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Some Inequalities About Certain Arithmetic Functions

Nicuşor Minculete

Abstract. Let σ
(e)
k (n) denote the sum of kth powers of the exponential divisors of n, τ (e) (n)

denote the number of the exponential divisors of n, σ
(e)∗
k (n) denote the sum of kth powers of

the e− unitary divisors of n and τ (e)∗ (n) denote the number of the e− unitary divisors of
n. The purpose of this paper is to present several inequalities about the arithmetic functions

σ
(e)
k , τ (e), σ

(e)∗
k , τ (e)∗ and other well-known arithmetic functions. Among these, we have the

following: σ
(e)
k (n) ≥ γk (n)

[
1k + 2k + ... +

(
τ (e) (n)

)k
]

and σk (n) + nk ≥ σ
(e)
k (n) + σ∗k (n) ,

for any n ≥ 1 and k ≥ 0.
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1. Introduction

An interesting part of number theory is related to multiplicative arithmetic func-
tions. Many inequalities between some of the functions are developed in many papers
and several inequalities can be found in the papers [4], [5], [8] and [14].

Some functions use an important type of divisor, namely, the exponential divisor
that was introduced by M. V. Subbarao in [13], thus: if n > 1 is an integer of canonical

form n = pa1
1 pa2

2 ...par
r , then the integer d =

r∏

i=1

pbi
i is called an exponential divisor (or

e−divisor) of n =
r∏

i=1

pai
i > 1, if bi ≥ 1 and bi | ai for every i = 1, r. We write d |(e) n.

We note with σ
(e)
k (n) the sum of kth powers of the exponential divisors of n, so,

σ
(e)
k (n) =

∑

d|(e)n

dk, whence we obtain the following equalities: σ
(e)
1 (n) = σ(e) (n) and

σ
(e)
0 (n) = τ (e) (n)− the number of the exponential divisors of n.
A particular case of exponential divisor is “the exponential unitary divisors”or “e-

unitary divisors”given in [15] by L. Tóth and N. Minculete, thus: an integer d =
r∏

i=1

pbi
i is called a e−unitary divisor of n =

r∏

i=1

pai
i > 1 if bi is a unitary divisor of ai,

so
(
bi,

ai

bi

)
= 1, for every i = 1, r. Let σ

(e)∗
k (n) denote the sum of kth powers of the

e−unitary divisors of n, and τ (e)∗ (n) denote the number of the e−unitary divisors of
n.

By convention, 1 is an exponential divisor of itself, so that σ
(e)∗
k (1) = τ (e)∗ (1) = 1.
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We notice that 1 is not a e−unitary divisor of n > 1, the smallest e−unitary divisor
of n = pa1

1 pa2
2 ...par

r > 1 is p1p2...pr, where p1p2...pr = γ (n) is called the “core” of n.
J. Fabrykowski and M. V. Subbarao in [1] study the maximal order and the average

order of the multiplicative function σ(e) (n). E.G. Straus and M. V. Subbarao in [12]
obtained several results concerning e−perfect numbers (n is an e−perfect number if
σ(e) (n) = 2n).

In [6], it is shown that

τ (n) + 1 ≥ τ (e)(n) + τ∗ (n) , (1.1)
for all integers n ≥ 1.

In [9], J. Sándor and L. Tóth proved the inequalities

nk + 1
2

≥ σ∗k (n)
τ∗ (n)

≥
√

nk, (1.2)

and

σ∗k+m (n)
σ∗m (n)

≥
√

nk, (1.3)

for all n ≥ 1 and k, m ≥ 0, real numbers, where τ∗ (n) is the number of the unitary
divisors of n, σ∗k (n) is the sum of kth powers of the unitary divisors of n.

We remark the following inequalities:

τ (e)∗ (n) ≤ τ (e) (n) ≤ τ (n) (1.4)
and

σ
(e)∗
k (n) ≤ σ

(e)
k (n) ≤ σk (n) , (1.5)

for every n ≥ 1.
Using the same proof from inequality (7) of [5], we deduce the inequality

σ
(e)
k (n) ≤ nk

r∏

i=1

(1 +
1
pk

i

) ≤ σk (n) , (1.6)

for all integers n ≥ 1 and k ≥ 1.
An important function in number theory is the Euler totient ϕ(n). This is defined

to be the number of positive integers not exceeding n, which are relatively prime to
n, thus, we have

ϕ(n) = n
∏

p/n

(
1− 1

p

)
(1.7)

for all n ≥ 1.
In [2], C. Jordan has introduced the function Jk(n) defined as the number of ordered

sets of k elements from a complete residue system ( mod n) such that the greatest
common divisor of each set is prime to n. It will be called Jordan’s totient which is a
generalization of Euler’s totient and can be expressed as

Jk(n) = nk
∏

p/n

(
1− 1

pk

)
, (1.8)

for all n ≥ 1 and k ≥ 1.
A. Makowski, in [3], found the inequality

nkτ(n) ≥ Jk(n) + σk(n) ≥ 2nk (1.9)
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for all n ≥ 1 and k ≥ 1.
In [10], J. Sándor gave some inequalities related to the function Jk, for example:

Jk(n)τ(n) ≥ nk (1.10)

and
σk(n) ≤ Jk(n)τ2(n), (1.11)

for all n ≥ 1 and k ≥ 1.
In [7], K. Nageswara Rao has introduced the unitary analogue J∗k (n) of Jordan’s

totient which can be expressed as:

J∗k (n) = nk
∏

p/n

(
1− 1

pak

)
. (1.12)

J. Sándor and L. Tóth established in [9]] several interesting inequalities for function
J∗k .

Among these, we remark the following:

J∗k (n) + τ∗(n) ≤ σ∗k(n), (1.13)

J∗k (n) + σ∗k(n) ≤ nkτ∗(n), (1.14)

and
nk ≤ J∗k (n) · τ∗(n),

for all n ≥ 1 and k ≥ 1. Next, the principal aim of the paper is to illustrate several
inequalities between the above mentioned arithmetic functions.

2. Inequalities for the functions τ (e), σ
(e)
k , τ (e)∗ and σ

(e)∗
k

Theorem 2.1. For all n ≥ 1 and for all integers k ≥ 0, there are the following
inequalities:

σ
(e)
k (n) ≥ γk (n)

[
1k + 2k + ... +

(
τ (e) (n)

)k
]

(2.1)

and

σ
(e)∗
k (n) ≥ γk (n)

[
1k + 2k + ... +

(
τ (e)∗ (n)

)k
]

. (2.2)

Proof. For n = 1, we have equality in relations (2.1) and (2.2).
If n > 1, then we take the divisors in increasing order. The smallest exponential

divisor of n = pa1
1 pa2

2 ...par
r > 1 is p1p2...pr, where p1p2...pr = γ (n) . The second

divisor is at least 2p1p2...pr = 2γ (n). If d1, d2, ..., ds are the exponential divisors of
n, then it is easy to see that di ≥ γ (n) · i, for any i = 1, s. The last inequality is in
fact the inequality n ≥ γ (n) · τ (e) (n), which is true, for all n ≥ 1. Hence

σ
(e)
k (n) =

∑

d|(e)n

dk ≥ γk (n) + (2 · γ (n))k + (3 · γ (n))k + ... + (s · γ (n))k =

= γk (n)
(
1k + 2k + ... + sk

)
,

where s = τ (e) (n). In an analogous way, we deduce the second inequality by
replacing the exponential divisors of n with the unitary e−divisors of n. ¤
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Remark 2.1. In Theorem 2.1, the equality in relations (2.1) and (2.2) holds, when
we have n = γ (n) · τ (e) (n) , so, for n = 1, n = p1p2...pr and n = 4p2...pr (pi 6= 2) ,
where pi is a prime number, for all 1 ≤ i ≤ r.

Corollary 2.1. For all n ≥ 1 and k ≥ 2, there are the following inequalities:

σ
(e)
k (n) >

[
τ (e) (n)

]2 · γ (n)
ζ (k)

(2.3)

and

σ
(e)∗
k (n) >

[
τ (e)∗ (n)

]2 · γ (n)
ζ (k)

, (2.4)

where ζ is the Riemann-Zeta function.

Proof. We apply Cauchy’s inequality, thus:
(

1
1k

+
1
2k

+ ... +
1
sk

) (
1k + 2k + ... + sk

) ≥ s2,

where s = τ (e) (n) . But

ζ (k) =
1
1k

+
1
2k

+ ... +
1
sk

+ ... >
1
1k

+
1
2k

+ ... +
1
sk

.

Therefore, we obtain the inequality 1k + 2k + ... + sk ≥ s2

ζ(k) = [τ(e)(n)]2
ζ(k) .

Using Theorem 2.1 and the above inequality, we deduce inequality (2.3) . Similarly,
we obtain inequality (2.4) . ¤

Corollary 2.2. For all n ≥ 1, there are the following inequalities:

σ(e) (n)
τ (e) (n)

≥ γ (n) · τ (e) (n) + 1
2

≥ γ (n) (2.5)

and

σ(e)∗ (n)
τ (e)∗ (n)

≥ γ (n) · τ (e)∗ (n) + 1
2

≥ γ (n) . (2.6)

Proof. For k = 1, in Theorem 2.1, we obtain

σ(e) (n) ≥ γ (n) (1 + 2 + ... + s) = γ (n) · s (s + 1)
2

= γ (n) · τ (e) (n)
(
τ (e) (n) + 1

)

2
,

so

σ(e) (n)
τ (e) (n)

≥ γ (n) · τ (e) (n) + 1
2

.

But τ (e) (n) ≥ 1, which means that we have

σ(e) (n)
τ (e) (n)

≥ γ (n) · τ (e) (n) + 1
2

≥ γ (n) .

In an analogous way, we deduce the second inequality, thus, the proof is complete.
¤
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Lemma 2.1. For any xi > 0 with i ∈ {1, 2, ..., n} , there is the following inequality:

n∏

i=1

(
1 + xi + x2

i

)
+

n∏

i=1

x2
i ≥

n∏

i=1

(
xi + x2

i

)
+

n∏

i=1

(
1 + x2

i

)
. (2.7)

Proof. We consider

p (n) :

{
n∏

i=1

(
1 + xi + x2

i

)
+

n∏

i=1

x2
i ≥

n∏

i=1

(
xi + x2

i

)
+

n∏

i=1

(
1 + x2

i

)
}

, for any n ≥ 1.

We check that p (1) is true, so,

1 + xi + x2
i + x2

i ≥ xi + x2
i + 1 + x2

i ,

and we suppose that p (k) is true, so

k∏

i=1

(
1 + xi + x2

i

)
+

k∏

i=1

x2
i ≥

k∏

i=1

(
xi + x2

i

)
+

k∏

i=1

(
1 + x2

i

)
.

We prove that p (k + 1) is true, so

k+1∏

i=1

(
1 + xi + x2

i

)
+

k+1∏

i=1

x2
i ≥

k+1∏

i=1

(
xi + x2

i

)
+

k+1∏

i=1

(
1 + x2

i

)
,

which is equivalent to the inequality

x2
k+1

(
k∏

i=1

(
1 + xi + x2

i

)
+

k∏

i=1

x2
i −

k∏

i=1

(
xi + x2

i

)−
k∏

i=1

(
1 + x2

i

)
)

+

+xk+1

(
k∏

i=1

(
1 + xi + x2

i

)−
k∏

i=1

(
xi + x2

i

)
)

+
k∏

i=1

(
1 + xi + x2

i

)−
k∏

i=1

(
1 + x2

i

) ≥ 0.

According to the principle of mathematical induction, p (n) is true for any n ≥
1. ¤

Theorem 2.2. For any n ≥ 1 and k ≥ 0, the following inequality:

σk (n) + nk ≥ σ
(e)
k (n) + σ∗k (n) (2.8)

holds.

Proof. For k = 0, we deduce the inequality

τ (n) + 1 ≥ τ (e) (n) + τ∗ (n) ,

for all integers n ≥ 1, which is in fact inequality (1.1). If n = 1 and k ≥ 1, then we
obtain σk (1) + 1 = 2 = σ

(e)
k (1) + σ∗k (1) .

We consider n > 1 and k ≥ 1. To prove the above inequality, we will have to study
several cases, namely:
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Case I. If n = p2
1p

2
2...p

2
r, then we deduce the equalities σk (n) =

r∏

i=1

(
1 + pk

i + p2k
i

)
, σ

(e)
k (n) =

r∏

i=1

(
pk

i + p2k
i

)
and σ∗k (n) =

r∏

i=1

(
1 + p2k

i

)
,which means that inequality (2.8) implies

the inequality

r∏

i=1

(
1 + pk

i + p2k
i

)
+

r∏

i=1

p2k
i ≥

r∏

i=1

(
pk

i + p2k
i

)
+

r∏

i=1

(
1 + p2k

i

)
,

which is true, because we use inequality (2.7), for n = r and xi = pk
i , for all i = 1, r.

Case II. If ak 6= 2, for all k = 1, r, then the numbers

n

p1
,

n

p2
, ...,

n

pr
,

n

p1p2
, ...,

n

pipj
, ...,

n

pipjpk
, ...,

n

p1p2...pr

are not exponential divisors of n, so they are in a total number of 2r − 1, and their

sum is nk

r∏

i=1

(1 + 1
pk

i

)− nk, such as we have the inequality

σk (n) =
∑

d-(e)n

dk +
∑

d-(e)n

dk = σ
(e)
k (n) +

∑

d-(e)n

dk ≥ σ
(e)
k (n) + nk

r∏

i=1

(1 +
1
pk

i

)− nk.

Since we have the inequality σ∗k (n) = nk

r∏

i=1

(1 + 1

p
aik

i

) ≤ nk

r∏

i=1

(1 + 1
pk

i

), it follows

that

σk (n) + nk ≥ σ
(e)
k (n) + σ∗k (n) .

Case III. If there is at least one ak 6= 2, and at least one aj = 2, where j, k ∈
{1, 2, ..., r} , then without decreasing the generality, we renumber the prime factors
from the factorization of n and we obtain

n = p2
1p

2
2...p

2
sp

as+1
s+1 ...pr

r, with as+1, as+2, ..., ar 6= 2.

Hence, we will write n = n1 · n2, where n1 = p2
1p

2
2...p

2
s and n2 = p

as+1
s+1 ...pr

r, which
means that (n1, n2) = 1, and by simple calculations, it is easy to see that

σk (n) = σk (n1 · n2) = σk (n1) · σk (n2) ≥(
σ

(e)
k (n1) + σ∗k (n1)− nk

1

) (
σ

(e)
k (n2) + σ∗k (n2)− nk

2

)
=

= σ
(e)
k (n1)σ

(e)
k (n2) + σ

(e)
k (n1)

(
σ∗k (n2)− nk

2

)
+ σ∗k (n1)

(
σ

(e)
k (n2)− nk

2

)
+

+σ∗k (n)− nk
1σ

(e)
k (n2)− nk

1σ∗k (n2) + nk
1nk

2 ≥
≥ σ

(e)
k (n) + nk

1

(
σ∗k (n2)− nk

2

)
+ nk

1

(
σ

(e)
k (n2)− nk

2

)
+

+σ∗k (n)− nk
1σ

(e)
k (n2)− nk

1σ∗k (n2) + nk
1nk

2 = σ
(e)
k (n) + σ∗k (n)− nk.

We used the inequalities σ
(e)
k (n1) ≥ nk

1 and σ∗k (n1) ≥ nk
1 and we took into account

the fact that the functions σ
(e)
k (n),σ∗k (n) and σk (n) are multiplicative. Thus, the

demonstration is complete. ¤
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Remark 2.2. Another interesting relationship between the above functions can be
achieved if we make the same proof as in Theorem 2.2 of [4], as follows:

σk(n)
σ∗k (n)

≥ σ
(e)
k (n)

σ
(e)∗
k (n)

. (2.9)

for all n ≥ 1 and k ≥ 0.

Theorem 2.3. For any n ≥ 1, n 6= 2, 4, 6, there is the following inequality:

ϕ(n) + 1 ≥ τ (e)(n) + τ∗(n), (2.10)

with equality for n = 1, 3, 10 and 12.

Proof. Combining inequality (1.1) and the inequality

ϕ(n) > τ(n) (2.11)

for all n > 30, from [11], we deduce

ϕ(n) + 1 ≥ τ (e)(n) + τ∗(n)

for every n > 30. By simple calculations for n ≤ 30, we find cases where the inequality
is true. ¤

Lemma 2.2. For every n ≥ 1 and k ≥ 1 the inequality

Jk+1(n) ≥ σk(n), (2.12)

holds.

Proof. If n = 1, the lemma is obvious. Assume n > 1.
For n = p, where p is a prime number, relation (2.12) becomes

pk+1 − 1 ≥ pk + 1

which is immediate because pk+1 ≥ 2pk ≥ pk + 2.
For n = pa with a ≥ 2 and p is a prime number we have

pa(k+1) − 1 ≥ pk(a+1) − 1
pk − 1

,

which is equivalent to inequality

pak+a+k + 2 ≥ pak+k + pak+a + pk. (2.13)

But
pak+a+k ≥ 2pak+k+a−1 ≥ pak+k+a−1 + pak+k+a−2 + pak+k+a−2

≥ pak+a + pak+k + pk,

for all k ≥ 1 and a ≥ 2.
Therefore, inequality (2.14) is true. Taking into account that the arithmetic

functions Jk+1 and σk are multiplicative and the canonical representation of n is
n =

∏

p/n

pa, we obtain the inequality of the statement. ¤

Theorem 2.4. For any n ≥ 1 and k ≥ 1 the inequality

Jk+1(n) + nk ≥ σ
(e)
k (n) + σ∗k(n), (2.14)

holds.

Proof. According to inequalities (2.8) and (2.12), we deduce relation (2.14). ¤
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Remark 2.3. Another proof can be given by mathematical induction after k using
the inequality

Jk+1(n) ≥ nJk(n), (2.15)
for any n ≥ 1 and k ≥ 1.

From relation 1.8, we obtain the relation

Jk+1(n)
Jk(n)

= n
∏

p/n

pk+1 − 1
pk+1 − p

≥ n

which implies inequality (2.15).

Similarly for the unitary analogue J∗k , we find the following relations:

J∗k+1(n) ≥ σ∗k(n) (2.16)

and
J∗k+1(n) ≥ nJ∗k (n). (2.17)

But, taking into account to relations (1.13), (1.14), (2.16) and (2.17), we deduce the
following inequalities:

J∗k+1(n)− J∗k (n) ≥ τ∗(n), (2.18)

nkJ∗k+1 ≥ (nk + 1)J∗k + σ∗k(n), (2.19)

Jk+1(n) + nk ≥ J∗k (n) + σ
(e)
k + τ∗(n) (2.20)

and
J∗k+l(n) ≥ nl−1σ∗k(n) (2.21)

for all n ≥ 1, k ≥ 1 and l ≥ 1.
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[14] L. Tóth, On Certain Arithmetic Functions Involving Exponential Divisors, Annales Univ. Sci.

Budapest., Sect. Comp. 24 (2004), 285–294.



SOME INEQUALITIES ABOUT CERTAIN ARITHMETIC FUNCTIONS 91
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