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Solving Fractional Oscillators Using Laplace Homotopy
Analysis Method

Mohammad Zurigat

Abstract. In this paper, we present an algorithm of the Laplace homotopy analysis method
(LHAM) to obtain approximate solutions for linear and nonlinear oscillator fractional differ-
ential equations. The proposed algorithm presents a procedure of constructing the set of base
functions and gives the high-order deformation equation in a simple form. The method pro-
vides the solution in the form of a rapidly convergent series. Numerical examples are used to
illustrate the preciseness and effectiveness of the proposed method.
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1. Introduction

Fractional order ordinary differential equations, as generalizations of classical in-
teger order ordinary differential equations, are increasingly used to model problems
fluid flow, mechanics, viscoelasticity, biology, physics, engineering and other applica-
tions [9, 5, 6]. A review of some applications of fractional calculus in continuum and
statistical mechanics is given by Mainardi [9]. The solution of fractional differential
equations is much involved. In general, there exists no method that yields exact so-
lutions for fractional differential equations. Only approximate solutions can be found
using linearization or perturbation method. In recent years, much research has been
focused on the numerical solution of fractional differential equations. Some numeri-
cal methods have been developed, such as differential transform method [1, 20, 16],
Laplace transform method [15, 10], Pade approximation method [7], homotopy per-
turbation method [12, 13], Adomain decomposition method [17, 19] and variation
iteration method [14]. In this paper, we will consider the dynamics of the so-called
driven fractional oscillator. This fractional oscillator is obtained by replacing the
second time derivative term in the corresponding harmonic oscillator by a fractional
derivative of order α with 1 < α ≤ 2. The derivatives are understood in the Caputo
sense. The general response expression contains a parameter describing the order of
the fractional derivative that can be varied to obtain various responses. In the case
of α = 2 the fractional system of oscillators reduces to the standard system of simple
harmonic oscillators. Some aspects of such a system have been studied previously
by other researchers [11, 2, 3]. Liao [8] employed the basic ideas of the homotopy
in topology to propose a general analytic method for linear and nonlinear problems,
namely homotopy analysis method. This method has been successfully applied to
solve many types of nonlinear problems [21, 4, 18, 22]. In this paper, we further ap-
ply the homotopy analysis method to solve fractional oscillator differential equations.

Received February 06, 2011. Revision received September 16, 2011.

1



2 M. ZURIGAT

The objective of the present paper is to modify the homotopy analysis method to
provide symbolic approximate solutions for linear and nonlinear oscillator fractional
initial value problems. The LHAM is a combination of HAM and Laplace transforms.
This method is characterized by choosing the identity auxiliary linear operator. The
organization of this paper is as follows: Brief definitions of the fractional calculus in
are given in Section 2. The LHAM is presented in Section 3. In Section 4, four nu-
merical examples are solved to illustrated the applicability of the considered method.
Conclusions are presented in Section 5.

2. Fractional Calculus

Some basic definitions and properties of the fractional calculus theory which are
used in this paper.

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p > µ such that f(x) = xpf1(x),where f1(x) ∈ C[0,∞).
Clearly Cµ ⊂ Cβ if β ≤ µ.

Definition 2.2. A function f(x), x > 0,is said to be in the space Cm
µ , m ∈ N ∪ {0},

if f (m) ∈ Cµ.

Definition 2.3. The left sided Riemann-Liouville fractional integral operator of order
α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined as

Jαf(t) =
1

Γ(α)

t∫

0

f(t)
(x− t)1−α

dt, α > 0, x > 0,

J0f(x) = f(x), (1)

Definition 2.4. Let f ∈ Cm
−1, m ∈ N ∪ {0} then the Caputo fractional derivative of

f(x) is defined as

Dα
∗ f(x) =

{
Jm−αf (m)(x), m− 1 < α < m, m ∈ N

dmf(x)
dxm , α = m.

(2)

Hence, we have the following properties

1. JαJvf(t) = Jα+vf(t), α, v ≥ 0.

2. Jαtγ =
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α, α > 0, γ > −1, t > 0. (3)

3.JαDα
∗ f(t) = f(t)−

m−1∑

k=0

f (k)(0+)
tk

k!
, t > 0, m− 1 < α ≤ m.

Lemma 2.1. If m − 1 < α ≤ m, m ∈ N, then the Laplace transform of the
fractional derivative Dα

∗ f(t) is

£(Dα
∗ f(t)) = sαF (s)−

m−1∑

k=0

f (k)(0+)sα−k−1, t > 0, (4)

where F (s) be the Laplace transform of f(t).
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Proof. The convolution integral with two functions and is defined by

f(t) ∗ g(t) =

t∫

0

f(t− τ)g(τ)dτ.

If F (s)and G(s)are the Laplace transforms of f(t) and g(t), respectively then

£(

t∫

0

f(t− τ)g(τ)dτ) = F (s) G(s),

and from Definition 2

£(Jαf(t)) =
1

Γ(α)
£(

t∫

a

(t− τ)α−1f(τ)dτ),

so

£(Jαf(t)) =
F (s)
αs

.

Take the Laplace transform of both sides of the property (3), we have

£(Dα
∗ f(t))
sα

= F (s)−
m−1∑

k=0

f (k)(0+)s−(k+1),

and so

£(Dα
∗ f(t)) = sαF (s)−

m−1∑

k=0

f (k)(0+)sα−k−1, m− 1 < α ≤ m.

¤

3. Laplace Homotopy analysis method

The homotopy analysis method which provides an analytical approximate solution
is applied to various nonlinear problems. They use the auxiliary linear operator to
be Dα

∗ . In this section, we present a modification of the HAM. This modification is
based on the Laplace transform of the fractional derivative Dα

∗ f(t). To illustrate the
basic idea, let us consider the following fractional differential equation

Dα
∗ u(t) = g(t, u(t), u′(t)), t ≥ 0, 1 < α ≤ 2, (5)

subject to the initial conditions

u(0) = a and u′(0) = b (6)

Applying the Laplace transform to both sides of Equation (5) and by using linearity
of Laplace transforms we get

£(Dα
∗ u(t)) = £(g(t, u(t), u′(t))).

Using (4), then we have

sαũ(s)− sα−1a− sα−2b = £(g(t, u(t), u′(t))),
and

ũ(s) =
a

s
+

b

s2
+

1
sα

£(g(t, u(t), u′(t))), (7)
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where £(u(t)) = ũ(s).
The so-called zero-order deformation equations of the Laplace Eq. (7) has the form

(1− q)[φ̃(s; q)− ũ0(s)] = qh[φ̃(s; q)− a

s
− b

s2
− 1

sα
£(g(t, φ(t; q),

d

dt
φ(t, q)))], (8)

where q ∈ [0, 1] is an embedding parameter, when q = 0 and q = 1, we have φ̃(s; 0) =
ũ0(s) and φ̃(s; 1) = ũ(s) respectively. Thus, as q increasing from 0 to 1, φ̃(s; q) varies
from ũ0(s) to ũ(s). Expanding φ̃(s; q) in Taylor series with respect to q, one has

φ̃(s; q) = ũ0(s) +
∞∑

m=1

ũm(s)qm, (9)

where

ũm(s) =
1
m!

∂mφ̃(s; q)
∂qm

|q=0. (10)

If the auxiliary parameter h and the initial guesses ũ0(s) are so properly chosen, then
the Series (9) is converge at q = 1 and one has

ũ(s) = ũ0(s) +
∞∑

m=1

ũm(s). (11)

Define the vectors −→̃
u m = {ũ0(s), ũ1(s), ũ2(s), . . . , ũm(s)}. (12)

Differentiating Equation (8) m times with respect to the embedding parameter q,
and then setting q = 0, h = −1 and finally dividing them by m!, we have the so-called
mth-order deformation equation

ũm(s) = χmũ(m−1)(s)−Rm(
−→̃
u m−1(s)), (13)

where

Rm(
−→̃
u m−1(s)) = ũ(m−1)(s)−

1
sα

(
1

(m− 1)!
∂m−1

∂qm−1
[£(g(t, φ(t; q),

d

dt
φ(t, q)))]|q=0)

−(
a

s
+

b

s2
)(1− χm), (14)

and

χm =
{

0, m ≤ 1
1, m > 1 . (15)

Applying the inverse Laplace transforms of (13), then we have a power series solu-

tion y(t) =
∞∑

i=0

yi(t) of (5).

4. Numerical Results

In order to assess the accuracy of the Laplace homotopy analysis method pre-
sented in this paper for fractional oscillator differential equations, we applied it to the
following problems [1].

Example 4.1. Consider the following simple harmonic fractional oscillator

Dα
∗ u(t) + ωαu(t) = 0, ω > 0, t ≥ 0, 1 < α ≤ 2, (16)

subject to the initial conditions

u(0) = 1 and u′(0) = 0. (17)
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Take the Laplace transform of both sides of (16) and by using (17), we have

ũ(s) + (
ω

s
)α ũ(s)− 1

s
= 0. (18)

In view of (13) and (14) is follows

ũm(s) = χmũ(m−1)(s)−Rm(
−→̃
u m−1(s)), (19)

where

Rm(
−→̃
u m−1(s)) = ũm−1(s) + (

ω

s
)αũm−1(s)− 1

s
(1− χm), (20)

so

ũ(s) =
1
s
− ωα

sα+1
+

ω2α

s2α+1
− ω3α

s3α+1
+

ω4α

s4α+1
− .... (21)

The inverse Laplace transform of (21) has the form

u(t) = 1− (ωt)α

Γ(1 + α)
+

(ωt)2α

Γ(1 + 2α)
− (ωt)3α

Γ(1 + 3α)
+

(ωt)4α

Γ(1 + 4α)
− .... (22)

In order to improve the accuracy of the homotopy analysis solution of the simple
harmonic fractional equation, we calculate is obtained for different values of α. For
α = 2, we obtain the same solution found in Al-rabtah et al.[1] using the differential
transform method

u(t) = 1− (ωt)2

2!
+

(ωt)4

4!
− (ωt)6

6!
+

(ωt)8

8!
− .... (23)

Equation (23) is the solution of a simple harmonic oscillator and given by u(t) =
cos(ωt). Now, taking α = 1.9, u(t) is obtained as follows

u(t) = 1− (ωt)
19
10

Γ( 29
10 )

+
(ωt)

19
5

Γ( 24
5 )

− (ωt)
57
10

Γ( 67
10 )

+
(ωt)

38
5

Γ( 43
5 )

− ....

Finally, the following series solution is obtained for α = 1.8,

u(t) = 1− (ωt)
9
5

Γ( 14
5 )

+
(ωt)

18
5

Γ( 23
5 )

− (ωt)
27
5

Γ( 32
5 )

+
(ωt)

36
5

Γ( 41
5 )

− ....

Fig. 1 shows the series solution (22) exhibit the periodic behavior which is the char-
acteristic of the simple harmonic Equations (16) and (17) obtained for α = 2, 1.9 and
1.8. Comparison between these results shows how the displacement of the fractional
oscillator varies as a function of time and how this time variation depends on the
parameter α. It can be seen that the behavior of the driven fractional oscillator is
very similar to the behavior of the damped harmonic oscillator, where the motion
is still oscillatory, but the total energy decrease and the phase plane diagram is no
longer a closed curve, but a logarithmic spiral.

Example 4.2. Consider the following fractional oscillator equation

Dα
∗ u(t) + ωαu(t) = 1, ω > 0, t ≥ 0, 1 < α ≤ 2, (24)

subject to the initial conditions

u(0) = 0 and u′(0) = 0. (25)
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Figure 1. u(t) function of Equation (16) for different values of α.

The Laplace transform of both sides of (24) has the form

ũ(s) + (
ω

s
)α ũ(s) =

1
sα+1

, (26)

and the mth-order deformation equations has the form

ũm(s) = χmũ(m−1)(s)−Rm(
−→̃
u m−1(s)), (27)

where

Rm(
−→̃
u m−1(s)) = ũm−1(s) + (

ω

s
)αũm−1(s)− 1

sα+1
(1− χm), (28)

and by solving the above linear system of equations, the first components of the
Laplace homotopy analysis solution are derived as follows

ũ(s) =
1

sα+1
− ωα

s2α+1
+ (2− π csc(πα)

Γ(1− α)Γ(α)
)

ω2α

s3α+1
− π csc(πα)ω3α

Γ(1− α)Γ(α)s4α+1
+ .... (29)

The inverse Laplace transform of (29) has the form

u(t) =
1

Γ(1 + α)
tα − ωα

Γ(1 + 2α)
t2α +

ω2α

Γ(1 + 3α)
(2− π csc(πα)

Γ(1− α)Γ(α)
)t3α

− π csc(πα)ω3α

Γ(1− α)Γ(α)Γ(1 + 4α)
)t4α + .... (30)

For α = 2, the first terms of the series solution are given by

u(t) =
t2

2!
− ω2t4

4!
+

ω4t6

6!
− ω6t8

8!
+ ....

Now taking α = 1.9, u(t) is obtained as follows:

u(t) =
1

Γ( 29
10 )

t
19
10 − ω

19
10

Γ( 24
5 )

t
19
5 +

ω
19
5

Γ( 67
10 )

(2− (−1−√5)π
Γ(−9

10 )Γ(19
10 )

)t
57
10

− (−1−√5)πω
57
10

Γ(−9
10 )Γ(19

10 )Γ( 43
5 )

)t
38
5 + ...,
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Figure 2. ωαu(t) function of Equation (24) for different values of α.

and for α = 1.8, we have

u(t) =
1

Γ( 14
5 )

t
9
5 − ω

9
5

Γ( 23
5 )

t
18
5 +

ω
18
5

Γ( 32
5 )

(2 +
π√

5
8 −

√
5

8 Γ(−4
5 )Γ(9

5 )
)t

27
5

+
πω

27
5√

5
8 −

√
5

8 Γ(−4
10 )Γ(9

5 )Γ(41
5 )

t
36
5 + ....

Fig. 2 shows the response function for α = 2, 1.9 and 1.8. The results here are very
similar to the results of the previous example. The behavior of the driven fractional
oscillator for the step function is similar to the behavior of the damped oscillator.

Example 4.3. Consider the following fractional oscillator equation

Dα
∗ u(t) + ωαu(t) = sin(ωt), ω > 0, t ≥ 0, 1 < α ≤ 2, (31)

subject to the initial conditions

u(0) = 0 and u′(0) = 0. (32)

If we take the first terms of the power series of sin(ωt), and by using the construct
of the homotopy (13) and (14), then we have

ũ(s) =
ω

sα+2
− ω3

sα+4
+

ω5

sα+6
− ωα+1

s2α+2
+

ωα+3

s2α+4
− ωα+5

s2α+6
+ .... (33)

The inverse Laplace transform of (33) has the form

u(t) =
ω

Γ(2 + α)
tα+1 − ω3

Γ(4 + α)
tα+3 +

ω5

Γ(6 + α)
tα+5 − ωα+1

Γ(2 + 2α)
t2α+1

+
ωα+3

Γ(4 + 2α)
t2α+3 − ωα+5

Γ(6 + 2α)
t2α+5 + .... (34)

For the value of α = 2, u(t) is obtained as follows

u(t) =
ω

6
t3 − ω3

60
t5 +

ω5

2520
t7 − ω7

362880
t9 + ....
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Figure 3. ωαu(t) function of Equation (31) for different values of α.

Now, substitute α = 1.9, in equation (34), then u(t) has the form:

u(t) =
ω

Γ( 39
10 )

t
29
10 − ω3

Γ( 59
10 )

t
49
10 +

ω5

Γ( 79
10 )

t
69
10 − ω

29
10

Γ( 29
5 )

t
24
5 +

ω
49
10

Γ( 39
5 )

t
34
5 − ω

69
10

Γ( 49
5 )

t
44
5 + ....

and for α = 1.8, we have

u(t) =
ω

Γ( 19
5 )

t
14
5 − ω3

Γ( 29
5 )

t
24
5 +

ω5

Γ( 39
5 )

t
34
5 − ω

14
5

Γ( 28
5 )

t
23
5 +

ω
24
5

Γ( 38
5 )

t
33
5 − ω

34
5

Γ( 48
5 )

t
43
5 + ....

Fig. 3 shows the LHAM approximate solutions for various values of α which have the
same trajectories.

Example 4.4. Consider the nonlinear fractional Van Der Pol oscillator equation of
the form

Dα
∗ u(t) +

21
20

(u2(t)− 1)u′(t) + u(t) =
6
5

sin(ωt), ω > 0, t ≥ 0, 1 < α ≤ 2, (35)

subject to the initial conditions

u(0) = 0 and u′(0) = 0. (36)

If we take the first terms of the power series of sin(ωt), then the Laplace transform
of Equation (35) has the form

ũ(s) +
21

20sα
£(u2(t)u′(t))− 21

20sα−1
ũ(s) +

1
sα

ũ(s) =
6
5
(

ω

sα+2
− ω3

sα+4
+

ω5

sα+6
− ...),

and the mth-order deformation equations has the form

ũm(s) = χmũ(m−1)(s)−Rm(
−→̃
u m−1(s)),

where
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Rm(
−→̃
u m−1(s)) = ũm−1(s) +

21
20sα

£(
m−1∑

i=0

u′m−1−i(t)
i∑

j=0

uj(t)ui−j(t))−

− 21
20sα−1

ũm−1(s) +
1
sα

ũm−1(s)−

−6
5
(

ω

sα+2
− ω3

sα+4
+

ω5

sα+6
− ...)(1− χm).

By solving the above linear system of equations, and taking the inverse Laplace trans-
form of ũ(s), then we have the first components of u(t) as

u(t) =
6ω

5Γ(2 + α)
(2 +

π(α− 1) csc(πα)
Γ(2− α)Γ(α)

)tα+1 − 6ω3

5Γ(4 + α)
(2 +

π(α− 1) csc(πα)
Γ(2− α)Γ(α)

)tα+3

+
6ω5

5Γ(6 + α)
(2 +

π(α− 1) csc(πα)
Γ(2− α)Γ(α)

tα+5 +
189ω2Γ(2 + 2α)

128(1 + α)Γ2(1 + α)Γ(2 + 3α)
t3α+1

− 378(2 + α)ω4Γ(4 + 2α)
125(2 + α)Γ(4 + α)Γ(4 + 3α)

t3α+3 (37)

+
189ω6Γ(6 + 2α)
125Γ(6 + 3α)

(
5α + 6

Γ(6 + α)Γ(2 + α)
+

α(α + 4)
(1 + α)Γ2(4 + α)

)t3α+5 − ....

For α = 2, in Equation (37), we have

u(t) =
ω

6
t3 − ω3

100
t5 + (

3ω2

1000
+

ω5

4200
)t7 − 7ω4

30000
t9 +

41ω6

4400000
t11 − ....

By taking α = 1.9, u(t) is obtained as follows

u(t) =
6ω

5Γ( 39
10 )

(2− (1 +
√

5)π
Γ( 1

10 )Γ( 9
10 )

)t
29
10 − 6ω3

5Γ( 59
10 )

(2− (1 +
√

5)π
Γ( 1

10 )Γ( 9
10 )

)t
49
10

+
6ω5

5Γ( 79
10 )

(2− (1 +
√

5)π
Γ( 1

10 )Γ( 9
10 )

)t
69
10 +

189ω2Γ( 29
5 )

125Γ( 29
10 )Γ( 39

10 )Γ( 77
10 )

t
67
10

− 189ω4Γ( 44
5 )

125Γ( 39
10 )Γ( 59

10 )Γ( 97
10 )

t
87
10 +

189ω6

125Γ( 117
10 )

(
15.5

Γ( 39
10 )Γ(79

10 )
+

1121
290Γ2( 59

10 )
)t

107
10 − ...,

Finally, for α = 1.8, the following series solution is obtained

u(t) =
6ω

5Γ( 19
5 )

(2− π

Γ( 1
5 )Γ( 4

5 )
√

5
8 −

√
5

8

)t
14
5 − 6ω3

5Γ( 29
5 )

(2− π

Γ( 1
5 )Γ( 4

5 )
√

5
8 −

√
5

8

)t
24
5

+
6ω5

5Γ( 39
5 )

(2− π

Γ( 1
5 )Γ(4

5 )
√

5
8 −

√
5

8

)t
34
5 +

189ω2Γ( 28
5 )

125Γ( 14
5 )Γ( 19

5 )Γ( 37
5 )

t
32
5

− 189ω4Γ( 43
5 )

125Γ( 19
5 )Γ( 29

5 )Γ( 47
5 )

t
42
5 +

189ω6Γ( 48
5 )

125Γ( 57
5 )

(
15

Γ( 19
5 )Γ( 39

5 )
+

261
70Γ2(29

5 )
)t

52
5 − ...,

Fig. 4 shows the homotopy analysis approximate solutions for various values of α,
α = 2, 1.9 and 1.8. The parameter is taken as ω = 0.5.

5. Conclusion

The purpose of this paper is to construct the Laplace homotopy analysis method to
linear and nonlinear oscillatory equations of fractional order. The Laplace homotopy
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Figure 4. u(t) function of Equation (35) for different values of α
and ω = 0.5.

analysis method is used to construct an approximate analytical solution for the linear
harmonic fractional equation Dα

∗ u(t) + ωαu(t) = f(t). The response function u(t)
of different force functions ( f(t) = 0, 1 and sin(ωt)) are obtained for different
values of α (1 < α ≤ 2). The numerical results showed that the behavior of the
fractional oscillator is similar to the behavior of the damped harmonic oscillator.
Also, the Laplace homotopy analysis method is used to construct an approximate
analytical solution for the nonlinear fractional Van Der Pol oscillator. However, the
proposed approach can be further implemented to solve other nonlinear problems in
the fractional calculus field.
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