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On Volterra’s Population Growth Models

H.M. Jaradat, E.A. Rawashdeh, and Fadi Awawdeh

Abstract. A class of population growth problems is considered. We consider the case when
the problems employ delay kernels reflecting the presence of some instantaneous effect on
growth rate response, with delayed maximum effect. Under appropriate assumptions on the
data of the problems, we construct an analytical solution with the help of an optimal homotopy

analysis approach. This optimal approach contains a convergence-control parameter which
can be estimated by minimizing the square residual error. Finally, numerical examples are
presented that illustrate the approach efficiency.
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1. Introduction

Assume that we have n species whose populations are denoted by

N1, N2, . . . , NN

where their coefficients of increase are called ϵ1, ϵ2, . . . , ϵn. Taking these constants
as positive or negative according to whether the species tend to increase or to die
out when not interfered with, we will have the following equations expressing the
variations of the populations:

dNi

dt
= ϵiNi , i = 1, 2, . . . , n. (1)

By t we denote the actual instant and by τ a preceding instant. The number of
individuals of the species s at time τ will be Ns(τ). Let us suppose that the species
s exercises over the coefficient of increase of the species r an action which will be
manifested in the future and which varies with the distance in time. We shall denote
such a (unitary) action by Fsr(t − τ) when it is exercised by the species s in the
infinitesimal interval of time (τ, τ + dτ) and is manifested on the species r at time t.
Then the action corresponding to the population Ns(τ) will be

Ns(τ)Fsr(t− τ)dτ.

If we take into account all these actions beginning from the origin of times at which
they are supposed to have begun, up to the present moment t we shall have

t∫
0

Ns(τ)Fsr(t− τ)dτ.
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Considering historical actions for all n species on the coefficient of increase of the
species r, we will have

n∑
s=1

t∫
0

Ns(τ)Fsr(t− τ)dτ.

The coefficient of increase of the species r, taking into account all immediate and
historical actions exercised upon it, will therefore become

ϵr +

n∑
s=1

AsrNs(τ)

t∫
0

Ns(τ)Fsr(t− τ)dτ. (2)

Here, the coefficient Asr measures that unitary action (per individual) which the
species s exercises upon the species r, while Ars denotes the inverse action that
species r exercises upon the species s. In this line, (1) and (2) gives

dNr

dt
=

ϵr +
n∑

s=1

AsrNs(τ)

t∫
0

Ns(τ)Fsr(t− τ)dτ

Nr(t). (3)

We may suppose that the historical actions may be prolonged indefinitely in the past,
and then the equations (3) must be replaced by the following:

dNr

dt
=

ϵr +
n∑

s=1

AsrNs(τ)

t∫
−∞

Ns(τ)Fsr(t− τ)dτ

Nr(t).

In this way we will have nonlinear Volterra integro-differential equations (VIDE’s)
with infinite delay,

y′(t) = f(t, y(t)) +

∫ t

−∞
K(t, s, y(t), y(s))ds, t ∈ [0, T ], (4)

where on (−∞, 0] the solution y is agree with a given initial function φ:

y(t) = φ(t), t ≤ 0. (5)

There are many important applications of the Volterra’s population growth models
(4)-(5), for more details see [?, 13, 14].

We are interested in this work with kernel functions in (4) of the form

K(t, s, y, z) = a(t− s).y.z, (6)

and
f(t, y) = y.(a0 − a1y), with a0, a1 > 0. (7)

Many models of population growth employ delay kernels reflecting the presence of
some instantaneous effect on growth rate response, with delayed maximum effect, i.e.,

a(t) = −(
γ0
b

+
γ1
b2

t)e−
t
b , (8)

with γ0 + γ1 = 1, γ1 > γ0 ≥ 0, b > 0. This function a(t) attains its maximum at
t = b(γ1−γ0)/γ1, and we have

∫∞
0

|a(t)| dt = 1.We cite the following result concerning
Volterra’s population equations (4)-(7).

Theorem 1.1 (Miller [15]). Suppose that a0 > 0, a1 > 0, and let a ∈ C[0,∞) ∩
L1[0,∞), with a(t) ̸= 0, satisfy

a1 −
∫ ∞

0

|a(s)| ds > 0.
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Then for any positive, continuos, bounded function φ(t), t ≤ 0, the problem (4)-(5),
with K and f given by (6) and (7), respectively, has a unique solution y ∈ C1[0,∞).
This solution satisfies y(t) > 0 for all t > 0, and we have

y(∞) = lim
t→∞

y(t) = a0

/(
a1 −

∫ ∞

0

a(s)ds

)
.

In this paper, an optimal homotopy analysis approach (HAM) [1, 2, 5, 6, 10, 11,
12, 13, 14] is applied to study the population growth model (4)-(5), with K and f
given by (6)-(7). The results contained herein are new for such models.

2. Homotopy solution of the Volterra’s population model

One can express y(t) by such a set of base functions

{tme−nλt | m,n = 0, 1, 2, . . . , λ > 0} (9)

that

y(t) =
∞∑

m=0

∞∑
n=0

αm,nt
me−nλt, (10)

where αm,n is a coefficient. This provides us with the Rule of Solution Expression.
Considering the Rule of Solution Expression described by (9) and taking into ac-

count the solution property at infinity given in Theorem 1, it is obvious that

y0(t) = κ+ (1− κ)e−λt (11)

where

κ = a0

/(
a1 −

∫ ∞

0

a(s)ds

)
is a good initial guess of y(t). One chooses such an auxiliary linear operator

L[ϕ(t; q)] = ∂ϕ(t; q)

∂t
+ λϕ(t; q) (12)

that
L[Ce−λt] = 0

where C is a coefficient.
Due to (4), one defines the non-linear operator

N [ϕ(t; q)] =
∂ϕ(t; q)

∂t
− f(t, ϕ(t; q))−

∫ t

−∞
K(t, s, ϕ(t; q), ϕ(s; q))ds. (13)

Let q ∈ [0, 1] be the embedding parameter and ~ a non-zero auxiliary parameter. One
constructs such a homotopy

H[ϕ(t; q); ~, q] = (1− q)L[ϕ(t; q)− y0(t)]− q~N [ϕ(t; q)]. (14)

Setting H[ϕ(t; q); ~, q] = 0, one has a family of equations

(1− q)L[ϕ(t; q)− y0(t)] = q~N [ϕ(t; q)], (15)

subject to the initial condition

ϕ(t; q) = φ(t), t ≤ 0.

Obviously, when q = 0, because of the property L(0) = 0 of any linear operator L,
Eq. (15) has the solution

ϕ(t; 0) = y0(t), (16)
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and when q = 1, since ~ ̸= 0, Eq. (15) is equivalent to the original one (4), provided

ϕ(t; 1) = y(t). (17)

Thus, according to (16) and (17), as the embedding parameter q increases from 0
to 1, ϕ(t; q) varies continuously from the initial approximation y0(t) to the exact
solution y(t). This kind of deformation ϕ(t; q) is totally determined by the so-called
zeroth-order deformation equation (15).

Assume that ϕ(t; q) is analytic in q ∈ [0, 1] so that ϕ(t; q) can be expanded in
Maclaurin’s series of q as follows

ϕ(t; q) = y0(t) +
∞∑

m=1

ym(t)qm, (18)

where

ym(t) =
1

m!

∂mϕ(t; q)

∂qm
|q=0. (19)

If the auxiliary linear operator L and the nonzero auxiliary parameter ~ are prop-
erly chosen so that the power series (18) of ϕ(t; q) converges at q = 1. Then, we have
under these assumptions the the so-called homotopy-series solution

y(t) =
∞∑

m=0

ym(t). (20)

The solution at nth-order approximation is given by

y(t) ≈
n∑

m=0

ym(t).

Differentiating the zero-order deformation equation (15) m times with respect to
q and then dividing by m! and finally setting q = 0, we have the so-called high-order
deformation equation

L[ym(t)− χmym−1(t)] = ~ℜm(t), (21)

subject to the initial conditions

ym(0) = 0, (22)

where

ℜm(t) =
1

(m− 1)!

∂m−1N [ϕ(t; q)]

∂qm−1
|q=0 (23)

and

χm =

{
0, m ≤ 1
1, m > 1

.

In this line we have that,

ℜm(t) = y′m−1(t)− a0ym−1(t) + a1

m−1∑
k=0

ykym−k−1 − (24)

ym−1(t)

∫ 0

−∞
a(t− s)φ(s)ds−

m−1∑
k=0

yk

∫ t

0

a(t− s)ym−k−1(s)ds.

Notice that whenm ≥ 1, the IVPs (21)-(22) are always linear and due to the properties
of a(t) mentioned at the end of the previous section, the integrals in (24) can usually
be calculated analytically. So, it is easy to gain the solution
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ym(t) = χmym−1(t) + ~e−λt

t∫
0

eλζℜm(ζ)dζ + Ce−λt, (25)

where the integral coefficients are determined by initial conditions (22).
In this way, it is easily to obtain ym(t) one by one in the order m = 1, 2, 3, ... and

we have the n-th order approximation

y(t) = y0(t) +

n∑
m=1

2m+3∑
k=2

αm,kt
ke−kλt. (26)

When n → ∞, we get an accurate approximation of the original problem (4)-(7).
In our approach λ is an optimal convergence-control parameter that can be used

to accelerate the convergence of the homotopy-series solution (26). At the mth order
of approximation, one can define the square residual error

∆m =

+∞∫
0

(
N

[
m∑
i=0

yi(ξ)

])2

dξ.

Note that ∆m contains λ as an unknown parameter. At a given order of approximation
m, the optimal value of λ is given by the minimum of ∆m, corresponding to the
nonlinear algebraic equation

d∆m

dλ
= 0.

For the sake of simplicity, we will find an optimal λ by minimizing the square
residual error of the governing equation for the initial guess y0(t):

λ = min∆0 = min

+∞∫
0

(N [y0(ξ)])
2
dξ. (27)

3. Result Analysis

In the following numerical illustration the values of the parameters were chosen as

γ0 = 0.05, γ1 = 0.95, b = 1, a0 = 14, a1 = 1.1;

the initial function is φ(t) = eγ2t, with γ2 = 0.5.
By (11) we can easily obtain

y0(t) = 20 /3 − 17 /3 e−λt,

and using (27), we are able to estimate the optimal value of λ. The curve of ∆0 versus
λ is shown in Fig. 1, which indicates that the optimal value of λ is about 0.5.

Note that we have great freedom to choose the value of the auxiliary parameter ~.
Mathematically the value of y(t) at any finite order of approximation is dependent
upon the auxiliary parameter ~, because the zeroth and high-order deformation equa-
tions contain ~. The best value of the parameter ~ can be studied by investigating
the convergence of the series (20) at t = 2. This can be done by plotting the so-called
~-curve [10] which takes a line segment, nearly parallel to the horizontal axis, through
the position of convergence. We plot the ~-curve of y(2) as shown in Fig. 2.

According to this ~-curve, it is easy to conclude that −1.7 ≤ ~ ≤ −0.8 is the valid
region of ~.
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Figure 1. λ versus ∆0

Figure 2. y(2) versus ~ for 7th order of approximation

Some approximations of y(2) are listed in Table 1, which show the convergence of
the solution series (20) when ~ = −1.5. The results in Table 1 agree well with that
obtained by Brunner [6] using the collocation method.

A proper value of ~ = −1.5 is taken and then the seven terms from the series
solution expression by HAM is plotted in Fig. 3.

According to Fig. 3, a rise occurs along the solution curve, of the population
growth model (4)-(7), from 1 at t = 0 to reach a peak about 11.67 near t = 0.6 and
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Table 1. Approximation of y(2) using 7th order of approximation and ~ = −1.5

order of approximation y(2)
2
4
6
8
10
12
14

7.4321
7.499
7.521
7.5681
7.5682
7.5682
7.5682

Figure 3. seven terms from the homotopy-series solution; y7(t)

then tends to the asymptotic value y(∞) ≈ 6.6. This agree well with the theoretical
results [15], and the numerical results obtained by the collocation method [8].
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