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Note on tense SHn–algebras

Aldo V. Figallo and Gustavo Pelaitay

Abstract. In this article, we continue the study of tense SHn–algebras [5]. These algebras
constitute a generalization of tense ÃLukasiewicz–Moisil algebras [4]. In particular, we describe
a discrete duality for tense SHn–algebras bearing in mind the results indicated by OrÃlowska
and Rewitzky in [13], for SHn–algebras. In addition, we introduce a propositional calculus
and prove this calculus has tense SHn–algebras as algebraic counterpart. Finally, the duality
mentioned above allowed us to show the completeness theorem for this calculus.
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1. Introduction

Classical tense logic is a logical system obtained from bivalent logic by adding the
tense operators G (it is always going to be the case that) and H (it has always been
the case that)(see [1, 10]). Starting with other logical systems and adding appropiate
tense operators, we produce new tense logics (see [2, 3, 4]).

On the other hand, the propositional SHn–logics were introduced by Iturrioz in
[7]. In [7], she gave a lattice–based semantics for these logics, by means of symmetrical
Heyting algebras of order n, or for short SHn–algebras. There are two motivations
for the study of SHn–logics and SHn–algebras. On the one hand, SHn–algebras are
intended to provide an exact algebraic approach to the n–valued counterpart of the
symmetrical modal propositional calculus introduced by Moisil in 1942. The symmet-
rical modal propositional calculus is obtained by the addition of one unary connective
(a negation, characterized by the double negation law and the contraposition rule)
to the alphabet of the intuitionistic propositional calculus. On the other hand, it
has been shown that Post and ÃLukasiewicz–Moisil algebras are both Heyting algebras
with operators. In both ÃLukasiewicz–Moisil and Post algebras a symmetry can be
expressed in terms of the primitive operations [11, 12], cf. also [8]. This led to the
study of more general algebras, called SHn–algebras [7, 8], which are Heyting alge-
bras with a symmetry and which, in addition, have n−1 unary operations that satisfy
certain properties, or, alternatively, can be seen as ÃLukasiewicz–Moisil algebras with
a generalized negation [8]. In [9], Iturrioz and OrÃlowska give a completeness theorem
for SHn–logics with respect to a Kripke–style semantics. Also a discrete duality for
SHn–algebras is given by OrÃlowska and Rewitzky in [13].

This paper is devoted to the tense propositional SHn–calculus, a logical system
obtained from the propositional SHn–logic by adding the tense operators G and H.
The algebraic basis of this logic consists of tense SHn–algebras, algebraic structures
studied in our paper [5].
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2. Preliminaries

SHn–logics were introduced by Iturrioz [7] and further studied by other authors
[9, 16]. The language of SHn–logics is a propositional language, whose formulae are
built from propositional variables taken from a set V , with operations ∨ (disjunction),
∧ (conjunction), → (intuitionistic implication), ∼,¬ (a De Morgan, resp. an intu-
itionistic negation), and a family {Si : i = 1, . . . , n − 1} of unary operations (which,
intuitively, represent degrees of truth). The following Hilbert style axiomatization of
SHn–logics is given in [7].

Axioms:
(A1) α → (β → α)
(A2) (α → (β → γ)) → ((α → β) → (α → γ))
(A3) (α ∧ β) → α
(A4) (α ∧ β) → β
(A5) (α → β) → ((α → γ) → (α → (β ∧ γ)))
(A6) α → (α ∨ β)
(A7) β → (α ∨ β)
(A8) (α → γ) → ((β → γ) → ((α ∨ β) → γ))
(A9) ∼∼ α ↔ α

(A10) Si(α ∧ β) ↔ Si(α) ∧ Si(β)
(A11) Si(α → β) ↔ (

∧n
k=i Sk(α) → Sk(β))

(A12) Si(Sj(α)) ↔ Sj(α), for every i, j = 1, . . . , n− 1
(A13) S1(α) → α
(A14) Si(∼ α) ↔∼ Sn−i(α), for i = 1, . . . , n− 1
(A15) S1(α) ∨ ¬S1(α),

where ¬α = (α →∼ (α → α) and α ↔ β is an abbreviation for (α → β) ∧ (β → α).
Inference rules:

(R1)
α, α → β

β
(R2)

α → β

∼ β →∼ α
(R3)

α → β

S1α → S1β
.

The SHn–algebras constitute the algebraic counterpart of the SHn–logics. The
Lindembaum–Tarski algebra of the SHn–logics is an SHn–algebra (see [7], p. 300).

We shall recall the definition of SHn–algebras.

Definition 2.1. A symmetrical Heyting algebra of order n (SHn–algebra for short) is
an algebra (W,∨,∧,→,∼, {Si}n−1

i=1 , 0, 1) where (W,∨,∧,→, 0, 1) is a Heyting algebra
and the unary operations ∼ and Si (for i = 1, · · · , n−1) satisfy the following axioms:
(n1) ∼∼ x = x,
(n2) ∼ (x ∨ y) =∼ x∧ ∼ y,
(S1) Si(x ∧ y) = Si(x) ∧ Si(y),
(S2) Si(x → y) =

∧n
k=i(Sk(x) → Sk(y)),

(S3) Si(Sj(x)) = Sj(x), for every i, j = 1, . . . , n− 1,
(S4) S1(x) ∨ x = x,
(S5) Si(∼ x) =∼ Sn−i(x), for i = 1, . . . , n− 1,
(S6) S1(x) ∨ ¬S1(x) = 1, with ¬x = x → 0.

In [13], OrÃlowska and Rewitzky introduced the notion of SHn–frame as a structure
(X ≤, N, {si}n−1

i=1 ), where X is a non–empty set, ≤ is a quasi–order on X and N and
si (for i = 1, . . . , n− 1) are functions on X satisfying, for any x, y ∈ X,

(N1) x ≤ y implies N(y) ≤ N(x),
(N2) N(N(x)) = x,
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(s1) N(si(x)) = sn−i(N(x)), i = 1, · · · , n− 1,
(s2) sj(si(x)) = sj(x), i, j = 1, · · · , n− 1,
(s3) s1(x) ≤ x,
(s4) x ≤ sn−1(x),
(s5) si(x) ≤ sj(x) for i ≤ j,
(s6) x ≤ y implies si(x) ≤ si(y) and si(y) ≤ si(x), i = 1, · · · , n− 1,
(s7) si(y) ≤ y and y ≤ si(y) imply si(y) = y, i = 1, · · · , n− 1,
(s8) x ≤ si(x) or si+1(x) ≤ x, i = 1, · · · , n− 2, n ≥ 3.

Let T be a binary relation on a set X and let A be a subset of X. In what follows
we will denote by [T ]A the set {x ∈ X : for all y, x T y implies y ∈ A}.

Recall that, the complex algebra of an SHn–frame (X ≤, N, {si}n−1
i=1 ) is

(C(X),∨c,∧c,→c,∼c, {Sc
i }n−1

i=1 , 0c, 1c)

where C(X) = {A ⊆ X : [≤]A = A}, 0c = ∅, 1c = X, A∨c B = A∪B, A∧c B = A∩B,
A →c B = [≤]((X \ A) ∪ B), ∼c A = {x ∈ X : N(x) /∈ A} and Sc

i (A) = {x ∈ X :
si(x) ∈ A}, for all A,B ∈ C(X).

On the other hand, the canonical frame of an SHn–algebra (W,∨,∧,→,∼, {Si}n−1
i=1 ,

0, 1) is
(X (W ),≤c, N c, {sc

i}n−1
i=1 )

where X (W ) is the set of all prime filters of W , ≤c is ⊆ and for every F ∈ X (W ),
N c(F ) = {a ∈ W :∼ a /∈ F}, sc

i (F ) = {a ∈ W : Si(a) ∈ F}, i = 1, · · · , n− 1.
These results allowed them to obtain a discrete duality for SHn–algebras by defin-

ing the embeddings as follows:
(E1) h : W → C(X (W )), defined by h(a) = {F ∈ X (W ) : a ∈ F}, for any a ∈ W,
(E2) k : X → X (C(X)), defined by k(x) = {A ∈ C(X) : x ∈ A}, for any x ∈ X.

3. Tense SHn–algebras

In this section we shall recall the definition and basic results on tense SHn–algebras
from [5].

Definition 3.1. A tense SHn–algebra is an algebra (W,∨,∧,→,∼, {Si}n−1
i=1 , G, H, 0, 1),

where the reduct (W,∨,∧,→,∼, {Si}n−1
i=1 , 0, 1) is an SHn–algebra and G, H are unary

operators on W verifying the following conditions:
(T1) G(1) = 1, H(1) = 1,
(T2) G(x ∧ y) = G(x) ∧G(y), H(x ∧ y) = H(x) ∧H(y),
(T3) x ≤ G(∼ H(∼ x)), x ≤ H(∼ G(∼ x)),
(T4) Si(G(x)) = G(Si(x)), Si(H(x)) = H(Si(x)), for i = 1, . . . , n− 1.

Remark 3.1. (i) From (T2) it follows that G and H are increasing.
(ii) If (W,∨,∧,→,∼, {Si}n−1

i=1 , G,H, 0, 1) is a tense SHn–algebra in which satisfies
the identity (x∧ ∼ x)∨ (y∨ ∼ y) = y∨ ∼ y, then (W,∨,∧,∼, {Si}n−1

i=1 , G,H, 0, 1)
is a tense ÃLukasiewicz–Moisil algebra.

Lemma 3.1. Let G, H be two unary operations on an SHn–algebra W such that
G(1) = 1, H(1) = 1. Then condition (T2) is equivalent to the following one:

(T2)′ G(x → y) ≤ G(x) → G(y), H(x → y) ≤ H(x) → H(y).

Proof. We will only prove the equivalence between (T2) and (T2)′ in the case of G.
From (T2) and (i) in Remark 3.1, we have that G(x) ∧ G(x → y) = G(x ∧ (x →
y)) = G(x ∧ y) ≤ G(y). Therefore, G(x → y) ≤ G(x) → G(y). Conversely, let
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x, y ∈ W be such that x ≤ y. Then, x → y = 1 and so, from (T2)′ and the
hypothesis, we obtain that 1 = G(x → y) ≤ G(x) → G(y). Hence, G(x) ≤ G(y)
from which we get that G is increasing. This last assertion and (T2)′ we infer that
G(x) ≤ G(y → (x ∧ y)) ≤ G(y) → G(x ∧ y). Thus, G(x) ∧ G(y) ≤ G(x ∧ y).
From this statement and taking into account that G is increasing we conclude that
G(x) ∧G(y) = G(x ∧ y). ¤

Thus, if in Definition 3.1 we replace the axiom (T2) by (T2)′, we obtain an equiv-
alent definition of tense SHn–algebras.

4. A discrete duality for SHn–algebras

In this section, we describe a discrete duality for tense SHn–algebras bearing in
mind the results indicated in Section 2 for SHn–algebras. To this end, we introduce
the following

Definition 4.1. A tense SHn–frame is a structure (X,≤, N, {si}n−1
i=1 , R, Q) where

(X,≤, N, {si}n−1
i=1 ) is an SHn–frame, R, Q are binary relations on X and the following

conditions are satisfied:
(K1) (≤ ◦R◦ ≤) ⊆ R,
(K2) (≤ ◦Q◦ ≤) ⊆ Q,
(K3) x R N(y) if and only if y QN(x),
(K4) x RT y implies si(x) RT si(y) for T = G and T = H,
(K5) si(z)RT y implies that there is x ∈ X such that z RT x and si(x) ≤ y for T = G

and T = H.

In what follows, tense SHn–frames will be denoted simply by X when no confusion
may arise.

Definition 4.2. A canonical frame of a tense SHn–algebra (W,∨,∧,→,∼, {Si}n−1
i=1 , G,

H, 0, 1) is a structure (X (W ),≤c, N c, {sc
i}n−1

i=1 , Rc, Qc), where (X (W ),≤c, N c, {sc
i}n−1

i=1 )
is the canonical frame of the reduct (W,∨,∧,→,∼, {Si}n−1

i=1 , 0, 1) and the following
conditions are verified for P, F ∈ X (W ) :
(F1) PRcF if and only if G−1(P ) ⊆ F,
(F2) PQcF if and only if H−1(P ) ⊆ F.

Lemma 4.1. The canonical frame of a tense SHn–algebra is a tense SHn–frame.

Proof. Taking into account the results established in [13], we only have to prove
(K1)− (K5).
(K1): Let (P, F ) ∈ (≤c ◦Rc◦ ≤c). Then there exist T, S ∈ X (W ) such that P ⊆ T ,
TRcS and S ⊆ F. From the last two assertions we have that G−1(T ) ⊆ F . Therefore,
since P ⊆ T we infer that P Rc F .
(K2): It is proved in a similar way to (K1).
(K3): Let F RcN c(P ) and a ∈ H−1(P ). Suppose that ∼ a ∈ F . On the other hand,
from (T3) we have that ∼ a ≤ G(∼ H(a)) and so, we get that G(∼ H(a)) ∈ F . From
this last assertion and the fact that G−1(F ) ⊆ N c(P ), we obtain ∼ H(a) ∈ N c(P ).
Hence, H(a) /∈ P which is a contradiction. Therefore, a ∈ N c(F ) from which we
conclude that PQcN c(F ). The converse is proved similarly.
(K4): It is a direct consequence of (F1), (F2) and (T4).
(K5): Let G−1(sc

i (F )) ⊆ P and considering E = {z ∈ W : G(z) ∈ F}, then we
have that

∧
I 6≤ ∨

J , for all finite subsets I ⊆ E, J ⊆ Si(W \ P ). Indeed: Suppose
that there is I ⊆ E, J ⊆ Si(W \ P ) finite subsets such that

∧
I ≤ ∨

J . From
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this last assertion and (T2) we infer that G(
∧

I) ∈ F . Since, G is increasing we
obtain that G(

∨
J) ∈ F . On the other hand, it is straightforward to prove that∨

J ∈ Si(W \P ). From this last assertion, there is a ∈ W \P such that Si(a) =
∨

J .
Hence, G(Si(a)) ∈ F . Then, from (T4) we have deduced that a ∈ P , which is a
contradiction. Therefore E is separated (see [6, p. 185]) from Si(W \ P ), then from
[6, p. 186], there is Z ∈ X (W ) such that E ⊆ Z and Z ∩ Si(W \ P ) = ∅. This last
assertion allows us to conclude that sc

i (Z) ⊆ P and F Rc Z. Similarly, it is proved
(K5) for T = H. ¤
Definition 4.3. The complex algebra of a tense SHn–frame (X,≤, N, {si}n−1

i=1 , R, Q)
is (C(X),∨c,∧c,→c,∼c, {Sc

i }n−1
i=1 , Gc,Hc, 0c, 1c, ), where the reduct (C(X),∨c,∧c,→c

,∼c, {Sc
i }n−1

i=1 , 0c, 1c) is the complex algebra of the SHn–frame (X,≤, N, {si}n−1
i=1 ),

Gc(A) = [R]A and Hc(A) = [Q]A, for all A ∈ C(X).

Lemma 4.2. The complex algebra of a tense SHn–frame is a tense SHn–algebra.

Proof. From [13], C(X) is closed under the lattice operations, ∼c, →c and {Sc
i }n−1

i=1 .
Now, we show that it is also closed under Gc i.e., GcA = [≤]GcA. From the reflexivity
of ≤, we have that [≤]GcA ⊆ GcA. Assume that x ∈ GcA. Let y ∈ X be such that
x ≤ y and take any z ∈ X verifying yRz. Hence, from the reflexivity of ≤ and (K1)
we infer that xRz. So, z ∈ A and therefore, x ∈ [≤]GcA. Thus, GcA ⊆ [≤]GcA.
Similarly, it is proved that HcA = [≤]HcA. On the other hand, clearly (T1) and
(T2) are verified. Therefore, it only remains to prove (T3) and (T4).
(T3): Let x ∈ A and suppose that x /∈ Gc(∼c Hc(∼c A)). Then there is y such
that xRy and y /∈∼c Hc(∼c A). From this last statement, y ∈ N(Hc(∼c A)) and
so, y = N(z) for some z ∈ Hc(∼c A). Hence, xRN(z) and from (K3) we get that
zQN(x). This assertion and the fact that z ∈ Hc(∼c A) enable us to infer that
N(x) /∈ N(A), which is a contradiction. So, A ⊆ Gc(∼c Hc(∼c A)). Analogously, it
is proved that A ⊆ Hc(∼c Gc(∼c A)).
(T4): Let si(y) ∈ [R]A and yRx. Then, from (K4) we have that si(y) R si(x). From
this last assertion we infer that si(x) ∈ A. Therefore, Sc

i ([R]A) ⊆ [R]Sc
i (A). On the

other hand, let z ∈ [R](Sc
i (A)) and si(z)R y. Then by virtue of (K5), there is x ∈ X

such that z R x and si(x) ≤ y. This last assertion allows us to conclude that y ∈ A.
Similarly, it is proved that Sc

i [Q](A) = [Q]Sc
i (A).

¤
Theorem 4.1. Every tense SHn–algebra is embeddable into the complex algebra of
its canonical frame.

Proof. Let us consider the function h : W → C(X (W )) defined by h(a) = {P ∈
X (W ) : a ∈ P}, for all a ∈ W . Let F ∈ h(G(a)); then G(a) ∈ F . Suppose that
P ∈ X (W ) verifies that FRcP . Then from (F1), G−1(F ) ⊆ P and so, a ∈ P .
Therefore, F ∈ Gc(h(a)) from which we infer that h(G(a)) ⊆ Gc(h(a)). Conversely,
assume that F ∈ Gc(h(a)). Then for every P ∈ X (W ), FRcP implies that P ∈ h(a).
Suppose that G(a) /∈ F . Then G−1(F ) is a filter and a /∈ G−1(F ). Hence, there is
T ∈ X (W ) such that a /∈ T and G−1(F ) ⊆ T . This last assertion and (F1) allow us
to conclude that FRcT . From this statement we have that T ∈ h(a) and so, a ∈ T ,
which is a contradiction. Therefore, h(G(a)) = Gc(h(a)). Similarly, it is shown that
h(H(a)) = Hc(h(a)). Thus, by virtue of the results established in [13] the proof is
completed. ¤

Lemma 4.3 will show that the order–embedding k : X → X (C(X)) defined by
k(x) = {A ∈ C(X) : x ∈ A} for every x ∈ X preserves the relations R and Q.
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Lemma 4.3. Let (X,≤, N, {si}n−1
i=1 , R,Q) be a tense SHn–frame and let x, y ∈ X.

Then
(i) xRy if and only if k(x)Rck(y),
(ii) xQy if and only if k(x)Qck(y).

Proof. We will only prove (i). Assume that xRy and suppose that A ∈ C(X) verifies
Gc(A) ∈ k(x). Then it is easy to see that y ∈ A and so, k(x)Rck(y). Conversely,
let x, y ∈ X be such that k(x)Rck(y). Then Gc−1(k(x)) ⊆ k(y). On the other hand,
note that [≤](X \ (y]) ∈ C(X) and y /∈ [≤](X \ (y]). Thus, [≤](X \ (y]) /∈ k(y) and so,
[≤](X \ (y]) /∈ Gc−1(k(x)). Therefore, [R]([≤](X \ (y])) /∈ k(x) from which we infer
that x /∈ [R]([≤](X \ (y])). Then there is z such that xRz and z /∈ [≤](X \ (y]). From
this last assertion there is w such that z ≤ w and w ≤ y, which allow us to infer that
z ≤ y. Hence, by virtue of the reflexivity of ≤ and (K1), xRy as required. ¤

Lemma 4.3 and the results indicated in [13] enable us to conclude

Theorem 4.2. Every tense SHn–frame is embeddable into the canonical frame of its
complex algebra.

Theorems 4.1 and 4.2 enable us to obtain a discrete duality for tense SHn–algebras.

5. A propositional calculus based on tense SHn–algebras

In this section, we will describe a propositional calculus that has tense SHn–
algebras as the algebraic counterpart. The terminology and symbols used here coin-
cide in general with those used in [14].

Let L = (A0, For[V ]) be a formalized language of zero order, where in the alphabet
A0 = (V, L0, L1, L2, U) the set
• V of propositional variables is enumerable,
• L0 is empty,
• L1 contains n+2 elements denoted by ∼, Si (for i = 1, · · · , n−1), G and H called

negation sign, modal operators signs and tense operators signs, respectively,
• L2 contains three elements denoted by ∨, ∧, →, called disjunction sign, con-

junction sign and implication sign, respectively,
• U contains two elements denoted by (, ).
For any α, β in the set For[V ] of all formulas over A0, instead of α →∼ (α → α),

(α → β) ∧ (β → α), ∼ G ∼ α and ∼ H ∼ α we will write for brevity ¬α, α ↔ β, Fα
and Pα, respectively.

We assume that the set Al of logical axioms consists of all formulas of the following
form, where α, β, γ are any formulas in For[V ]:

(M0) the axioms of the SHn–logic, i.e., the axioms (A1)-(A15) indicated in Section 2,
(M1) G(α → β) → (Gα → Gβ), H(α → β) → (Hα → Hβ),
(M2) α → GPα, α → HFα,
(M3) SiGα ↔ GSiα, SiHα ↔ HSiα.

The consequence operation CL in L is determined by Al and by the following rules
of inference:

(R1)
α, α → β

β
(R2)

α → β

∼ β →∼ α
(R3)

α → β

S1α → S1β
(R4)

α

Hα
(R5)

α

Gα
.

The system T SHn = (L, CL) thus obtained will be called the tense propositional
SHn–calculus. We will denote by T the set of all formulas derivable in T SHn. If α
belongs to T we will write ` α.

Let ≈ be the binary relation on For[V ] defined by
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α ≈ β if and only if ` α ↔ β.
Then it is easy to check that ≈ is a congruence relation on (For[V ],∨,∧,→,∼

, {Si}n−1
i=1 , G,H) and T determines an equivalence class which we will denote by 1.

Moreover, taking into account [7], p. 300 it is straightforward to prove

Theorem 5.1. (For[V ]/ ≈,∨,∧,→,∼, {Si}n−1
i=1 , G,H, 0, 1) is a tense SHn–algebra,

being 0 =∼ 1.

Definition 5.1. A tense SHn–model based on a tense SHn–frame K = (X,≤
, N, {si}n−1

i=1 , R,Q) is a system M = (K, m) such that m : V → P(X) is a mean-
ing function that assigns subsets of states to propositional variables, i.e. satisfies the
following condition:

(her) x ≤ y and x ∈ m(p) imply y ∈ m(p).

Definition 5.2. A tense SHn–model M = ((X,≤, N, {si}n−1
i=1 , R, Q); m) satisfies a

formula α at the state x and we write M |=x α, if the following conditions are satisfied:
• M |=x p if and only if x ∈ m(p) for p ∈ V ,
• M |=x α ∨ β if and only if M |=x α or M |=x β,
• M |=x α ∧ β if and only if M |=x α and M |=x β,
• M |=x∼ α if and only if M 6|=N(x) α,
• M |=x α → β if and only if for all y, if x ≤ y and M |=y α then M |=y β,
• M |=x ¬α if and only if for all y, if x ≤ y then M 6|=y α,
• M |=x Siα if and only if M |=si(x) α,
• M |=x Gα if and only if for all y, if xRy then M |=y α,
• M |=x Hα if and only if for all y, if xQy then M |=y α.

A formula α is true in a tense SHn–model M (denoted by M |= α) if and only if
for every x ∈ W , M |=x α. The formula α is true in a tense SHn–frame K (denoted
by K |= α) if and only if it is true in every tense SHn–model based on K. The
formula α is valid if and only if it is true in every tense SHn–frame.

Proposition 5.1. Given a tense SHn–model M = (K, m), the meaning function m
can be extended to all formulae by m(α) = {x ∈ X : M |=x α}. For every tense
SHn–model M and for every formula α, this extension has the property

(her) if x ≤ y and x ∈ m(α) then y ∈ m(α).

Proof. The proof is by induction with respect to complexity of α. By way of an
example we show (her) for formulas of the form Gα. Let (1) x ≤ y and (2) M |=x G(α).
Suppose that yRz, then by (1),(2) and (K1), we have M |=z α. ¤
Theorem 5.2. (Completeness Theorem) Let α be a formula in T SHn. Then the
following conditions are equivalent:
(i) α is derivable in T SHn,
(ii) α is valid.

Proof. (i) ⇒ (ii): We proceed by induction on the complexity of the formula α. For
example, we shall prove that the axioms (M2) and (M3) are valid. Let K = (X,≤
, N, {si}n−1

i=1 , R,Q) be a tense SHn–frame and M a tense SHn–model based on K.
(M2) α → HFα is valid. Indeed:

(1) Let y ∈ X be such that x ≤ y, [hip.]
(2) M |=y α, [hip.]
(3) Let z ∈ X be such that y Q z, [hip.]

Suppose that
(4) M |=N(z) G ∼ α, [hip.]
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(5) N(z)R N(y), [(3),(K3)]
(6) M |=N(y)∼ α, [(4),(6)]
(7) M 6|=x α. [(6)]

(7) contradicts (2). Then
(8) M 6|=N(z) G ∼ α, [(4),(7)]
(9) M |=z∼ G ∼ α, [(8)]

(10) M |=y H ∼ G ∼ α, [(3),(9)]
(11) M |=x α → H ∼ G ∼ α. [(1),(2),(10)]

In a similar way we can prove that α → GPα is valid.
(M3) SiGα ↔ GSiα is valid. Indeed:

(1) Let y ∈ X be such that x ≤ y, [hip.]
(2) M |=y SiGα, [hip.]
(3) Let z ∈ X be such that y R z, [hip.]
(4) si(y) R si(z), [(3),(K4)]
(5) M |=si(z) α, [(2),(4)]
(6) M |=z Siα, [(5)]
(7) M |=y GSiα, [(3),(6)]
(8) M |=x SiGα → GSiα, [(2),(7)]

On the other hand
(9) Let y ∈ X be such that x ≤ y, [hip.]

(10) M |=y GSiα, [hip.]
(11) Let z ∈ X be such that si(y) R z, [hip.]
(12) there is w ∈ X such that y R w and si(w) ≤ z, [(11),(K5)]
(13) M |=si(w) α, [(10),(12)]
(14) M |=z α. [(12),(13),(her)]
(15) M |=y SiGα, [(11),(14)]
(16) M |=x GSiα → SiGα. [(9),(10),(15)]

Therefore, SiGα ↔ GSiα is valid. Analogously we can prove that SiHα ↔ HSiα
is valid.
(ii) ⇒ (i): Assume that α is not derivable, i.e. [α]≈ 6= 1. We apply Theorem
4.1 to the tense SHn–algebra For[V ]/ ≈, hence there exists a tense SHn–frame
X (For[V ]/ ≈) and an injective morphism of tense SHn–algebras h : For[V ]/ ≈→
C(X (For[V ]/ ≈)). Let us consider the function m : T SHn → C(X (For[V ]/ ≈))
defined by m(α) = h([α]≈) for all α ∈ For[V ]. It is straightforward to prove that m
is an meaning function. Since h is injective, m(α) = h([α]≈) 6= X (For[V ]/ ≈), i.e.
(X (For[V ]/ ≈),m) 6|=xo α for some xo ∈ X (For[V ]/ ≈). Thus α is not valid. ¤
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