.

Since on has

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

ψµ(un − u)φ ≥ −c|∇un|2|ψµ(un − u)|φ, a.e. x ∈ Ω.
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Then

I1,n ≥ −c|∇un|2|ψµ(un − u)|φ, a.e. x ∈ Ω.

It follows, that∫
Ω

|∇(un − u)|2ψ′
µ(un − u)φ− c|∇un|2|ψµ(un − u)|φ

≤ −
∫
Ω

∇u∇(un − u)ψ′
µ(un − u)φ−

∫
Ω

∇un∇φψµ(un − u)

+

∫
Ω

f ψµ(un − u)φ+ I2n + I3n.

Observing that∫
Ω

|∇(un − u)|2ψµ(un − u)φ =

∫
Ω

|∇un|2|ψµ(un − u)|φ

+

∫
Ω

|∇u|2|ψµ(un − u)|φ

− 2

∫
Ω

∇un∇u|ψµ(un − u)|φ,

and taking a count to (3.14) we obtain

1

2

∫
Ω

|∇(un − u)|2φ ≤ −c
∫
Ω

|∇u|2|ψµ(un − u)|φ

+ 2c

∫
Ω

∇un∇u|ψµ(un − u)|φ

−
∫
Ω

∇u∇(un − u)ψ′
µ(un − u)φ

−
∫
Ω

∇un∇φψµ(un − u)

+

∫
Ω

f ψµ(un − u)φ.

In this stage, we will use the weak* topology of L∞ (Ω) and the almost every where
convergence in Ω, for n tending to infinity on has

ψ′
µ(un − u) → 0,

and

ψµ(un − u) → 0.

Since, fn is strongly compact in L1 (Ω) , then∫
Ω

fn ψµ(un − u) → 0.

Since, un converges to u weakly in H1
0 (Ω) , and is strongly compact in (Lq (Ω))

N
,

then for n tending to infinity on has

I1,n → 0,

and

I2,n → 0.
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Using the dominated convergence theorem, we obtain for n tending to +∞∫
Ω

|∇(un − u)|2φ→ 0.

Since this convergence is satisfied for all φ ∈ C∞
0 (Ω). We cane deduce now that

there exist h ∈ L2(Ω) such that up to a subsequence, on has

|∇un(x)| ≤ h(x), a.e. x ∈ Ω, (3.15)

and
∇un(x) → ∇u(x), a.e. x ∈ Ω.

From (3.5) and (3.6) we conclude that fore some c > 0 we have

|gn(x, un)| ≤ c a.e. x ∈ Ω.

Taking a count to (3.15) we obtain

|gn(x, un)|
|∇un|2

1 + 1
n |∇un|2

≤ ch2 a.e. x ∈ Ω.

Using the definition of gn(x, un), and passing now to the limit on n, we obtain

gn(x, un)
|∇un|2

1 + 1
n |∇un|2

→ g(x, u)|∇u|2 a.e. x ∈ Ω.

Then
Gn(x, un,∇un) → G(x, u,∇u) a.e. x ∈ Ω.

Finally, the dominated convergence theorem yields to∫
Ω

Gn(x, un,∇un)ϕ→
∫
Ω

G(x, u,∇u)ϕ.

Then, on has ∫
Ω

hn(x, un,∇un)ϕ→
∫
Ω

h(x, u,∇u)ϕ.
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