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Divisors of order k

Nicuşor Minculete

Abstract. The aim of this paper is to present the notion of divisor of order k and to study
some properties about the arithmetical functions which use divisors of order k. We also
investigate the maximal order and the minimal order of these arithmetical functions.
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1. Introduction

Many important relations involving arithmetic functions can be developed by
introducing new classes of divisors. We start by enumerating several types of divisors
found in some papers on the number theory.

The notion of block-factor was used for the first time by R. Vaidyanathaswamy in
[22]. He introduced this notion in the following way: a divisor d of n is a block-factor
when

(
d,

n

d

)
= 1. Several years later, E. Cohen [2] introduced the current terminology

for a block-factor, namely, the unitary divisor. In 1966, M. V. Subbarao and L. J.
Warren [16] introduced the unitary perfect numbers satisfying σ∗(n) = 2n, where
σ∗(n) denotes the sum of the unitary divisors on n. Let τ∗(n) denote the number
of unitary divisors of n, which is, in fact, the number of the squarefree divisors of n.
Several characterization of these arithmetical function are given below.

The following relation was introduced by F. Mertens, in [5]:
∑

n≤x

τ∗(n) =
x

ζ(2)

(
log x + 2γ − 1− 2ζ ′(2)

ζ(2)

)
+ S2(x), (1)

where S2(x) = O
(
x

1
2 log x

)
, ζ is the zeta function of Riemann and γ is Euler’s

constant.
But in [3] A. A. Gioia and A. M. Vaidya showed that S2(x) = O

(
x

1
2

)
.

In 1973, R. Sitaramachandrarao and D. Suryanarayana [14] found the following
result: ∑

n≤x

σ∗(n) =
π2x2

12ζ(3)
+ O

(
x log

5
3 x

)
, (2)

where ζ(3) is Apéry’s constant.
The notion of exponential divisor was introduced by M. V. Subbarao in [15] in the

following way: d is said to be an exponential divisor (or e-divisor) of n = pa1
1 ...par

r > 1,
if d = pb1

1 ...pbr
r , where bi|ai for any 1 ≤ i ≤ r. A series of results related to the

exponential divisors are given in many sources, such as: [4,8,13,18].
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N. Minculete and L. Tóth in [8] presented some properties of the arithmetical
functions which use exponential unitary divisors or e-unitary divisors. A divisor d of
n = pa1

1 ...par
r > 1 is called e-unitary divisor if d = pb1

1 . . . pbr
r , where bi is an unitary

divisor of ai, so
(

bi,
ai

bi

)
= 1, for any 1 ≤ i ≤ r.

In [6] N. Minculete introduced a new class of divisors, namely, a divisor d of n,

so that γ(d) = γ(n) and
(

d

γ(n)
,
n

d

)
= 1. This divisor was called an exponential

semiproper divisor or an e-semiproper divisor of n, where γ(n) = p1p2 . . . pr, for
n = pa1

1 . . . par
r > 1 and γ(1) = 1.

2. Main results

We generalize the class of the unitary divisors and the class of the exponential
semiproper divisors as in [7].

Let n be a positive integer and k ≥ 0 another integer. If

n = pa1
1 pa2

2 . . . pau
u p

au+1
u+1 . . . par

r > 1,

where a1, a2, . . . au < k + 1, and au+1, au+2, . . . , ar ≥ k + 1, then we define the
arithmetical function γk : N∗ → C such that γk(1) = 1 and

γk(n) = pa1
1 pa2

2 . . . pau
u (pu+1pu+2 . . . pr)k,

where N∗ = {1, 2, 3, ...} and C is the set of the complex numbers. It is easy to see
that the arithmetical function γk is a multiplicative function.

A divisor d of n, so that γk(d) = γk(n) and
(

d

γk(n)
,
n

d

)
= 1, will be called a

divisor of order k of n.
For example, we consider the number n = 26 · 34; as γ2(n) = 22 · 32, then the

divisors of order 2 of n are the following:

22 · 32, 22 · 34, 26 · 32, 26 · 34.

Let τ (k)(n) denote the number of the divisors of order k of n, and σ(k)(n) denote
the sum of the divisors of order k of n. We observe that 1 is a divisors of order k of
itself, so that σ(k)(1) = τ (k)(1) = 1. For n > 1 and k ≥ 1, the smallest divisor of order
k of n is γk(n) and the greatest divisor of order k of n is n. In the above example,
the divisors of order 2 of n = 26 · 34 are the following: γ2(n) · 1, γ2(n) · 32, γ2(n) · 24

and γ2(n) · 24 · 32. This suggest the following: any divisor of order k of n is written
as d = γk(n) · d′, where d′ is a unitary divisor of

n

γk(n)
. Therefore, the number of the

divisors of order k of n is τ∗
(

n

γk(n)

)
and the sum of the divisors of order k of n is

γk(n) · σ∗
(

n

γk(n)

)
, so we have the following relations:

τ (k)(n) = τ∗
(

n

γk(n)

)
, σ(k)(n) = γk(n) · σ∗

(
n

γk(n)

)
. (3)

We observe that if the integer d = pb1
1 . . . pbr

r is a divisor of order k of n = pa1
1 . . . par

r >
1, then bi ∈ {k, ai}, for any 1 ≤ i ≤ r.
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According to the previous statements, we have

τ (k)(pa) =
{

1, for a < k + 1
2, for a ≥ k + 1,

(4)

so, pa is the only divisor of order k of pa, when a ≤ k, and the divisors of order k of
pa (a ≥ k + 1) are pk and pa, which means that

σ(k)(pa) =
{

pa, for a < k + 1
pa + pk, for a ≥ k + 1.

(5)

Note that for k = 0 the notion of the divisor of order 0 is identical with the notion of
the unitary divisor, and for k = 1 the notion of the divisor of order 1 is identical with
the notion of the exponential semiproper divisor. Similar to the unitary analogue of
Euler’s totient (see e.g. [8], [12]), we define the multiplicative function ϕ(k) : N∗ → C,
so that ϕ(k)(1) = 1 and

ϕ(k)(pa) =
{

pa, for a < k + 1
pa − pk, for a ≥ k + 1.

(6)

We observe that ϕ(0)(n) = ϕ∗(n), where ϕ∗ is the unitary analogue of Euler’s
arithmetical function, and ϕ(1)(n) = ϕ(e)s(n), where the multiplicative function
ϕ(e)s : N∗ → C, is defined as ϕ(e)s(1) = 1 and

ϕ(e)s(pa) =
{

p, for a = 1
pa − p, for a ≥ 2,

(7)

which refers to the exponential semiproper divisors, see [6].
It is easy to see that the arithmetical functions τ (k) and σ(k) are multiplicative and

we have

τ (k)(n) = 2t, σ(k)(n) = pa1
1 . . . pau

u

r∏

i=u+1

(pai
i + pk

i ), (8)

where n = pa1
1 . . . pau

u p
au+1
u+1 . . . par

r , with ai ≤ k for any i ∈ {1, . . . , u} and ai ≥ k + 1
for any i ∈ {u + 1, . . . r}, and t = r − u, so t is the number of the exponents in the
prime factorization of n which are ≥ k + 1.

If n is squarefree and k ≥ 1, then τ (k)(n) = 1 and σ(k)(n) = n.
Similar to the exponential unitary convolution and to the e-semiproper convolution,

we introduce the convolution of order k of two arithmetical functions f, g : N → C,
as the arithmetical function f ∗(k) g, which is defined by (f ∗(k) g)(1) = 1 and

(f ∗(k) g)(n) = f(pa1
1 . . . pau

u )g(pa1
1 . . . pau

u )
∑

bu+1 6=cu+1
bu+1,cu+1∈{k,au+1}

. . .

. . .
∑

br 6=cr

br,cr∈{k,ar}

f(pbu+1
u+1 . . . pbr

r )g(pcu+1
u+1 . . . pcr

r ),
(9)

if n = pa1
1 . . . pau

u p
au+1
u+1 . . . par

r , with ai ≤ k for any i ∈ {1, . . . , u} and ai ≥ k + 1 for
any i ∈ {u + 1, . . . r}.

The convolution of order k is commutative, associative and has the identity element
µ(k), where µ(k)(1) = 1 and

µ(k)(pa) =
{

1, for a < k + 1
0, for a ≥ k + 1.

(10)
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We observe that

µ(k)(n) =
{

1, for n ∈ Qk+1

0, otherwise,
(11)

where Qk denotes the set of k-free integers (positive integers whose prime factors are
all of multiplicity ≤ k), so µ(k) is the characteristic function of Qk+1.

In [1], T.M. Apostol resumed the Gegenbauer’s result, which proved that the num-
ber of k- free integers ≤ x is given by the asymptotic estimation

∑

n≤x

µ(k)(n) =
x

ζ(k + 1)
+ O

(
x

1
k+1

)
, for any k ≥ 1. (12)

Remark 2.1. In [1], T. M. Apostol defined an arithmetical function µk, the Möbius
function of order k, as follows:

µk(1) = 1,
µk(n) = 0 if pk+1|n for some prime p,
µk(n) = (−1)u if n = pk

1 . . . pk
u

∏

i>u

pai
i , 0 ≤ ai < k,

µk(n) = 1 otherwise.
It is easy to see that µ(k)(n) = |µk(n)|.

Furthermore, a function f has an inverse with respect to the convolution of order
k iff f(1) 6= 0 and f(pa1

1 . . . pau
u (pau+1

u+1 . . . par
r )k) 6= 0, for any distinct primes p1, . . . , pr.

The inverse with respect to the convolution of order k of the constant 1 function is
denoted by µ(k) (1 ∗(k) µ(k) = µ(k)). This multiplicative arithmetic function is given
by µ(k)(1) = 1 and for a prime number p and a ≥ 1, we have

µ(k)(pa) =
{

1, for a < k + 1
−1, for a ≥ k + 1.

(13)

Hence, we obtain the identity

µ(k) ∗(k) µ(k) = µ(k) · τ (k). (14)

Therefore, the arithmetical function µ(k) is another Möbius type function. If we have
the arithmetical functions F and f such that F = f ∗(k) 1, then f = F ∗(k) µ(k).

An asymptotic formula for µ(k) can be obtained from the the following general
result of L. Tóth given by the following:

Theorem 2.1. ([19], p.2). Let f be a complex valued multiplicative function such
that |f(n)| ≤ 1, for every n ≥ 1, and f(p) = 1, for every prime p. Then

∑

n≤x

f(n) = m(f)x + O
(
x

1
2 log x

)
.

where

m(f) =
∏
p

(
1 +

∞∑
a=2

f(pa)− f(pa−1)
pa

)

is the mean value of f i.e. m(f) = limx→∞ 1
x

∑
1≤x≤n f(n).

Applying this theorem for the multiplicative function f = µ(k), we deduced the
following:

Theorem 2.2. ([7], Theorem 2.1). For k ≥ 1, we have
∑

n≤x

µ(k)(n) = Ax + O
(
x

1
2 log x

)
, (15)
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where

A =
∏
p

(
1− 2

pk+1

)
(16)

is the mean value of µ(k).

In [11], we meet the regular convolutions of Narkiewicz-type, namely: denote by A
the set of arithmetical functions f : N → C; let A(n) be a subset of the set D(n) of
positive divisors of n for each natural number n. The A-convolution of the functions
f, g ∈ A is given by

(f ∗A g)(n) =
∑

d∈A(n)

f(d)g
(n

d

)
.

An A-convolution is called regular if

(a) A is a commutative ring with unity δ (where δ(1) = 1 and δ(n) = 0 for all
n > 1) with respect to ordinary addition and to ∗A,

(b) the A-convolution of multiplicative functions is multiplicative,

(c) the function I, defined by I(n) = 1 for all natural numbers n, has an inverse
µA with respect to ∗A and µA(pa) ∈ {−1, 0} for every prime power pa(a ≥ 1).

We observe that the convolution of order k is a special case of these only for k = 0.
In [9], [10] and [17] we found several elementary methods in number theory which will
suggest some further results.
We present the following result of L. Tóth and E. Wirsing:

Theorem 2.3. ([21], p.3). Let f be a nonnegative real-valued multiplicative function.

Suppose that for all primes p we have ρ(p) := sup
a≥0

f(pa) ≤ 1
1− 1

p

and that for all

primes p there is an exponent ep = po(1) such that f(pep) ≥ 1 +
1
p
. Then

lim
n→∞

sup
f(n)

log log n
= eγ

∏
p

(
1− 1

p

)
ρ(p).

For the maximal order of the function σ(k), we have

Theorem 2.4.

lim
n→∞

sup
σ(k)(n)

n log log n
=

6
π2

eγ , (17)

where γ is Euler’s constant.

Proof. In Theorem 2.3 we choose f(n) =
σ(k)(n)

n
, which is a multiplicative function,

and for ep = k + 1, we have
σ(k)(pk+1)

pk+1
= 1 +

1
p
.

But

sup
a≥0

σ(k)(pa)
pa

= sup
a≥0

pk + pa

pa
< 1 +

1
p

+
1
p2

+ . . . =
1

1− 1
p

, so ρ(p) ≤ 1
1− 1

p

.

Consequently, relation (17) holds. ¤
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So, the maximal order of
σ(k)(n)

n
is

6
π2

eγ log log n.

L. Tóth in ([20], p. 2) proved the following general result:

Theorem 2.5. Let f be a complex valued multiplicative arithmetic function, such that
a) f(p) = f(p2) = . . . = f(pl−1) = 1, f(pl) = f(pl+1) = s, for every prime p,

where l, s ≥ 2 are fixed integers, and
b) there exist constants C,m > 0, such that |f(pa)| ≤ Cam for every prime p and

every a ≥ l + 2.
Then, for t ∈ C,
i)

∞∑
n=1

f(n)
nt

= ζ(t) · ζs−1(lt) · V (t), for Re t > 1,

where the Dirichlet series V (t) =
∞∑

n=1

v(n)
nt

is absolutely convergent for Re t >
1

l + 2
,

and
v(p) = v(p2) = . . . = v(pl+1) = 0 and

v(pa) =
∑

j≥0

(−1)j

(
s− 1

j

)
(f(pa−jl)− f(pa−jl−1))

for a ≥ l + 2,
ii) ∑

n≤x

f(n) = Cfx + x
1
l Pf,s−2(log x) + O(xus,l+ε),

for every ε > 0, where Pf,s−2 is a polynomial of degree s − 2, us,l =
2s− 1

3 + (2s− 1)l
and

Cf :=
∏
p

(
1 +

∞∑

a=l

f(pa)− f(pa−1)
pa

)
.

Theorem 2.6.
∑

n≤x

τ (k)(n) =
ζ(k + 1)
ζ(2k + 2)

x + Ax
1

k+1 + O
(
x

1
k+2+ε

)
, (18)

for every ε > 0, where A is a constant, and the Dirichlet series of τ (k)(n) is
∞∑

n=1

τ (k)(n)
nt

=
ζ(t)ζ(t(k + 1))
ζ(2t(k + 1))

, for Re t > 1. (19)

Proof. In Theorem 2.5, for the arithmetic function f(n) = τk(n), take l = k + 1 and
s = 2, because τ (k)(p) = . . . τ (k)(pk) = 1, τ (k)(pk+1) = τ (k)(pk+2) = 2, and for every
a ≥ k + 3, we have

|τ (k)(pa)| = 2 ≤ Cam,

where C and m are two constants. Therefore, the conditions from Tóth’s theorem
are satisfied, so it follows the relation

∑

n≤x

τ (k)(n) = Cfx + x
1

k+1 Pf,0(log x) + O(xu2,k+1+ε).
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But Cf :=
∏
p

(
1 +

∞∑

a=l

f(pa)− f(pa−1)
pa

)
, so

Cf =
∏
p

(
1 +

∞∑

a=k+1

τ (k)(pa)− τ (k)(pa−1)
pa

)
=

∏
p

(
1 +

1
pk+1

)
=

ζ(k + 1)
ζ(2k + 2)

.

By several calculations, we obtain that u2,k+1 =
1

k + 2
, and Pf,0 is a constant, which

is denoted by A. Therefore, the proof of relation (18) is complete.
As in Theorem 2.5, let v(p) = . . . = v(pk+2) = 0 and, for a ≥ k + 3,

v(pa) =
∑

j≥0

(−1)j

(
1
j

)
(τ (k)(pa−jl)− τ (k)(pa−jl−1)) = τ (k)(pa)− τ (k)(pa−1)

− τ (k)(pa−k−1) + τ (k)(pa−k−2).
Using relation (4), we obtain v(pa) = 0, for k +3 ≤ a ≤ 2k +1, v(p2k+2) = −1 and

v(pa) = 0, for a ≥ 2k + 3.
Therefore, we obtain v(p2k+2) = −1, and v(pa) = 0 for any a 6= 2k + 2.

But the Dirichlet series V (t) =
∞∑

n=1

v(n)
nt

is absolutely convergent for Re t >
1

k + 3

and is equal to
∏

p prime

(
1− 1

p2t(k+1)

)
=

1
ζ(2t(k + 1))

, so V (t) =
1

ζ(2t(k + 1))
, thus,

relation (19) is true. ¤
We mention that a number n is a perfect number of order k if we have

σ(k)(n) = 2n.

If m is a squarefree number and n is a perfect number of order k, so that (m,n) = 1,
then mn is a perfect number of order k, because

σ(k)(m · n) = σ(k)(m) · σ(k)(n) = m · 2n = 2mn.

An example of a perfect number of order k is the number n = 2k+1 · 3k+1.
There is an infinity of perfect numbers of order k.

Remark 2.2. The number n is a perfect number of order k if and only if
n

γk(n)
is

unitary perfect number.

In [12] is given the following result:

Theorem 2.7. Let g be an arithmetical function. Assume that
(i) g is integral valued and g(n) ≥ 1 for every n ≥ 1,
(ii) g(n) ≥ n for every sufficiently large n(n ≥ n0),
(iii) either g(p) = p + 1 for every sufficiently large prime p(p ≥ p0), or g is multi-
plicative and g(p) = p for every sufficiently large prime p(p ≥ p0).
Then

lim
n→∞

inf
ϕ(g(n)) log log n

n
= lim

n→∞
inf

ϕ(g(n)) log log g(n)
g(n)

= e−γ .

Theorem 2.8.

lim
n→∞

inf
ϕ(σ(k)(n)) log log n

n
= e−γ , (20)

where γ is Euler’s constant and ϕ(n) is Euler’s totient.
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Proof. Since n ≤ σ(k)(n) for any n ≥ 1, σ(k) is multiplicative and σ(0)(p) = p + 1 or
σ(k)(p) = p, when k ≥ 1, we apply Theorem 2.7 and we deduce the statement. ¤

In [12] is given another result, namely:

Theorem 2.9. Let h(n) be an arithmetical function such that n ≤ h(n) ≤ σ(n) for
every sufficiently large n(n ≥ n0). Then

lim
n→∞

inf
h(σ(n))

n
= 1.

Theorem 2.10.

lim
n→∞

inf
σ(k)(σ(n))

n
= 1 (21)

where σ(n) is the sum of the divisors of n.

Proof. Since n ≤ σ(k)(n) ≤ σ(n) for any n ≥ 1, we apply Theorem 2.9 and we deduce
the statement. ¤

Theorem 2.11. For every n ≥ 1 and k ≥ 1 the following inequality holds:

τ(n) ≤
√

nγk(n) ≤ σ(k)(n)
τ (k)(n)

, n 6= 4. (22)

Proof. For n = 1 we have τ(1) = 1 =
√

1γk(1) = 1 = σ(k)(1)
τ(k)(1)

.
For

n = pa1
1 pa2

2 . . . pau
u p

au+1
u+1 . . . par

r > 1,

where a1, a2, . . . , au < k + 1 and au+1, au+2, . . . , ar ≥ k + 1, we deduce the inequality

pa1
1 pa2

2 . . . pau
u p

au+1+k

2
u+1 . . . p

ar+k
2

r ≤ pa1
1 pa2

2 . . . pau
u

r∏

j=u+1

(
p

aj

j + pk
j

2

)
=

=
1

2r−u
pa1
1 pa2

2 . . . pau
u

r∏

j=u+1

(paj

j + pk
j ) =

σ(k)(n)
τ (k)(n)

.

But, we have the equality pa1
1 pa2

2 . . . pau
u p

au+1+k

2
u+1 . . . p

ar+k
2

r =
√

nγk(n). Therefore, we
obtain the inequality

√
nγk(n) ≤ σ(k)(n)

τ (k)(n)
,

for any n ≥ 1. The left side of the inequality (22) should be treated separately, be-
cause for n = 4 the inequality is not true.

If n = pa 6= 4, then first show that
√

paγk(pa) ≥ τ(pa).

For a ≥ k + 1, we have p
a+k

2 ≥ a + 1, which is true, because p
a+k

2 ≥ 2
a+1
2 ≥ a + 1.

For a < k + 1 and k ≥ 1, we have pa ≥ a + 1, which is true, because pa ≥ 2a ≥ a + 1
for every a ≥ 1. For a ≤ k, we have pa ≥ a+1 and inequality is true. We remark that
we need to check separately inequality (22) for natural numbers of type n = 4pa. If
we have k = 1 and a = 1, then implies the inequality τ(4p) = 6 ≤ √

4p · 2p = 2
√

2p,
which is true, because p ≥ 3. In the case k ≥ 2 and a ≤ k or a ≥ k + 1, we obtain
τ(4pa) = 3(a + 1) ≤

√
4pa · 4pk = 4p

a+k
2 . This inequality is true, because p ≥ 3 and

accordance with the above.
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Using the fact that the arithmetic functions τ and γk are multiplicative, it follows
that √

nγk(n) ≥ τ(n) for any n ≥ 1, n 6= 4 and k ≥ 1.

Thus, the proof is completed. ¤
Acknowledgments. We thank the reviewers for suggestions leading to the im-

provement of the first version of this paper.
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500068, Braşov, Romania,
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