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On a Mann type implicit iteration process for strictly
pseudocontraction semigroups
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Abstract. The purpose of this paper is to study the strong and weak convergence of an
implicity iteration process for strictly pseudocontractive semigroups in general Banach spaces.
The results presented in this paper extend and improve recent results of some people. Zhang
[Acta Mathematica Sinica, English Series, 26 337-344 (2010)], Zhang [Appl. Math. Mech.
-Engl. Ed., 30, 145-152 (2009)], Zhou [Nonlinear Anal., 68, 2977-2983 (2008)], Chen, et al.
[J. Math. Anal., 314, 701-709 (2006)], Osilike [J. Math. Appl., 294, 73-81 (2004)] and Xu
and Oir [Numer. Funct. Anal. Optim., 22, 767-773 (2001)].
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1. Introduction

Let E be a real Banach, E∗ is the dual space of E, C is a nonempty closed convex
subset of E. J : E → 2E∗ is the normalized duality mapping defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖.‖f‖, ‖x‖ = ‖f‖}, x ∈ E.

Let T : C → C be a mapping. We use F (T ) to denote the set of fixed points of T ;
that is, F (T ) := {x ∈ C : x = Tx}.
Definition 1.1. One-parameter family {T (t) : t ≥ 0} of mappings from C into itself
is said to be a strictly pseudo-contraction semigroup on C, if the following conditions
are satisfied: (i) T (0)x = x for each x ∈ C;

(ii) T (t + s)x = T (t)T (s)x for any t, s ∈ R+ and x ∈ C;
(iii) for each x ∈ E, the mapping T (.)x from R+ into C is continuous;

(iv) there exists a bounded function λ : [0,∞) →
(

0,
1
2

)
such that for any given

x, y ∈ C there exists j(x− y) ∈ J(x− y) such that

〈T (t)x− T (t)y, j(x− y)〉‖x− y‖2 − λ(t)‖[I − T (t)]x− [I − T (t)]y‖,
for each t > 0.

Throughout this paper, we denote F (T ) := ∩
t≥0

F (T (t)) and λ := inf
t≥0
{λ(t)}, we also

assume that λ > 0.
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Definition 1.2. (v) A mapping T : C → C is said to be a pseudo-contraction, if for
any x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2. (1)

(vi) T : C → C is said to be strongly pseudocontractive, if there exists k ∈ (0, 1)
such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2, (2)
for each x, y ∈ C and for some j(x− y) ∈ J(x− y).

(vii) T : C → C is said to be strictly pseudocontractive in the terminology of
Browder and Petryshyn [2, 14], if there exists λ > 0 such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ‖(I − T )x− (I − T )y‖2, (3)

for every x, y ∈ C and for some j(x− y) ∈ J(x− y).

It is easy to see that every strictly pseudocontractive map is L− Lipschitzian and
continuous. Indeed, from (3) we have

λ‖(x− y)− (Tx− Ty)‖2 ≤ ‖(x− y)− (Tx− Ty)‖‖j(x− y)‖
on ther other hand

λ[‖Tx− Ty‖ − ‖x− y‖] ≤ λ‖(x− y)− (Tx− Ty)‖
therefore, we get

λ[‖Tx− Ty‖ − ‖x− y‖] ≤ ‖x− y‖
i.e.,

‖Tx− Ty‖ ≤ L‖x− y‖, L =
1 + λ

λ
. (4)

Since (4), if {T (t) : t ≥ 0} be a strictly pseudocontractive semigroup on C then for
each t > 0, we get

‖T (t)x− T (t)y‖ ≤ L(t)‖x− y‖
for all x, y ∈ C. In the sequel, we denote M := sup

t≥0
{L(t)} < ∞.

Lemma 1.1. (Deimling [3]). Let E be a real Banach space, C be a nonempty closed
convex subset of E and T : C → C be a continuous strongly pseudocontractive map-
ping. Then T has a unique fixed point in C.

Let E be a real Banach space, C be a nonempty closed convex subset of E and
{T (t) : t ≥ 0} be a strictly pseudocontractive semigroup. For every u ∈ C, t ∈ (0,∞)
and s ∈ (0, 1), we define a mapping Us : C → C by

Us = su + (1− s)T (t)x, x ∈ C.

It is easy to see that Us is a continuous strongly pseudocontractive mpping. By using
Lemma 1.1, there exists a unique fixed point xs ∈ C of Us such that

xs = su + (1− s)T (t)xs. (5)

Let {T (t) : t ≥ 0} be a strictly pseudocontractive semigroup, let {αn} be a real
sequence in (0, 1), and {tn} be a real sequence in (0,+∞). By virtue of 5, we can
define an implicit iterative sequence {xn} by

{
x0 ∈ C,

xn = αnxn−1 + (1− αn)T (tn)xn, n ≥ 1.
(6)
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It should be pointed out that the following implicit iteration process:{
x0 ∈ C,

xn = αnxn−1 + (1− αn)Tnxn, n ≥ 1
(7)

was firstly introduced by Xu and Ori [11] for a finite family of nonexpansive mappings
{Ti}N

i=1 in a Hilbert space framework, where Tn = Tn mod N . In 2004, Osilike [6]
extended the above sequence (7) from the class of nonexpansive mappings to more
general class of strictly pseudocontractive mappings. In 2006, Chen, el al. [2] extended
the results of Osilike [6] to more general Banach spaces. In 2008, Zhou [14] further
extended the results of Chen, el al. [2] from strictly pseudocontractive mapping to
Lipschitzian pseudocontractions, and from q− uniformly smooth Banach space to
uniformly convex Banach spaces with a Frchet differentiable norm.

Recently, Zhang [12] extended and improve recent results of Zhou [14], Chen, el al.
[2], Osilike [6], Xu and Ori [11]. He proved the following results.

Theorem 1.1. (Zhang [12]). Let E be a reflexive Banach space satisfying the Opial
condition. Let C be a nonempty closed convex subset of E and {T (t) : t ≥ 0} be a
strictly pseudocontractive semigroup with a strictly pseudocontractive function λ(t) :

[0,∞) →
(

0,
1
2

)
such that F (t) 6= ∅. Let {αn} be a sequence in (0, 1) and {tn} be a

sequence in (0,∞) satisfying the following conditions:
(a) lim

n→∞
tn = lim

n→∞
αn

tn
= 0.

(b) lim
n→∞

λ(tn)
αn

= K, where K is a positive constant.

Then the sequence {xn} defined by (6) converges weakly to a common fixed point
of strictly pseudocontractive semigroup {T (t) : t ≥ 0}.
Theorem 1.2. (Zhang [13]). Let E be a reflexive Banach space satisfying the Opial
condition. Let C be a nonempty closed convex subset of E and {T (t) : t ≥ 0} be a
strictly pseudocontractive semigroup with a strictly pseudocontractive function λ(t) :

[0,∞) →
(

0,
1
2

)
such that F (t) 6= ∅. Let {αn} be a sequence in (0, 1) and {tn} be a

sequence in (0,∞) satisfying the following conditions:
(a) lim sup

n→∞
αn < 1;

(b) sup
x∈D

‖T (s+ tn)x−T (tn)x‖ → 0, for all t ∈ R+, where D = {x ∈ E : ‖x‖ ≤ γ} and

γ = sup
n≥1

‖xn‖;

(c) lim
n→∞

λ(tn)
αn

= K, where K is a positive constant.

Then the sequence {xn} defined by (6) converges weakly to a common fixed point
of strictly pseudocontractive semigroup {T (t) : t ≥ 0}.

In this paper, motivated by the above results, we prove several another weak and
strong convergence results for the iterative scheme (6) for a strictly pseudocontractive
semigroup in a Banach space.

In the sequel, we will need the following definition and result.

Definition 1.3. A Banach space E is said to satisfy Opial’s condition if whenever
{xn} is a sequence in E which converges weakly to x, as n →∞, then

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||, ∀y ∈ E, y 6= x. (8)
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It is well known that Hilbert space and lp(1 < p < ∞) space satisfy Opial’s
conditions.

Lemma 1.2. If J : E → 2E∗ is a normalized duality mapping, then for all x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀j(x + y) ∈ J(x + y).

Lemma 1.3. (Zhou [14]). Let E be a real reflexive Banach space with the Opial
condition. Let C be a nonempty closed convex subset of E and T : C → C be a
continuous pseudocontractive mapping. Then T is demiclosed at zero, i.e., for any
sequence {xn} ⊂ E, if xn ⇀ y and ‖(I − T )xn‖ → 0, then (I − T )y = 0.

2. Main results

2.1. Weakly convergence theorems.

Theorem 2.1. Let E be a reflexive Banach space satisfying the Opial condition.
Let C be a nonempty closed convex subset of E and {T (t) : t ≥ 0} be a strictly
pseudocontractive semigroup with a strictly pseudocontractive function λ(t) : [0,∞) →(

0,
1
2

)
and suppose that F := ∩

t≥0
Fix(T (t)) 6= ∅. Let {αn} and {tn} be sequences of

real numbers satisfying {αn} ⊂ (0, 1), tn > 0, lim
n→∞

tn = lim
n→∞

αn

tn
= 0. Suppose that

for any bounded subset D ⊂ C,

lim
s→0

sup
x∈D

‖T (s)x− x‖ = 0. (9)

Then the sequence {xn} defined by (6) converges weakly to the element of F .

Proof. Claim 1. For each p ∈ F then the limit lim
n→∞

‖xn − p‖ exists.

‖xn − p‖2 = 〈αnxn−1 + (1− αn)T (tn)xn − p, j(xn − p)〉
= (1− αn)〈T (tn)xn − p, j(xn − p)〉+ αn〈xn−1 − p, j(xn − p)〉
≤ (1− αn)‖xn − p‖2 + αn‖xn−1 − p‖.‖xn − p‖.

So

‖xn − p‖2 ≤ ‖xn−1‖.‖xn − p‖. (10)

If ‖xn − p‖ = 0, the result is apparent. Next let ‖xn − p‖ > 0; it follows from (10)
that

‖xn − p‖ ≤ ‖xn−1 − p‖
which implies that the limit lim

n→∞
‖xn−p‖ exists, and so the sequence {xn} is bounded.

This implies that {T (tn)xn} is bounded.
Claim 2. For each t > 0,

lim
n→∞

‖T (t)xn − xn‖ = 0. (11)
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In fact, we have

‖xn − T (t)xn‖

≤
[ t

tn
]−1∑

k=0

‖T ((k + 1)tn)xn − T (ktn)xn‖+
∥∥∥∥T

([
t

tn

]
tn

)
xn − T (t)xn

∥∥∥∥

≤
[[

t

tn

]
||T (tn)xn − xn||+ ||T

(
t−

[
t

tn

]
tn

)
xn − xn‖

]
M

≤
[
t
αn

tn
‖xn−1 − T (tn)xn‖+ max{||T (s)xn − xn|| : 0 ≤ s ≤ tn}

]
M,

for all n ∈ N. From the condition lim
n→∞

αn

tn
= 0 and (20), we get

lim
n→∞

‖T (t)xn − xn‖ = 0.

Claim 3. {xn} converges weakly to a common fixed point of semigroup {T (t) : t ≥ 0}.
Indeed, since E is reflexive and C is closed and convex and {xn} is bounded, there

exists a subsequence {xnj} ⊂ {xn} such that xnj ⇀ x ∈ C. We prove that x ∈ F .
From (11), for any t > 0 we have

‖T (t)xnj − xnj‖ → 0 as j →∞.

By virtue of Lemma 1.3, T (t)x = x. Therefore x ∈ F (T ). We next prove {xn}
converges weakly to x. Suppose that there exists a subsequence {xni} ⊂ {xn} such
that xni ⇀ q and q 6= x. By the same method described above we can also prove that
q ∈ F . Further, both limits

lim
n→∞

‖xn − x‖, lim
n→∞

‖xn − q‖
exists. We have

lim
n→∞

‖xn − x‖ = lim sup
j→∞

‖xnj − x‖ < lim sup
j→∞

‖xnj − q‖

= lim
n→∞

‖xn − q‖ = lim sup
i→∞

‖xni − q‖
< lim sup

i→∞
‖xni − x‖ = lim

n→∞
‖xn − x‖.

This contradiction shows that q = x, hence xn ⇀ x. Theorem 2.1 is proved. ¤

Theorem 2.2. Let E be a reflexive Banach space satisfying the Opial condition.
Let C be a nonempty closed convex subset of E and {T (t) : t ≥ 0} be a strictly
pseudocontractive semigroup with a strictly pseudocontractive function λ(t) : [0,∞) →(

0,
1
2

)
and suppose that F := ∩

t≥0
Fix(T (t)) 6= ∅. Let {αn} and {tn} be sequences of

real numbers satisfying {αn} ⊂ (0, b] ⊂ (0, 1), tn > 0, lim inf
n→∞

tn = 0, lim sup
n→∞

tn > 0,

and lim
n→∞

(tn+1 − tn) = 0. Suppose that for any bounded subset D ⊂ C,

lim
s→0

sup
x∈D

‖T (s)x− x‖ = 0. (12)

Then the sequence {xn} defined by (6) converges weakly to the element of F .

Proof. It can be proved as in Theorem 2.1, that for each p ∈ F then the limit
lim

n→∞
‖xn − p‖ exists. Next, we show that

lim
n→∞

‖xn − T (tn)xn‖ = 0. (13)
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Indeed, From (3) we have for all x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈(I − T (tn))x− (I − T (tn))y〉 ≥ λ(tn)‖(I − T (tn))x− (I − T (tn))y‖2
≥ λ‖(I − T (tn))x− (I − T (tn))y‖2. (14)

On the other hand, From equation (6) we have

xn−1 =
1

αn
xn +

(
1− 1

αn

)
T (tn)xn. (15)

It follows from (15) that

xn − xn−1 =
(

1− 1
αn

)
(xn − T (tn)xn)

〈xn − xn−1, j(xn − p)〉 =
(

1− 1
αn

)
〈xn − T (tn)xn, j(xn − p)〉

= −1− αn

αn
〈xn − T (tn)xn, j(xn − p)〉. (16)

From Lemma 1.2 and (14) and (16), we have for all p ∈ F (T ) there exists j(xn− p) ∈
J(xn − p) such that

‖xn − p‖2 = ‖xn−1 − p + xn − xn−1‖2
≤ ‖xn−1 − p‖2 + 2〈xn − xn−1, j(xn − p)〉

= ‖xn−1 − p‖2 − 2
1− αn

αn
〈xn − T (tn)xn − (p− Tp), j(xn − p)〉

≤ ‖xn−1 − p‖2 − 2λ
1− αn

αn
‖xn − T (tn)xn‖2. (17)

From 0 < αn ≤ b < 1 and (17) we obtain

2λ
1− b

b
‖xn − T (tn)xn‖2 ≤ ‖xn−1 − p‖2 − ‖xn − p‖2. (18)

Passing to the upper limit on both sides of inequality (18), we get

2λ
1− b

b
lim sup

n→∞
‖xn − T (tn)xn‖2 = 0.

Thus,

lim
n→∞

‖xn − T (tn)xn‖ = 0.

Now we shall show that {xn} converges weakly to a common fixed point of semi-
group {T (t) : t ≥ 0}. Indeed, since {xn} is bounded, we assume that a subsequence
{xnj} of {xn} converges weakly to x ∈ C. Put uj := xnj , βj := αnj and sj := tnj for
j ∈ N. Without loss of generality, as in [7], we let

lim
j→∞

sj = lim
j→∞

‖uj − T (sj)uj‖
sj

= 0. (19)
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Now, we prove that x = T (t)x for a fixed t > 0. Indeed,

‖uj − T (t)uj‖ ≤

[
t

sj

]
−1∑

k=0

‖T ((k + 1)sj)uj − T (ksj)uj‖

+
∥∥∥∥T

([
t

sj

]
sj

)
x− T (t)uj

∥∥∥∥

≤
[

t

sj

]
M‖T (sj)uj − uj‖

+ M

∥∥∥∥T

(
t−

[
t

sj

]
sj

)
uj − uj

∥∥∥∥

≤ Mt
‖T (sj)uj − uj‖

sj
+ M max

0≤s≤sj

{‖T (s)uj − uj‖}

for all j ∈ N. From (19) and (12), we get

lim
j→∞

‖uj − T (t)uj‖ = 0.

By virtue of Lemma 1.3, T (t)x = x. Therefore x ∈ F . We next prove {xn} converges
weakly to x. Suppose that there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ q
and q 6= x. By the same method argument as given in the proof of Theorem 2.1 we
can show that {xn} converges weakly to x. Theorem 2.2 is complete. ¤

2.2. Song convergence theorems.

Theorem 2.3. Let E be a real Banach space. Let C be a nonempty compact convex
subset of E. Let {T (t) : t ≥ 0} be a strictly pseudocontractive semigroup on C and
suppose that F := ∩

t≥0
Fix(T (t)) 6= ∅. Let {αn} and {tn} be sequences of real numbers

satisfying {αn} ⊂ (0, b] ⊂ (0, 1), tn > 0 and lim
n→∞

tn = lim
n→∞

αn

tn
= 0.Suppose that for

any bounded subset D ⊂ C,

lim
s→0

sup
x∈D

‖T (s)x− x‖ = 0. (20)

Then the sequence {xn} defined by (6) converges strongly to the element of F .

Proof. Since C is a compact convex subset of E and {xn} is bounded by Theorem
2.1 (Claim 1), then there exists a subsequence {xnj} ⊂ {xn} such that xnj → x ∈ C.

Fix t > 0, by the continuity of the mapping T (t) and the norm ‖.‖, together with
lim

j→∞
‖xnj − T (t)xnj‖ = 0 by Theorem 2.2, we have

‖x− T (t)x‖ = lim
j→∞

‖xnj − T (t)xnj‖ = 0.

Therefore x ∈ Fix(T (t)), hence x ∈ F .
Because lim

n→∞
‖xn − p‖ exists for all p ∈ F , thus we obtain that

lim
n→∞

‖xn − x‖ = lim
j→∞

‖xnj − x‖ = 0.

The proof is complete. ¤
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