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Upper Bounds on the Order of Nearly Regular Induced
Subgraphs in Random Graphs
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Abstract. Finding the order of a largest induced regular subgraph in every graph on n
vertices was posed long ago by Erdős, Fajtlowicz and Staton. Motivated by this problem
and recent investigation in random graphs, we consider the order of nearly regular induced
(bipartite) subgraphs in Erdős-Rényi random graph G(n, 1/2) and random bipartite graph
G(n, m, 1/2). We obtain comparable upper bounds by using combinatorial and probabilistic
techniques.
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1. Introduction

An old problem of Erdős, Fajtlowicz and Staton (c.f. [4] and [3, p. 85]) asks for
the order of a largest induced regular subgraph that can be found in every graph on
n vertices. They conjecture that the quantity in question is ω(lnn), which has not
been completely settled so far. By the known estimates for graph Ramsey numbers
[7], every graph on n vertices contains either a clique or an independent set of order
Ω(lnn), providing a trivial lower bound for the problem. An upper bound of order
O(n1/2 ln3/4 n) has recently been obtained in [1].

Given the notorious difficulty of the problem, it is natural to study the asymptotic
behavior of this graph theoretic parameter for a typical graph on n vertices, that is,
in the Erdős-Rényi random graph model G(n, p) with edge density p = 1/2 (see e.g.
[8]). It is shown that the random graph G(n, 1/2) almost surely contains no induced
regular subgraphs on cn/ ln n vertices for some constant c > 0. An improvement has
recently been made in the work [9], where the authors take the upper bound down to
2n2/3.

In this paper, to extend the above asymptotic upper bounds, we analyze the order
of nearly regular induced subgraphs in random graph G(n, 1/2) and another classical
random graph model G(n,m, 1/2), the bipartite counterpart. For some recent pro-
gresses of random bipartite graphs, we mention the works [5, 11, 13]. Without loss
of generality, we suppose that m ≤ n throughout the paper. We define the nearly
regular graph as follows (a different but less technical definition can be found in [1])

Definition 1.1. A graph G = (V,E) with |V | = n is (c, ε)-nearly regular if there is
some constant c ≥ 0, a set V1 ⊆ V with |V1| = O(nε), 0 < ε < 1, and r = r(n) ≥ 0
such that

di = r for vi ∈ V \V1 and |di − r| ≤ c for vi ∈ V1,

where di is the degree of vertex vi.
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Observe that V1 serves as an exceptional set and that a (0, ε)-nearly regular graph
is clearly a strictly r-regular graph.

The rest of the paper is organized as follows. We present our main results in Section
2. In Section 3, we give the proofs. Finally, we conclude the paper in Section 4.

2. Upper Bounds in Random (Bipartite) Graphs

The following result provides an upper bound of the order of nearly regular induced
subgraphs in random graph G(n, 1/2).

Theorem 2.1. Let δ ≥ 2/3 and δ > ε. Then almost surely every induced (c, ε)-nearly
regular subgraph of G(n, 1/2) has at most 2nδ vertices.

In particular, if δ = 2/3 and c = 0, Theorem 2.1 reproduces the upper bound
derived in [9, Theorem 1.1], which is mentioned in Section 1.

Recall that a balanced bipartite graph is a bipartite graph with two partition
parts having equal cardinality. The analogous bound for random bipartite graph
G(n,m, 1/2) is the following.

Theorem 2.2. Let δ > ε and n ≥ m = Ω(nδ). Then almost surely every induced
(c, ε)-nearly regular balanced bipartite subgraph of G(n,m, 1/2) has at most Θ(nδ)
vertices.

In the above statement we only consider bipartite subgraphs since the two indepen-
dent sets (i.e. the bipartition sets) in a bipartite graph are trivial regular subgraphs.
In addition, if a bipartite graph is regular, then it must be balanced. Hereby, we only
treat balanced bipartite subgraphs.

3. Proofs

In this section, we provide the proofs of Theorem 2.1 and 2.2 with a similar line of
reasoning in [9]. We show the results through a series of lemmas.

We will use Landau notations (e.g. [8]) for asymptotic behavior, such as O, o, Ω,∼,
etc., when the underlying parameter tends to infinity. Let G(d) denote the number
of labeled simple graphs on k vertices with degree sequence d = (d1, d2, · · · , dk),
with the degree of vertex vi being di. The following lemma is a useful asymptotic
enumeration result.

Lemma 3.1. ([10]) Let dj = dj(k), 1 ≤ j ≤ k be integers such that
k∑

j=1

dj = λk(k−1)

is an even integer where 1/3 < λ < 2/3, and |λk− dj | = O(k1/2+ε) uniformly over j,
for some sufficiently small fixed ε > 0. Then

G(d) = f(d)(λλ(1− λ)1−λ)(
k
2)

k∏

j=1

(
k − 1
dj

)
(1)

where f(d) = O(1), and if max
j
{|λk − dj |} = o(

√
k), then f(d) ∼ √

2e1/4, uniformly

over the choice of such a degree sequence d.

For an integer k > 0, let l(k) be the largest even integer not over (k−1)/2. Denote
the probability pk = P (G(k, 1/2) is l(k)-regular). To prove Theorem 2.1 we will need
the following lemma.
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Lemma 3.2. ([9]) For every degree sequence d = (d1, · · · , dk) we have

P (G(k, 1/2) has degree sequence d) = O(pk) = O
(
((1 + o(1))

√
πk/2)−k

)
.

Noting that pk = G(d)2−(k
2) where di = l(k) for 1 ≤ i ≤ k, we can prove the above

lemma by employing Lemma 3.1.

Proof of Theorem 2.1. By Lemma 3.2, it follows that the probability that a fixed set
V0 of k vertices spans a (c, ε)-nearly regular subgraph in G(n, 1/2) is O

(
k
(

k
nε

)
(2c)nε

pk

)
.

Hence, the probability that G(n, 1/2) contains an induced (c, ε)-nearly regular sub-
graph on at least 2nδ vertices is

n∑

k=2nδ

(
n

k

)
O

(
k

(
k

nε

)
(2c)nε

pk

)

≤
n∑

k=2nδ

(en

k

)k

k
(ek

nε

)nε

(2c)nε(
(1 + o(1))

√
πk/2

)−k (2)

by using the Stirling formula.
Since the first and last terms after the summation sign on the right-hand side of

(2) are decreasing with k, we obtain that (2) is bounded above by

n∑

k=2nδ

k
(ek

nε

)nε

(2c)nε

(
(1 + o(1))

√
2en√

π(2nδ)3/2

)2nδ

=
(2ce

nε

)nε( n∑

k=2nδ

k1+nε
)

·
( e

2
√

πn3δ/2−1

)2nδ

≤ nnε+2
(2ce

nε

)nε( e

2
√

πn3δ/2−1

)2nδ

= O

(
(2ce)nε

n(1−ε)nε+2

·
( e

2
√

πn3δ/2−1

)2nδ)
. (3)

Since e < 2
√

π and by our assumptions in Theorem 2.1, we have the right-hand side
of (3) tends to 0 as n →∞. The proof is then complete. ¤

Next, we analyze the order of induced subgraphs in random bipartite graph model
G(n,m, 1/2). For a bipartite graph, throughout the paper we label the vertices in
one of its independent set by {v2k−1}k≥1 and the other by {v2k}k≥1. Similarly, let
G(d) denote the number of labeled simple graphs on 2k vertices with degree sequence
d = (d1, d2, · · · , d2k).

For an integer k > 0, let l̃(k) be the largest even integer not over (2k−1)/2. Denote
the probability p̃k = P (G(k, k, 1/2) is l̃(k)-regular). Clearly, p̃k = G(d)2−k2

, with all
di being set equal to l̃(k). The following lemma is a consequence of Lemma 3.1.

Lemma 3.3.

p̃k =
(
(1 + o(1))2−k/2

√
πk

)−2k
and p̃k−1/p̃k = Θ(k).
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Proof. Replacing k with 2k in Lemma 3.1, taking λ = 1/2 and dj = l̃(k) for 1 ≤ j ≤
2k, we derive that

p̃k = (1 + o(1))
√

2e1/42−k2−(2k
2 )

(
2k − 1
l̃(k)

)2k

= (1 + o(1))
√

2e1/42−3k2
( 22k

√
πk

)2k

=
(
(1 + o(1))2−k/2

√
πk

)−2k

by utilizing the Stirling formula. Therefore, it is routine to check that p̃k−1/p̃k = Θ(k)
holds. ¤

We will also need the following lemma to prove Theorem 2.2.

Lemma 3.4. For every degree sequence d = (d1, · · · , d2k) we have

P (G(k, k, 1/2) has degree sequence d) = O
(
p̃k(
√

πk)k2k2/2+k
)
.

Proof. Let d be a degree sequence of length 2k for which G(d) is maximal. Therefore,
d is the most likely degree sequence in G(k, k, 1/2). Consider the following two cases
separately.

Case 1: For all i, |di − k/2| ≤ Θ(k1/2+ε) for some fixed ε > 0.
Therefore, by Lemma 3.1 we get

P (G(k, k, 1/2) has degree sequence d) =
G(d)
2k2

= O

(
2−k2−(k

2)
(

k − 1
k/2

)k)

= O

(
2−k2/2+k(

√
πk)−k

)

= O
(
p̃k(
√

πk)k2k2/2+k
)
.

Case 2: There exists some di, say d2k, satisfying |d2k − k/2| > Θ(k1/2+ε) for some
fixed ε > 0.

Then we expose the edges from vertex v2k to the rest of the graph. Since d2k obeys
the binomial distribution Bin(k, 1/2), we have

P (|d2k − k/2| > Θ(k1/2+ε)) ≤ 2e−2k2ε/3 (4)

by a standard concentration inequality (c.f. [8] pp.27). Write

P (G(k, k, 1/2) has degree sequence d) = akp̃k.

Recall the labels of the vertices, and the edges exposed induce a new degree sequence
on vertices 1, · · · , 2k − 2. Hence, the probability that the random bipartite graph
G(k − 1, k − 1, 1/2) has this degree sequence is at most ak−1p̃k−1 in our notation.
Accordingly, from (4) we have akp̃k ≤ ak−1p̃k−1O(e−k2ε

). Dividing p̃k on both sides,
we have ak ≤ ak−1O(e−kε

) by Lemma 3.3. Induction starting from some k0 for which
the above factor O(e−kε

) ≤ 1 yields ak ≤ ak0 . The proof is then complete. ¤

Proof of Theorem 2.2. By Lemma 3.4, it follows that the probability that a fixed
set V1 ∪ V2 with |V1| = |V2| = k vertices spans a (c, ε)-nearly regular subgraph
in G(n,m, 1/2) is O

(
k
(
2k
nε

)
(2c)nε

p̃k(
√

πk)k2k2/2+k
)
. Therefore, the probability that
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G(n,m, 1/2) contains an induced (c, ε)-nearly regular balanced bipartite subgraph on
at least Θ(nδ) vertices is given by

m∑

k=Θ(nδ)

(
n

k

)(
m

k

)
O

(
k

(
2k

nε

)
(2c)nε

p̃k(
√

πk)k2k2/2+k

)

= O

( n∑

k=Θ(nδ)

(en

k

)2k

k
(2ek

nε

)nε

(2c)nε

2−k2/2+k(
√

πk)−k

)

= O

((2ce

nε

)nε n∑

k=Θ(nδ)

k1+nε
(e2n221−k/2

√
πk5/2

)k
)

(5)

using Lemma 3.3 and the Stirling formula.
With the similar reasoning in the proof of Theorem 2.1, the right-hand side of (5)

is bounded above by

O

((2ce

nε

)nε

nnε+2
(e2n221−nε

√
πn5δ/2

)nδ)

= O

(
(2ce)nε

n(1−ε)nε+2
( 2e2

2nδ√πn5δ/2−2

)nδ)
. (6)

Since δ > ε and 2e2 < 2nδ

n5δ/2−2 for any δ > 0, (6) tends to 0 as n →∞. The proof
is complete. ¤

4. Concluding Remarks

In this paper, we studied the order of nearly regular induced subgraphs in typical
random graph models G(n, 1/2) and G(n,m, 1/2). Upper bounds are provided by
using combinatorial and probabilistic techniques. Compared with Theorem 1.1 in [9],
our upper bounds seem to be tight. A natural question would be the corresponding
lower bounds. One might be tempted to modify the proofs in [9] for the lower bounds.
However, we tried this and our lower bounds derived are quite conservative. We
believe substantial different techniques are needed to get matching lower bounds. On
the other hand, the induced subgraphs in sparse random graphs are treated in [6]
using switching techniques.

Finally, we mention another interesting problem: Can we estimate the edge density
p given the order of regular induced subgraphs? A study in this direction for connected
components can be found in [12].
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[4] P. Erdős, On some of my favourite problems in various branches of combinatorics, Proc. 4th
Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, Prachatice, 1990, Ann.
Discrete Math. 51 (1992), 69–79.

[5] A. Frieze, Perfect matchings in random bipartite graphs with minimal degree at least 2, Random
Struct. Alg. 26 (2005), 319–358.

[6] P. Gao, Y. Su and N. Wormald, Induced subgraphs in sparse random graphs with given degree
sequence, arXiv: 1011.3810, 2010.

[7] R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey Theory, Wiley, New York, 1990.
[8] S. Janson, T. ÃLuczak and A. Rucinski, Random Graphs, Wiley, New York, 2000.
[9] M. Krivelevich, B. Sudakov and N. Wormald, Regular induced subgraphs of a random graph,

Random Struct. Alg. 38 (2011), 235–250.
[10] B. D. McKay and N. Wormald, Asymptotic enumeration by degree sequence of graphs of high

degree, Europ. J. Combin. 11 (1990), 565–580.
[11] Y. Shang, Groupies in random bipartite graphs, Appl. Anal. Discrete Math. 4 (2010), 278–283.
[12] Y. Shang, Asymptotic behavior of estimates of link probability in random networks, Rep. Math.

Phys. 67 (2011), 255–257.
[13] Y. Shang, A sharp threshold for rainbow connection of random bipartite graphs, Int. J. Appl.

Math. 24 (2011), 149–153.

(Yilun Shang) Department of Mathematics, Shanghai Jiao Tong University, Shanghai
200240, China
E-mail address: shylmath@hotmail.com


