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Slices and extensions of ω-trees

Nicolae Ţăndăreanu and Cristina Zamfir

Abstract. In [15] we defined the structure named ω-labeled tree as a binary, ordered and la-
beled tree with several features concerning the labels and order between the direct descendants

of a node. In this paper we introduce two operators, which enable us to compare between
them the structures or parts thereof. These operators work in opposite directions: one of them
obtains some part of the structure and the other operator extends the structure. Both the

first and the second operator preserves the basic features of an ω-tree from the point of view
of the comparison binary relations and the equivalence relations introduced in [15] and [16].
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1. Introduction

There are today two major implications of the mathematical results into the do-
main of computer science. The first direction is given by the theory of universal
algebras. The second is the domain of graph theory. The Peano algebras and graph
theory were applied successfully in knowledge representation and various applications
were presented: risk management ([2]), conceptual graphs ([3], [9]), coherence graphs
([7]), labeled stratified graphs ([10], [11], [12]), semantic schemas ([14]), master-slave
systems of semantic schemas ([13]). Several properties of pseudo-BCK algebras show
their connection with fuzzy structures and the class of pseudo-BCK algebras with
pseudo-double negation generalizes some particular structures with applications in
mathematical logic ([4]). A Tree Algebra for XML, named TAX, was developed as a
natural extension of relational algebra for manipulating XML data, modeled as forests
of labeled ordered trees([6]). An algebra for manipulating collections with ordering
specifications was developed in [8]. The partial algebra of conditional binary relations
was used to model a dialogue system ([17]). The Peano Count Tree (P-tree) gives a
tree representation of spatial data. The algebra and properties of P-tree structure as
well as fast algorithms for P-tree generation and P-tree operations are treated in [5].

The concept of ω-tree was introduced in [15]. This structure is a binary tree whose
nodes are labeled by means of a mapping ω that specifies the labeling process. There
are two kinds of labels: terminal and non-terminal labels. Only the nodes labeled by
non-terminal labels may contain direct descendants. On the set OBT (ω) of ω-trees
we introduced a binary relation, which is not a partial order. An equivalence relation
≃ on the set OBT (ω) was introduced in [16] and a partial order on the factor set
OBT (ω)/ ≃ was defined and studied.

In this paper we develop the idea presented in [15] and [16]. Two operators on
the set OBT (ω) of all ω-trees are introduced: from a given structure the slicing
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operator obtains a substructure and the immediate extension operator transforms a
given structure into an extended structure. Each of them is not the inverse operator
of the other. These operators are studied from the point of view of the comparison
and/or equivalence relations from OBT (ω).

This paper is organized as follows: in Section 2 we recall the basic notions and the
main results used in the subsequent sections; in Section 3 we define the slicing operator
and several useful properties are presented; in Section 4 we define the immediate
extension operator on the set of ω-trees; the last section includes the conclusions of
the study and the future work.

2. Basic notions and notations

A directed ordered graph ([1]) is a pair G = (A,D), where A is a finite set of
elements called nodes, D is a finite set of elements of the form [(i, i1), . . . , (i, in)],
where i, i1, . . .,in ∈ A and D satisfies the following condition:

[(i, i1), . . . , (i, in)] ∈ D, [(j, j1), . . . , (j, js)] ∈ D =⇒ i ̸= j

If G = (A,D) is a directed ordered graph then we can associate to G a directed graph
G′ = (A,D′), where

D′ = {(i, j) | ∃[(i, i1), . . . , (i, in)] ∈ D, ∃r ∈ {1, . . . , n} : j = ir}

An ordered tree is a directed ordered graph G = (A,D) such that G′ is a tree and the
following property is satisfied:

[(i, i1), . . . , (i, in)] ∈ D, j, r ∈ {1, . . . , n}, j ̸= r ⇒ ij ̸= ir (1)

A path in G is defined as usual and the length of a path p is denoted by length(p).
We consider a nonempty set L and a decomposition L = LN∪LT , where LN∩LT =

∅. The elements of LN are called nonterminal labels and those of LT are called
terminal labels. The elements of L are called labels.

Let L = LN ∪ LT be a set of labels. A split mapping on L ([15]) is a function
ω : LN −→ L× L. An ω-tree ([15]) is a tuple t = (A,D, h), where

• (A,D) is an ordered tree and every element of D is of the form [(i, i1), (i, i2)];
• h : A −→ L is a mapping such that if [(i, i1), (i, i2)] ∈ D then{

h(i) ∈ LN

ω(h(i)) = (h(i1), h(i2))

For each i ∈ A the element h(i) is called the label of the node i. The mapping h
is named the labeling mapping of t. By OBT (ω) we denote the set of all ω-trees.
If t = (A,D, h) ∈ OBT (ω) then Path(t) denotes the set of all paths of (A,D).

Let t1 = (A1, D1, h1) and t2 = (A2, D2, h2) be two elements of OBT (ω) and an
arbitrary mapping α : A1 −→ A2. For every i, i1, i2 ∈ A1 if u = [(i, i1), (i, i2)] then
we denote

α(u) = [(α(i), α(i1)), (α(i), α(i2))]

If t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈ OBT (ω) then we write t1 ≼ t2
([15]) if there is a mapping α : A1 −→ A2 such that:

u ∈ D1 =⇒ α(u) ∈ D2

h1(root(t1)) = h2(α(root(t1)))

Such a mapping α is an embedding mapping of t1 into t2 ([15]).
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An useful result obtained in [15] states that if t1 = (A1, D1, h1) ∈ OBT (ω), t2 =
(A2, D2, h2) ∈ OBT (ω), t1 ≼ t2 and α is an embedding mapping of t1 into t2 then
h1(i) = h2(α(i)) for every i ∈ A1.

If t = (A,D, h) ∈ OBT (ω) and β : A −→ B is an injective mapping then we
consider the tuple tβ = (Aβ , Dβ , hβ), where the components of tβ are defined as
follows ([15]):

Aβ = β(A)
Dβ = { [(β(i), β(i1)), (β(i), β(i2))] | [(i, i1), (i, i2)] ∈ D}
hβ : Aβ −→ L, hβ(β(i)) = h(i)

The relation ≼ on the set OBT (ω) is not a partial order. If t1 ≼ t2 and t2 ≼ t1 then
we write t1 ≃ t2. The relation ≃ is an equivalence relation on the set OBT (ω).

3. The slicing operator

In this section we define an operator which transforms an ω-tree in a ”shortest”
ω-tree such that several features of this structure are preserved in vision of the equiv-
alence relation between ω-trees. This operator obtains a ”slice” of an ω-tree and for
this reason it is named the ”slicing operator”.

Definition 3.1. For every k ≥ 1 we define the operator Tk : OBT (ω) −→ OBT (ω)
as follows: Tk(t) is obtained from t by deleting all nodes which are reachable from
root(t) by a path of length greater than k. Tk is named the slicing operator.

Consider t = (A,D, h) ∈ OBT (ω) and k ≥ 1. For every j ∈ A \ {root(t)} there is
a path and only one from root(t) to j. We denote by path(j) this path. We consider
the set

Ak = {root(t)} ∪ {j ∈ A | j ̸= root(t), length(path(j)) ≤ k} (2)

Consider an element [(j, j1), (j, j2)] ∈ D. If j1 ∈ Ak and j2 ∈ Ak then j ∈ Ak. Based
on this idea we conclude that Tk(t) = (Ak, Dk, hk), where

Dk = {[(j, j1), (j, j2)] ∈ D | j1, j2 ∈ Ak} (3)

hk : Ak −→ L, hk(j) = h(j), j ∈ Ak (4)

Proposition 3.1. The operator Tk is well defined. In other words, if t ∈ OBT (ω)
then Tk(t) ∈ OBT (ω). In addition we have root(t) = root(Tk(t)).

Proof. Consider t = (A,D, h) ∈ OBT (ω). We have Tk(t) = (Ak, Dk, hk), where Ak,
Dk and hk are defined respectively by (2), (3) and (4). The pair Gk = (Ak, Dk) is
a directed ordered graph because Ak ⊆ A, Dk ⊆ D and G = (A,D) is a directed
ordered graph. The associated graph G′

k is a tree because (p1, . . . , pr+1) is a path of
G′

k if and only if (p1, . . . , pr+1) is a path of G and r ≤ k.
The condition (1) is satisfied because Dk ⊆ D and D satisfies this condition. In

addition we have

[(i, i1), (i, i2)] ∈ Dk ⇒ hk(i) ∈ LN & ω(hk(i)) = (hk(i1), hk(i2))

because if [(i, i1), (i, i2)] ∈ Dk then [(i, i1), (i, i2)] ∈ D, hk(i) = h(i) ∈ LN and
ω(hk(i)) = ω(h(i)) = (h(i1), h(i2)) = (hk(i1), hk(i2)). It follows that Tk(t) ∈ OBT (ω).
Obviously root(Tk(t)) = root(t). �

If t = (A,D, h) ∈ OBT (ω) and i ∈ A has direct descendants then we denote by
t(i) the structure obtained from t by preserving the node i and all nodes of t which
are reachable from i. In other words, t(i) = (A(i), D(i), h(i)), where
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A(i) = {i} ∪ {j ∈ A | ∃(i, i1, . . . , ik, j) ∈ Path(t), k ≥ 0} (5)

D(i) = {[(j, j1), (j, j2)] ∈ D | j ∈ A(i)} (6)

h(i)(j) = h(j) for j ∈ A(i) (7)

Obviously if t = (A,D, h) ∈ OBT (ω) and i ∈ A has direct descendants then we have
t(i) = (A(i), D(i), h(i)) ∈ OBT (ω) and root(t(i)) = i.

An element t(i) = (A(i), D(i), h(i)) such that Di = ∅ is named a degenerate element
of OBT (ω). Obviously, a degenerate element contains only one node.

Proposition 3.2. Suppose that t1 = (A1, D1, h1) ∈ OBT (ω), t2 = (A2, D2, h2) ∈
OBT (ω), [(root(t1), i1), (root(t1), i2)] ∈ D1, [(root(t2), j1), (root(t2), j2)] ∈ D2 and
t1 ≃ t2. Then t1,(i1) ≃ t2,(j1), t1,(i2) ≃ t2,(j2) and the corresponding embedding map-
pings are the restrictions of the embedding mapping of t1 into t2.

Proof. Denote by α the embedding mapping of t1 into t2. This is a bijective mapping
such that ([16])

α(root(t1)) = root(t2) (8)

∀i, i1, i2 ∈ A1 : [(i, i1), (i, i2)] ∈ D1 ⇐⇒ [(α(i), α(i1)), (α(i), α(i2))] ∈ D2 (9)

h1(root(t1)) = h2(root(t2)) (10)

Applying the implication from left to right of (9) for i = root(t1) and using (8) we de-
duce that [(root(t2), α(i1)), (root(t2), α(i2))] ∈ D2. But [(root(t2), j1), (root(t2), j2)] ∈
D2, therefore

α(i1) = j1 (11)

α(i2) = j2 (12)

We denote t1,(i1) = (X1, E1, v1) and t2,(j1) = (Y1, F1, w1). From (5), (6) and (7) we
obtain

X1 = {i1} ∪ {j ∈ A1 | ∃(i1, r1, . . . , rk, j) ∈ Path(t1), k ≥ 0}
E1 = {[(m,m1), (m,m2)] ∈ D1 | m ∈ X1}

v1(j) = h1(j) for j ∈ X1

Y1 = {j1} ∪ {j ∈ A2 | ∃(j1, p1, . . . , pk, j) ∈ Path(t2), k ≥ 0}
F1 = {[(m,m1), (m,m2)] ∈ D2 | m ∈ Y1}

w1(j) = h2(j) for j ∈ Y1

We prove now that
α(X1 \ {i1}) = Y1 \ {j1} (13)

We have the following chain of equivalent sentences:
p ∈ α(X1 \ {i1}) ⇐⇒ there is j ∈ X1 \ {i1} such that p = α(j) ⇐⇒
there is (i1, r1, . . . , rk, j) ∈ Path(t1) such that p = α(j) ⇐⇒
there is (α(i1), α(r1), . . . , α(rk), α(j)) ∈ Path(t2) such that p = α(j) ⇐⇒
there is (j1, α(r1), . . . , α(rk), α(j)) ∈ Path(t2) such that p = α(j) ⇐⇒
α(j) ∈ Y1 \ {j1} and p = α(j) ⇐⇒ p ∈ Y1 \ {j1}
therefore (13) is proved.
Based on (9) and (13) the following sentences are equivalent:
• [(m,m1), (m,m2)] ∈ E1

• [(m,m1), (m,m2)] ∈ D1 and m ∈ X1

• [(α(m), α(m1)), (α(m), α(m2))] ∈ D2 and α(m) ∈ Y1

• [(α(m), α(m1)), (α(m), α(m2))] ∈ F1
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therefore

∀m,m1,m2 ∈ X1 : [(m,m1), (m,m2)] ∈ E1 ⇔ [(α(m), α(m1)), (α(m), α(m2))] ∈ F1

(14)
As we mentioned in Section 2 we have h1(i) = h2(α(i)) for every i ∈ A1. It follows
that v1(i1) = h1(i1) = h2(α(i1)) = h2(j1) = w1(j1). But i1 = root(t1,(i1)) and
j1 = root(t2,(j1)). This shows that (11) can be written as follows:

α(root(t1,(i1))) = root(t2,(j1)) (15)

The relation v(i1) = w(j1) can be written as

v1(root(t1,(i1))) = root(t2,(j1)) (16)

From (15), (16) and (14) we deduce that that t1,(i1) ≃ t2,(j1) and the corresponding
embedding mapping is the restriction of the embedding mapping of t1 into t2. Similar
we prove that t1,(i2) ≃ t2,(j2). �

Remark 3.1. For every t ∈ OBT (ω) we denote

depth(t) = max{length(p) | p ∈ Path(t)}
Obviously, if t1 ≃ t2 then depth(t1) = depth(t2). We observe that for k ≥ depth(t)
we have Tk(t) = t. For k ≤ dept(t) we have depth(Tk(t)) = k.

Definition 3.2. We define recursively the mapping F : OBT (ω) −→ L∗ as follows:
• If t = ({i}, ∅, h) is a degenerate element of OBT (ω) then F (t) = h(i).
• If t = (A,D, h) ∈ OBT (ω) and [(root(t), i), (root(t), j)] ∈ D then by means of
the concatenation operation on L∗ we define

F (t) = F (t(i))F (t(j))

Proposition 3.3.
(1) If t1 ≃ t2 then for every k ≥ 1 we have

Tk(t1) ≃ Tk(t2) (17)

and the embedding mapping of Tk(t1) into Tk(t2) is the restriction of the embed-
ding mapping of t1 into t2.

(2) If t1 ≃ t2 then
F (t1) = F (t2) (18)

Proof. For k ≥ depth(t1) = depth(t2) the first part of the proposition is obvious
because Tk(t1) = t1, Tk(t2) = t2 and t1 ≃ t2. It remains to consider the case
k < depth(t1). Suppose that t1 ≃ t2, t1 = (A1, D1, h1) and t2 = (A2, D2, h2). Let us
denote by α the embedding mapping of t1 into t2. This is a bijective mapping such
that the conditions (8), (9) and (10) are satisfied.

For r ∈ {1, 2} we denote Tk(tr) = (Ar
k, D

r
k, h

r
k). From Proposition 3.1 we obtain{

root(t1) = root(Tk(t1))
root(t2) = root(Tk(t2))

(19)

therefore (8) becomes
α(root(Tk(t1))) = root(Tk(t2)) (20)

Obviously d is a path in (A1
k, D

1
k) if and only if α(d) is a path in (A2

k, D
2
k), therefore

α(A1
k) = A2

k. Based on these results we observe that for every i, i1, i2 ∈ A1
k, if

u = [(i, i1), (i, i2)] then
u ∈ D1

k ⇐⇒ α(u) ∈ D2
k (21)
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Taking into account (19) the relation (10) becomes

h1(root(Tk(t1))) = h2(root(Tk(t2))) (22)

From (20), (21), (22) we obtain (17). Moreover, the embedding mapping of Tk(t1)
into Tk(t2) is the embedding mapping α of t1 into t2.

The relation (18) is proved by induction on depth(t1). Suppose that depth(t1) =
depth(t2) = 1. It follows that t1 = (A1, D1, h1), t2 = (A2, D2, h2), where

A1 = {i, i1, i2}, A2 = {j, j1, j2}, root(t1) = i, root(t2) = j;
D1 = {[(i, i1), (i, i2)]}, D2 = {[(j, j1), (j, j2)]}

From t1 ≃ t2 we deduce that h1(i) = h2(j), h1(i1) = h2(j1) and h1(i2) = h2(j2). It
follows that F (t1) = h1(i1)h1(i2) = h2(j1)h2(j2) = F (t2).

Suppose that (18) is true for every t1, t2 ∈ OBT (ω) such that depth(t1) = depth(t2) ≤
n. Consider the elements t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈ OBT (ω)
such that t1 ≃ t2, depth(t1) = depth(t2) = n + 1. We denote root(t1) = i, root(t2) = j,
[(i, i1), (i, i2)] ∈ D1, [(j, j1), (j, j2)] ∈ D2. From Proposition 3.2 we know that t1,(i1) ≃ t2,(j1),
t1,(i2) ≃ t2,(j2) and the corresponding embedding mappings are the restrictions of the em-
bedding mapping of t1 into t2. But depth(t1,(i1)) ≤ n, depth(t1,(i2)) ≤ n, depth(t2,(j1)) ≤ n
and depth(t2,(j2)) ≤ n. By the inductive assumption we have F (t1,(i1)) = F (t2,(j1)) and
F (t1,(i2)) = F (t2,(j2)). But F (t1) = F (t1,(i1))F (t1,(i2)) and therefore F (t1) = F (t2). �

Corollary 3.1. If t1 ≃ t2 then for every k ≥ 1 we have F (Tk(t1)) = F (Tk(t2)).

Proof. Really, we have Tk(t1) ≃ Tk(t2). �

4. Extensions based on non-terminal labels

In this section we define another operator. In comparison with the slicing operator,
this is an operator which extends the initial tree. In other words, from a given ω-tree
another ω-tree with a greater depth is obtained.

Definition 4.1. Consider an element t = (A,D, h) ∈ OBT (ω) such that F (t) /∈ L∗
T .

More precisely, suppose that

F (t) = w1h(i1)w2 . . . wnh(in)wn+1

where w1, . . . , wn+1 ∈ L∗
T and h(i1), . . . , h(in) ∈ LN . An immediate extension of

t is an element t1 = (A1, D1, h1) ∈ OBT (ω) such that

A1 = A ∪
∪

i∈{i1,...,in}

{ji,1, ji,2} (23)

D1 = D ∪
∪

i∈{i1,...,in}

{[(i, ji,1), (i, ji,2)]} (24)

h1(x) = h(x) for x ∈ A (25)

We denote by E(t) the set of all immediate extensions of t. If t ∈ OBT (ω) and
F (t) ∈ L∗

T then we take E(t) = [t].

Remark 4.1. The values h1(x) for x ∈ A1 \A are obtained by means of the mapping
ω. More precisely, if [(i, ji,1), (i, ji,2)] ∈ D1 \D then ω(h(i)) = (h1(i1), h1(i2)).

Proposition 4.1. If t = (A,D, h) ∈ OBT (ω) and F (t) /∈ L∗
T then

(1) t ≺ t1 for all t1 ∈ E(t)
(2) if t1 ∈ E(t) and t2 ∈ E(t) then t1 ≃ t2
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Proof. The first part of the proposition is immediately obtained. Really, if t1 ∈ E(t)
then (23), (24) and (25) are fulfilled. It follows that the identity mapping is an
embedding mapping of t into t1, which is not surjective. Thus we have t ≺ t1.

Consider now t1 = (A1, D1, h1) ∈ E(t) and t2 = (A2, D2, h2) ∈ E(t). We define
the mapping α : A1 −→ A2 as follows:

• α(i) = i for i ∈ A
• If [(i, i1), (i, i2)] ∈ D1 \ D and [(i, j1), (i, j2)] ∈ D2 \ D then α(i1) = j1 and
α(i2) = j2.

The mapping α is well defined because if [(i, j1), (i, j2)] ∈ D2 \D and [(s, r1), (s, r2)] ∈
D2 \D then i ̸= s, therefore j1 and j2 are uniquely determined.

We verify now that α is an injective mapping. Consider p ∈ A1 \A and q ∈ A1 \A
such that p ̸= q. We have the following cases:
(1) There is i ∈ A such that [(i, p), (i, q)] ∈ D1 \ D. Then [(i, α(p)), (i, α(q))] ∈

D2 \D1. From (1) we obtain α(p) ̸= α(q).
(2) There is i ∈ A, j ∈ A such that [(i, p), (i, p1)] ∈ D1\D and [(j, q), (j, q1)] ∈ D1\D.

In this case [(i, α(p)), (i, α(p1))] ∈ D2 \ D and [(j, α(q)), (j, α(q1))] ∈ D2 \ D,
therefore α(p) ̸= α(q) because (A2, D2) is a tree.

(3) There is i ∈ A, j ∈ A such that [(i, p1), (i, p)] ∈ D1\D and [(j, q), (j, q1)] ∈ D1\D.
A similar prove as the previous case can be obtained immediately.

In conclusion α is an injective mapping. Let us prove that α is a surjective mapping.
Take an element q ∈ A2 \ A. There is an element [(j, q), (j, q2)] ∈ D2 \ D or an
element [(j, q1), (j, q)] ∈ D2 \ D. If the first case is encountered then there is an
element [(j, p1), (j, p2)] ∈ D1 \ D. From the definition of α we have α(p1) = q. For
the second case we have α(p2) = q. Thus α is a surjective mapping.

The mapping α satisfies obviously the condition (8), (9) and (10) and therefore α
is the embedding mapping of t1 into t2, which is bijective. It follows that t1 ≃ t2. �

Remark 4.2. If F (t) ∈ L∗
T then the second sentence of the previous proposition is

true because in this case we have E(t) = [t].

Corollary 4.1. The following sentences are equivalent:
(i) t ∈ E(t)
(ii) F (t) ∈ L∗

T

Proof. Suppose that t ∈ E(t). If we suppose that F (t) /∈ L∗
T then by Proposition

4.1 we have t ≺ t. But the relation ≺ is a strict order on OBT (ω), therefore it is
irreflexive. Thus the assumption F (t) /∈ L∗

T is false. Therefore (ii) is true. Conversely,
suppose that (ii) is true. In this case we have E(t) = [t], therefore (i) is true because
t ∈ [t]. �

Proposition 4.2. If t ∈ OBT (ω) then∪
t0∈[t]

E(t0) ∈ OBT (ω)/≃ (26)

Moreover, if t1 ∈ E(t) then
∪

t0∈[t] E(t0) = [t1].

Proof. In order to prove (26) we take into consideration two cases: the case F (t) ∈ L∗
T

and the case F (t) /∈ L∗
T . We begin with the first case because this is very simple. If

F (t) ∈ L∗
T then by Corollary 4.1 we have E(t) = [t]. If t0 ∈ [t] then by Proposition

3.3 we have F (t0) = F (t), therefore F (t0) ∈ L∗
T . It follows that E(t0) = [t0]. The
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relation (26) is true because ∪
t0∈[t]

E(t0) = [t0] = [t]

and [t] ∈ OBT (ω)/≃.
We consider now the second case, F (t) /∈ L∗

T . In order to prove (26) we have to
verify the following two properties:

t1, t2 ∈
∪

t0∈[t]

E(t0) =⇒ t1 ≃ t2 (27)

t1 ∈
∪

t0∈[t]

E(t0), t1 ≃ t2 =⇒ t2 ∈
∪

t0∈[t]

E(t0) (28)

First we prove (27). Take the elements t1, t2 ∈
∪

t0∈[t] E(t0). There are t10 ∈ [t]

and t20 ∈ [t] such that t1 ∈ E(t10) and t2 ∈ E(t20). Denote t10 = (A1
0, D

1
0, h

1
0) and

t20 = (A2
0, D

2
0, h

2
0). Because t10 ≃ t20 we deduce that there is the bijective mapping

α : A1
0 −→ A2

0 such that

α(root(t10)) = root(t20) (29)

∀i, i1, i2 ∈ A1
0 : [(i, i1), (i, i2)] ∈ D1

0 ⇔ [(α(i), α(i1)), (α(i), α(i2))] ∈ D2
0 (30)

h1(root(t
1
0)) = h2(root(t

2
0)) (31)

Denote t1 = (A1, D1, h1) and t2 = (A2, D2, h2). Following Definition 4.1 we obtain:

A1 = A1
0 ∪

∪
i∈{i1,...,in}

{pi,1, pi,2}

D1 = D1
0 ∪

∪
i∈{i1,...,in}

{[(i, pi,1), (i, pi,2)]}

h1(x) = h1
0(x) for x ∈ A1

0

A2 = A2
0 ∪

∪
i∈{α(i1),...,α(in)}

{qi,1, qi,2} (32)

D2 = D2
0 ∪

∪
i∈{α(i1),...,α(in)}

{[(i, qi,1), (i, qi,2)]} (33)

h2(x) = h2
0(x) for x ∈ A2

0

As we mentioned in Section 2 we have h1
0(x) = h2

0(α(x)) for every x ∈ A1
0. This

explains the relations (32) and (33) because {i1, . . . , in} are all leaves of t10 which are
labeled by non-terminal labels if and only if {α(i1), . . . , α(in)} is the set of all leaves
of t20 labeled the non-terminal labels.

The mapping α : A1
0 −→ A2

0 can be extended to a bijective mapping α : A1 −→ A2

such that

∀i, i1, i2 ∈ A1 : [(i, i1), (i, i2)] ∈ D1 ⇔ [(α(i), α(i1)), (α(i), α(i2))] ∈ D2 (34)

As we noted above we have [(i, pi,1), (i, pi,2)] ∈ D1 \ D1
0 for i ∈ {i1, . . . , in} if and

only if [(i, qi,1), (i, qi,2)] ∈ D2 \D2
0 for i ∈ {α(i1), . . . , α(in)}. This property allows to

define for i ∈ {i1, . . . , in}:

α(pi,1) = qα(i),1, α(pi,2) = qα(i),2

and thus (34) is satisfied.
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We have root(t10) = root(t1) and root(t20) = root(t2), therefore from (29) and (31)
we obtain

α(root(t1)) = root(t2) (35)

h1(root(t1)) = h2(root(t2)) (36)

Now from (34), (35) and (36) we deduce that t1 ≃ t2. Thus (27) is proved.
Let us prove now (28). Consider an element t1 ∈ E(t0), where t0 ∈ [t]. We can

suppose that:
• t = (A,D, h), t0 = (A0, D0, h0) and α : A −→ A0 is the embedding mapping of
t into t0.

• t1 ≃ t2, t1 = (A1, D1, h1) ∈ E(t0), t2 = (A2, D2, h2); we have

A1 = A0 ∪
∪

i∈{i1,...,in}

{ji,1, ji,2} (37)

D1 = D0 ∪
∪

i∈{i1,...,in}

{[(i, ji,1), (i, ji,2)]} (38)

h1(x) = h0(x) for x ∈ A0 (39)

• β : A1 −→ A2 is the embedding mapping of t1 into t2;
From (37), (38) and (39) we obtain

Aβ
1 = Aβ

0 ∪
∪

i∈{i1,...,in}

{β(ji,1), β(ji,2)} (40)

Dβ
1 = Dβ

0 ∪
∪

i∈{i1,...,in}

{[(β(i), β(ji,1)), (β(i), β(ji,2))]} (41)

hβ
1 (β(x)) = h0(x) for x ∈ A0 (42)

and tβ1 = (Aβ
1 , D

β
1 , h

β
1 ), t

β
0 = (Aβ

0 , D
β
0 , h

β
0 ). From (40), (41) and (42) we obtain

tβ1 ∈ E(tβ0 ) (43)

But t0 ∈ [t], α is the embedding mapping of t into t0, therefore

tα = t0 (44)

We observe that (tα)β = tα◦β , where α ◦ β(x) = β(α(x)). From (43) and (44) we
obtain

tβ1 ∈ E(tα◦β) (45)

But tβ1 = t2, therefore from (45) we obtain t2 ∈ E(tα◦β). The mapping α ◦ β is
injective, therefore we have tα◦β ∈ [t]. It follows that t2 ∈

∪
t0∈[t] E(t0). Thus (28) is

proved.
The last part of the proposition is obtained now immediately. Consider t1 ∈ E(t).

The inclusion
[t1] ⊆

∪
t0∈[t]

E(t0) (46)

is obtained from (28).
Consider t2 ∈

∪
t0∈[t] E(t0). But t1 ∈ E(t) and E(t) ⊆

∪
t0∈[t] E(t0). From (27) we

obtain t2 ≃ t1. In other words we have t2 ∈ [t1]. Thus we have the inclusion∪
t0∈[t]

E(t0) ⊆ [t1] (47)
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From (46) and (47) we obtain ∪
t0∈[t]

E(t0) = [t1]

and the proposition is proved. �

5. Conclusions

In this paper we develop the results presented in [15] and [16]. Two operators on the
set OBT (ω) of all ω-trees are introduced and studied. These operators preserve the
basic features of the structures. The initial structure and the final structure obtained
by applying these operators are compared from the point of view of the comparison
relation and the equivalence relation introduced in [15] and [16]. The results presented
in this paper allow to introduce the concept of ω-templates by means of which we
can characterize the formal computations in a master-slave system based on semantic
schemas. This concept is treated in a forthcoming paper.
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