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On some properties of Jensen-Steffensen’s functional

Mario Krnić, Neda Lovričević, and Josip Pečarić

Abstract. Motivated by results of S.S. Dragomir, related to superadditivity and monotonici-
ty of discrete Jensen’s functional, in this paper we consider Jensen-Steffensen’s functional, i.e.
Jensen’s functional with the conditions derived from Jensen-Steffensen’s inequality. We state

and prove results for this functional, similar to those of Dragomir, as well as their integral
versions. Finally, some applications concerning means are given.
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1. Introduction

Let us denote with Pn the set of all real n-tuples p = (p1, . . . , pn) such that

Pk :=
∑k
i=1 pi, k = 1, . . . , n, with 0 ≤ Pk ≤ Pn, k = 1, . . . , n − 1, and Pn > 0.

Let I be an interval in R and f : I → R a convex function. If x = (x1, . . . , xn) is
a monotonic (increasing or decreasing) n-tuple in In and p is in Pn, then Jensen-
Steffensen’s inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

pif(xi) (1)

holds. Since
∑n
i=1 pixi ∈ I, (see the proof of corresponding theorem in [7, p.57],

functional

J(f,x,p) :=
n∑
i=1

pif(xi)− Pnf

(∑n
i=1 pixi
Pn

)
, (2)

introduced by observing the difference between the right side and the left side of (1),
is well defined. We call it discrete Jensen-Steffensen’s functional. For a fixed function
f and n-tuple x, J(f,x, ·) can be considered as a function on the set Pn. Also, because
of (1) we have that J(f,x,p) ≥ 0, for all p in Pn.

Of course, (1) can be considered under stricter conditions on p, that is, requiring
that p is a non-negative n-tuple, such that Pn =

∑n
i=1 pi > 0, while x is any n-tuple

in In. These assumptions rename (1) into well known Jensen’s inequality. In this case,
observing the difference between the right side and the left side of Jensen’s inequality,
Dragomir et al. (see [3]) introduced and investigated discrete Jensen’s functional

Jn(f,x,p) =
n∑
i=1

pif(xi)− Pnf

(∑n
i=1 pixi
Pn

)
. (3)
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Now, let P0
n denote the set of all non-negative n-tuples of real numbers with Pn =∑n

i=1 pi > 0. Obviously, P0
n ⊆ Pn. For fixed function f and n-tuple x, Jn(f,x, ·)

can be considered as a function on the set P0
n. Dragomir proved that Jn(f,x, ·) is

superadditive on P0
n, that is, if p,q ∈ P0

n, then

Jn(f,x,p+ q) ≥ Jn(f,x,p) + Jn(f,x,q), (4)

and is also increasing on P0
n, that is,

if p ≥ q, then Jn(f,x,p) ≥ Jn(f,x,q) ≥ 0. (5)

(Here p ≥ q means pi ≥ qi, i = 1, . . . , n.) However, monotonicity property (5)
had been obtained by Pečarić, (see [4, p.717]), even before Dragomir unified both
properties. Furthermore, in a recent paper, (see [2]), Dragomir gave comparative
inequalities - this time the result is stated for normalized Jensen’s functional. Namely,
he proved that for a convex function f : K → X defined on a closed convex subset K
of linear spaceX and non-negative n-tuples p and q, such that

∑n
i=1 pi =

∑n
i=1 qi = 1

inequalities

max
1≤i≤n

{
pi
qi

}
Jn(f,x,q) ≥ Jn(f,x,p) ≥ min

1≤i≤n

{
pi
qi

}
Jn(f,x,q) ≥ 0, (6)

hold for any x = (x1, . . . , xn) ∈ Kn.
Barić et al. gave (in [1]) an alternative proof of (6). That proof allowed them

to prove another result, analogous to (6), in the case when f : I → R is a convex
function defined on an interval I ⊆ R and, for our issue more important: n-tuples p
and q satisfy conditions for Jensen-Steffensen’s inequality. We cite this result.

Theorem 1.1. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two n-tuples satisfying

0 ≤ Pk, Qk ≤ 1, k = 1, . . . , n− 1, Pn = Qn = 1.

For k ∈ {1, . . . , n} denote Pk :=
∑k
i=1 pi, Qk :=

∑k
i=1 qi. Let m and Mbe any real

constants such that

Pk −mQk ≥ 0, (1− Pk)−m(1−Qk) ≥ 0, k = 1, . . . , n− 1

and
MQk − Pk ≥ 0, M(1−Qk)− (1− Pk) ≥ 0, k = 1, . . . , n− 1.

If f : I → R is a convex function defined on an interval I ⊆ R and if x =
(x1, . . . , xn) ∈ In is any monotonic n-tuple, then

MJn(f,x,q) ≥ Jn (f,x,p) ≥ mJn(f,x,q). (7)

It was also shown in [1] that Theorem 1.1 provides improvement of (6) in the case
of X = R. The following corollary of Theorem 1.1 was also given in [1] and will be
of interest in the sequel. It considers the uniform distribution u = ( 1n , . . . ,

1
n ) and

corresponding non-weighted functional

Jn(f,x) := Jn(f,x,u) =
1

n

n∑
i=1

f(xi)− f

(
1

n

n∑
i=1

xi

)
.

Corollary 1.1. Let p = (p1, . . . , pn) be n-tuple satisfying

0 ≤ Pk ≤ 1, k = 1, . . . , n− 1, Pn = 1.

For k ∈ {1, . . . , n} denote Pk :=
∑k
i=1 pi and define

m̃0 := n ·min

{
Pk
k
,
1− Pk
n− k

: k = 1, . . . , n− 1

}
,
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M̃0 := n ·max

{
Pk
k
,
1− Pk
n− k

: k = 1, . . . , n− 1

}
.

If f : I → R is a convex function defined on an interval I ⊆ R and if x =
(x1, . . . , xn) ∈ In is any monotonic n-tuple, then

M̃0Jn(f,x) ≥ Jn (f,x,p) ≥ m̃0Jn(f,x). (8)

In the following section we are going to show that superadditivity property holds
for Jensen-Steffensen’s functional, too, and that monotonicity property is adjustable
to it. By means of these, we are going to give the alternative proofs of the results from
[1]. In Section 3 we are going to prove the integral versions of our results, including
those related to Boas’ generalization of Jensen-Steffensen’s inequality. Finally, the
last section contains some applications and improvements concerning weighted quasi-
arithmetic means.

2. Main results

First we are concerned with the superadditivity property of the functional (2).

Theorem 2.1. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two n-tuples from Pn. If
f : I → R, I ⊆ R, is a convex function and if x = (x1, . . . , xn) ∈ In is any monotonic
n-tuple, then J(f,x, ·) defined by (2) is superadditive on Pn, i.e.

J(f,x,p+ q) ≥ J(f,x,p) + J(f,x,q) ≥ 0. (9)

Proof. Regarding definition we have

J (f,x,p+ q) =

n∑
i=1

(pi + qi)f(xi)− (Pn +Qn)f

(∑n
i=1(pi + qi)xi
Pn +Qn

)

=

n∑
i=1

pif(xi) +

n∑
i=1

qif(xi)

−(Pn +Qn)f

(∑n
i=1(pi + qi)xi
Pn +Qn

)
, (10)

while convexity of f and Jensen’s inequality yield

f

(∑n
i=1(pi + qi)xi
Pn +Qn

)
= f

(∑n
i=1 pixi +

∑n
i=1 qixi

Pn +Qn

)
= f

(
Pn

Pn +Qn

∑n
i=1 pixi
Pn

+
Qn

Pn +Qn

∑n
i=1 qixi
Qn

)
≤ Pn
Pn +Qn

f

(∑n
i=1 pixi
Pn

)
+

Qn
Pn +Qn

f

(∑n
i=1 qixi
Qn

)
.(11)

Finally, combining relation (10) and inequality (11) we get

J (f,x,p+ q) ≥

≥
n∑
i=1

pif(xi) +
n∑
i=1

qif(xi)− Pnf

(∑n
i=1 pixi
Pn

)
−Qnf

(∑n
i=1 qixi
Qn

)
= J (f,x,p) + J (f,x,q) .
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Because of (1) we have that J (f,x,p) ≥ 0 and J (f,x,q) ≥ 0, so the proposed right
inequality in (9) holds. �

In order to adjust monotonicity property (5) to functional (2), we are going to
impose some extra conditions on n-tuples p and q, as follows.

Theorem 2.2. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two n-tuples from Pn. Let
Pk ≥ Qk, Pn−Pk ≥ Qn−Qk, k = 1, . . . , n−1, and Pn > Qn, where Pk =

∑k
i=1 pi and

Qk =
∑k
i=1 qi. If f : I → R, I ⊆ R, is a convex function and if x = (x1, . . . , xn) ∈ In

is any monotonic n-tuple, then for functional J(f,x, ·) defined by (2) inequality

J (f,x,p) ≥ J (f,x,q) (12)

holds on Pn.

Proof. Write J (f,x,p) = J (f,x,p− q+ q) . Now, if we could apply superadditivity
property (9) to p− q and q, monotonicity property would also be proved. And that
would be the case if the n-tuple p−q = (p1 − q1, . . . , pn− qn) belonged to Pn. Hence
the following conditions need to be satisfied: 0 ≤ Pk−Qk ≤ Pn−Qn, k = 1, . . . , n−1,
and Pn −Qn > 0, which yields: 0 ≤ Pk −Qk, Pk −Qk ≤ Pn −Qn, k = 1, . . . , n− 1,
and Pn −Qn > 0. Now, taking into account that J (f,x,p− q) ≥ 0, we have

J (f,x,p) = J (f,x,p− q+ q) ≥ J (f,x,p− q) + J (f,x,q) ≥ J (f,x,q) .

�

Remark 2.1. We can easily obtain the result from Theorem 1.1 from [1] by means of
Theorem 2.2. Let p,q ∈ Pn and let m and M be real constants such that p−mq and
Mq−p are in Pn. If f : I → R, I ⊆ R, is a convex function and if x = (x1, . . . , xn) ∈
In is any monotonic n-tuple, then by Theorem 2.2 is

J (f,x,p) = J (f,x,p−mq+mq) ≥ J (f,x,p−mq) + J (f,x,mq) ≥ mJ (f,x,q) .

Similarly we get

J (f,x,p) ≤MJ (f,x,q) ,

that is

MJ (f,x,q) ≥ J (f,x,p) ≥ mJ (f,x,q) . (13)

Since p − mq ∈ Pn implies Pk ≥ mQk and (Pn − Pk) ≥ m(Qn − Qk), and since
Mq−p ∈ Pn implies Pk ≤MQk and (Pn−Pk) ≤M(Qn−Qk), k = 1, . . . , n−1, which
are the assumptions of Theorem 1.1 (only in a non-normalized form), by obtaining
(13), we proved Theorem 1.1.

Applying Theorem 2.2, we are able to give the result on bounding the functional
(2) with a non-weighted functional. But, almost the same result, only in a slightly
specialized form, is given in Corollary 1.1. Our proof would then be the alternative
one, obtained via Theorem 2.2. Hence the detailed analysis is given in the form of a
remark.

Remark 2.2. In order not to derange our former consideration, we write Corollary
1.1 in a slightly different form, namely, for Pn > 0 :

Let p = (p1, . . . , pn) be an n-tuple from Pn. Define

m = min
1≤k≤n−1

{
Pk
k
,
Pn − Pk
n− k

}
, M = max

1≤k≤n−1

{
Pk
k
,
Pn − Pk
n− k

}
,



ON SOME PROPERTIES OF JENSEN-STEFFENSEN’S FUNCTIONAL 47

where Pk =
∑k
i=1 pi and Pn =

∑n
i=1 pi. If f : I → R, I ⊆ R, is a convex

function and if x = (x1, . . . , xn) ∈ In is any monotonic n-tuple, then

MJN (f,x) ≥ J (f,x,p) ≥ mJN (f,x),

where JN (f,x) =
∑n
i=1 f(xi)− nf

(∑n
i=1 xi

n

)
.

Alternative proof of Corollary 1.1: Let qmin ∈ P0
n be a constant n-tuple, i.e. qmin =

(α, α, . . . , α), where α > 0, for Qn :=
∑n
i=1 qi > 0 must be satisfied. Provided Pk ≥

Qk = kα, Pn−Pk ≥ Qn−Qk = (n−k)α, k = 1, . . . , n−1, and Pn > Qn = nα, Theorem
2.2 can be applied. Further, these imply corresponding conditions concerning α :
(i) α ≤ Pk

k , k = 1, . . . , n− 1,

(ii) α ≤ Pn−Pk

n−k , k = 1, . . . , n− 1,

(iii) α < Pn

n .
In order to prove the right inequality, let us first denote

m = min
1≤k≤n−1

{
Pk
k
,
Pn − Pk
n− k

}
.

Obviously, m satisfies conditions (i) and (ii), and is a candidate for the choice of α.
However, (iii) needs some extra considerations. Fix k ∈ {1, . . . , n}. Then (i) and (ii)
imply nα ≤ Pn, i.e. α ≤ Pn

n . Now we distinguish two cases:

1◦ α <
Pn
n
. Condition (iii) is instantly satisfied and Theorem 2.2 yields

J (f,x,p) ≥ J (f,x,qmin) .

2◦ α =
Pn
n
, i.e. Pn = nα. From (ii) we get nα − Pk ≥ nα − kα, i.e. Pk ≤ kα. But

from (i) is also Pk ≥ kα, hence Pk = kα, k = 1, . . . , n − 1. Since in that case is
p = (α, α, . . . , α) = qmin, inequality

J (f,x,p) ≥ J (f,x,qmin)

holds again.
So m is a good choice for α. Now, respecting notation from the corollary statement
we get

J (f,x,qmin) = m

(
n∑
i=1

f(xi)− nf

(∑n
i=1 xi
n

))
= mJN (f,x).

Lower bound provided by the non-weighted functional is then

J (f,x,p) ≥ mJN (f,x).

Upper bound is obtained similarly, by exchanging the roles of p and q, and with

M = max
1≤k≤n−1

{
Pk
k
,
Pn − Pk
n− k

}
.

�

3. Integral versions

One of the integral analogues of Jensen-Steffensen’s inequality was given by R. P.
Boas.
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Theorem 3.1. (Steffensen-Boas) Let x : [α, β] → ⟨a, b⟩ be a continuous and mono-
tonic function, where −∞ < α < β <∞ and −∞ ≤ a < b ≤ ∞, and let f : ⟨a, b⟩ → R
be a convex function. If λ : [α, β] → R is either continuous or of bounded variation
satisfying

λ(α) ≤ λ(t) ≤ λ(β) for all t ∈ [α, β], λ(β)− λ(α) > 0, (14)

then

f

(
1

λ(β)− λ(α)

∫ β

α

x(t)dλ(t)

)
≤ 1

λ(β)− λ(α)

∫ β

α

f(x(t))dλ(t).

The condition (14) on λ can be regarded as a very week version of monotonicity,
but the monotonicity condition on x is very restrictive. So Boas proved that one can
strengthen the hypothesis on λ and correspondingly weaken the hypothesis on x, so
that (16) still holds:

Theorem 3.2. (Boas) Let λ : [α, β] → R be either continuous or of bounded variation
and such that there exist k ≥ 2 points α = γ0 < γ1 < · · · < γk = β so that

λ(α) ≤ λ(t1) ≤ λ(γ1) ≤ λ(t2) ≤ · · · ≤ λ(γk−1) ≤ λ(tk) ≤ λ(β),

for all ti ∈ [γi−1, γi], i = 1, . . . , k, λ(β)− λ(α) > 0. (15)

If x : [α, β] → ⟨a, b⟩ is a continuous and monotone function on each of the intervals
[γi−1, γi], i = 1, . . . , k, then inequality

f

(
1

λ(β)− λ(α)

∫ β

α

x(t)dλ(t)

)
≤ 1

λ(β)− λ(α)

∫ β

α

f(x(t))dλ(t).

holds for any convex function f : ⟨a, b⟩ → R.

Regarding corresponding assumptions of Theorem 3.1 or Theorem 3.2, inequality

f

(
1

λ(β)− λ(α)

∫ β

α

x(t)dλ(t)

)
≤ 1

λ(β)− λ(α)

∫ β

α

f(x(t))dλ(t). (16)

is called Jensen-Steffensen’s integral inequality or Jensen-Steffensen-Boas’ integral
inequality, respectively. In the similar way, we consider the functional

J(f, x, λ) :=

∫ β

α

f(x(t))dλ(t)− (λ(β)− λ(α))f

(
1

λ(β)− λ(α)

∫ β

α

x(t)dλ(t)

)
, (17)

which is called Jensen-Steffensen’s or Jensen-Steffensen-Boas’ depending on which
conditions of the previous theorems are taken into consideration. Also, under appro-
priate assumptions on f, x and λ, either for Jensen-Steffensen’s or Jensen-Steffensen-
Boas’ integral inequality, we have that J(f, x, λ) ≥ 0. For the sake of simplicity, denote
with
Λ[α,β],−∞ < α < β <∞: the class of all functions λ : [α, β] → R which are either

continuous or of bounded variation and satisfy the conditions (14);

Λ̃[α,β]: the subclass of Λ[α,β], containing every λ ∈ Λ[α,β] satisfying the conditions
(15).

Now we can state and prove the integral analogues of the results from the previous
section. First we give results related to functional (17) under conditions given in
Theorem 3.1.
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Theorem 3.3. Let λ and µ be functions from Λ[α,β], either both continuous or both

of bounded variation. If x : [α, β] → ⟨a, b⟩, a, b ∈ R, is a continuous and monotonic
function and if f : ⟨a, b⟩ → R is a convex function, then functional J(f, x, ·) defined
by (17) is superadditive on Λ[α,β], i.e.

J(f, x, λ+ µ) ≥ J(f, x, λ) + J(f, x, µ) ≥ 0. (18)

Proof. Let us first denote: λ(β) − λ(α) := λβα and µ(β) − µ(α) := µβα. Regarding
definition we have

J (f, x, λ+ µ) =

=

∫ β

α

f(x(t))d(λ+ µ)(t)−
(
λβα + µβα

)
· f

(
1

λβα + µβα

∫ β

α

x(t)d(λ+ µ)(t)

)

=

∫ β

α

f(x(t))dλ(t) +

∫ β

α

f(x(t))dµ(t)−
(
λβα + µβα

)
·

·f

(
1

λβα + µβα

∫ β

α

x(t)d(λ+ µ)(t)

)
, (19)

while convexity of f and (integral) Jensen’s inequality yield

f

(
1

λβα + µβα

∫ β

α

x(t)d(λ+ µ)(t)

)
=

= f

(
λβα

λβα + µβα
·
∫ β
α
x(t)dλ(t)

λβα
+

µβα

λβα + µβα
·
∫ β
α
x(t)dµ(t)

µβα

)

≤ λβα

λβα + µβα
· f

(∫ β
α
x(t)dλ(t)

λβα

)
+

µβα

λβα + µβα
· f

(∫ β
α
x(t)dµ(t)

λβα

)
. (20)

Finally, combining (19) and (20) we get

J (f, x, λ+ µ) ≥

≥
∫ β

α

f(x(t))dλ(t) +

∫ β

α

f(x(t))dµ(t)− λβα · f

(∫ β
α
x(t)dλ(t)

λβα

)
−

−µβα · f

(∫ β
α
x(t)dµ(t)

λβα

)
= J (f, x, λ) + J (f, x, µ) .

Because of integral inequality (16), under Jensen-Steffensen’s conditions, we have that
J (f, x, λ) ≥ 0 and J (f, x, µ) ≥ 0 so the proposed right inequality in (18) holds. �

The integral version of Theorem 2.2 is given in the form of the result that follows.

Theorem 3.4. Let λ and µ be functions from Λ[α,β], either both continuous or both
of bounded variation. Let

λ(α)− µ(α) ≤ λ(t)− µ(t) ≤ λ(β)− µ(β), t ∈ [α, β], λ(β)− µ(β) > λ(α)− µ(α).

If x : [α, β] → ⟨a, b⟩, a, b ∈ R, is a continuous and monotonic function and if f :
⟨a, b⟩ → R is a convex function, then for functional J(f, x, ·) defined by (17) inequality

J(f, x, λ) ≥ J(f, x, µ) (21)

holds on Λ[α,β].
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Proof. Write J (f, x, λ) = J (f, x, λ− µ+ µ) . If we could apply superadditivity prop-
erty (18) to λ − µ and µ, monotonicity property would also be proved. And that
would be the case if λ − µ, also continuous or of bounded variation, belonged to
Λ[α,β], which, according to the assumptions of the theorem, is the case. Now, since
by (16) is J (f, x, λ− µ) ≥ 0, we have

J (f, x, λ) = J (f, x, λ− µ+ µ) ≥ J (f, x, λ− µ) + J (f, x, µ) ≥ J (f, x, µ) ,

which was to prove. �

Remark 3.1. Theorem 3.4 provides an alternative proof of Theorem 5 in [1]. It
follows the same lines as in the discrete case, in Remark 2.1.

In the sequel we lean on Remark 2.2, and in this setting that means - bounding of
functional (17) by a non-weighted functional. As before, we only give an alternative
proof of the integral version of Corollary 1.1 from [1], (that is, Corollary 6 in [1]), so
our result is given within another remark.

Remark 3.2. With a slightly altered notation from that in [1], according to our former
considerations, the result reads:

Let λ be a function from Λ[α,β]. Let x : [α, β] → ⟨a, b⟩, a, b ∈ R, be a
continuous and monotonic function and let f : ⟨a, b⟩ → R be a convex
function. If m and M are defined by

m := inf
α<t<β

{
λ(t)− λ(α)

t− α
,
λ(β)− λ(t)

β − t

}
,

M := sup
α<t<β

{
λ(t)− λ(α)

t− α
,
λ(β)− λ(t)

β − t

}
,

then

MJ(f, x) ≥ J(f, x, λ) ≥ mJ(f, x), (22)

where J(f, x) :=
∫ β
α
f(x(t))dt− (β − α)f

(
1

β−α
∫ β
α
x(t)dt

)
.

Proof. Let us prove the right inequality in (22). According to definition of m we have

that m ≤ λ(t)− λ(α)

t− α
, m ≤ λ(t)− λ(β)

t− β
and m ≤ λ(β)− λ(α)

β − α
. Hence the following

inequalities hold: λ(α)−mα ≤ λ(t)−mt ≤ λ(β)−mβ and λ(β)− λ(α) > mβ−mα.
Let µ be a function from Λ[α,β], such that µ(α) < µ(t) < µ(β), for all α < t < β and
µ(t) = mt, µ(α) = mα and µ(β) = mβ. Then we write λ(α) − µ(α) ≤ λ(t) − µ(t) ≤
λ(β)− µ(β). Hence by Theorem 3.4 we have that

J(f, x, λ) ≥ J(f, x, µ). (23)

On the other hand, we have

J(f, x, µ) =

∫ β

α

f(x(t))d(mt)− (mβ −mα)f

(
1

mβ −mα

∫ β

α

x(t)d(mt)

)

= m

(∫ β

α

f(x(t))dt− (β − α)f

(
1

β − α

∫ β

α

x(t)dt

))
= mJ(f, x). (24)

Now, combining (23) and (24) we have the right inequality in (22) proved. The left
inequality is obtained similarly, by exchanging the roles of λ and µ.

�
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Next we consider functional (17) under conditions of Theorem 3.2, i.e. the ones
related to Jensen-Steffensen-Boas’ inequality. We give corresponding results, following
the same lines as before.

Theorem 3.5. Let λ and µ be functions from Λ̃[α,β], either both continuous or both
of bounded variation. Let α = γ0 < γ1 < · · · < γk = β, k ≥ 2, be points in [α, β].
If x : [α, β] → ⟨a, b⟩, a, b ∈ R, is a continuous and monotonic function on each of
the intervals [γi−1, γi], i = 1, . . . , k, and if f : ⟨a, b⟩ → R is a convex function, then

functional J(f, x, ·) defined by (17) is superadditive on Λ̃[α,β], i.e.

J(f, x, λ+ µ) ≥ J(f, x, λ) + J(f, x, µ) ≥ 0. (25)

Proof. Follows the same lines as in Theorem 3.1, except for the right inequality in (25).
Namely, here we apply inequality (16), but under Jensen-Steffensen-Boas’ conditions.

�

Theorem 3.6. Let λ and µ be functions from Λ̃[α,β], either both continuous or both
of bounded variation. Let α = γ0 < γ1 < · · · < γk = β, k ≥ 2. Assume that
x : [α, β] → ⟨a, b⟩, a, b ∈ R, is a continuous and monotonic function on each of the
intervals [γi−1, γi], i = 1, . . . , k, and that f : ⟨a, b⟩ → R is a convex function. If for
all α < t < β

λ(γi−1)−µ(γi−1) ≤ λ(t)−µ(t) ≤ λ(γi)−µ(γi), for t ∈ [γi−1, γi], i = 1, . . . , k (26)

and

µ(α) ≤ µ(t1) ≤ µ(γ1) ≤ · · · ≤ µ(tk) ≤ µ(β), for all ti ∈ [γi−1, γi], i = 1, . . . , k,
(27)

then for functional J(f, x, ·) defined by (17) inequality

J(f, x, λ) ≥ J(f, x, µ) (28)

holds on Λ̃[α,β].

Proof. We consider the function ρ : [α, β] → R defined by

ρ(t) := λ(t)− µ(t), t ∈ [α, β].

If λ and µ are both continuous or both of bounded variation, then ρ is continuous
or of bounded variation, too. It is obvious that condition (26) is equivalent to the
following condition:

ρ(α) ≤ ρ(t1) ≤ ρ(γ1) ≤ · · · ≤ ρ(tk) ≤ ρ(β), for all ti ∈ [γi−1, γi], i = 1, . . . , k. (29)

Since λ = ρ + µ, it follows from (27) and (29) that both functions λ and µ satisfy
Boas’ conditions with the same prescribed points γi, i = 0, . . . , k, so that J(f, x, λ)
and J(f, x, µ) are well defined (and non-negative, by (16)). Applying Theorem 3.5 to
functions ρ and µ, we obtain inequality (28). �

Remark 3.3. Theorem 3.6 provides an alternative proof of Theorem 6 in [1]. It
follows the same lines as in Remark 2.1.

In the following remark we give yet another alternative proof. It is the proof of
Corollary 8 in [1], related to bounding of Jensen-Steffensen-Boas’ functional (17) by
a non-weighted functional.

Remark 3.4. With a slightly altered notation from that in [1], according to our former
considerations, the result reads:
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Let λ be a function from Λ̃[α,β]. Let α = γ0 < γ1 < · · · < γk = β, k ≥ 2.

Assume that x : [α, β] → ⟨a, b⟩, a, b ∈ R, is a continuous and monotonic
function on each of the intervals [γi−1, γi], i = 1, . . . , k, and that f : ⟨a, b⟩ →
R is a convex function. If m and M are defined by

m := min
i=1,...,k

{
inf

{
λ(t)− λ(γi−1)

t− γi−1
,
λ(γi)− λ(t)

γi − t
: γi−1 < t < γi

}}
,

M := max
i=1,...,k

{
sup

{
λ(t)− λ(γi−1)

t− γi−1
,
λ(γi)− λ(t)

γi − t
: γi−1 < t < γi

}}
,

then

MJ(f, x) ≥ J(f, x, λ) ≥ mJ(f, x), (30)

where J(f, x) :=
∫ β
α
f(x(t))dt− (β − α)f

(
1

β−α
∫ β
α
x(t)dt

)
.

Proof. Let us prove the right inequality in (30). According to definition of m we have

thatm ≤ λ(t)− λ(γi−1)

t− γi−1
andm ≤ λ(t)− λ(γi)

t− γi
. Hence the following inequalities hold:

λ(γi−1)−mγi−1 ≤ λ(t)−mt ≤ λ(γi)−mγi, for all t ∈ [γi−1, γi], i = 1, . . . , k. Let µ

be a function from Λ̃[α,β], such that µ(γi−1) < µ(t) < µ(γi), for all γi−1 < t < γi and
µ(t) = mt, µ(γi−1) = mγi−1 and µ(γi) = mγi. Then we write λ(γi−1) − µ(γi−1) ≤
λ(t) − µ(t) ≤ λ(γi) − µ(γi) and apply Theorem 3.6. The rest of the proof is as in
Remark 3.2.

�

4. Some further applications

In this section we consider Jensen-Steffensen’s functional in relation to certain
means. Recall, weighted quasi-arithmetic mean M[φ] of x = (x1, . . . , xn) ∈ In, I ⊆ R,
with weights p = (p1, . . . , pn), pi ≥ 0,

∑n
i=1 pi = Pn, is defined by

M[φ](x;p) = φ−1

(
1

Pn

n∑
i=1

piφ(xi)

)
,

where φ : I → J, J ⊆ R, is a continuous, monotonic and bijective function. Particu-
larly, φ(x) = x yields the expression for weighted arithmetic mean and φ(x) = log x
yields the expression for weighted geometric mean. Furthermore, if we consider two
continuous, monotonic and bijective functions φ : I → I and ψ : J → J, then the
function f : I → J is called (M[φ],M[ψ]) − convex if for every two points a, b ∈ I and
for all λ ∈ [0, 1] the following inequality holds:

f(φ−1((1− λ)φ(a) + λφ(b))) ≤ ψ−1((1− λ)ψ(f(a)) + λψ(f(b))).

Particularly, φ(x) = ψ(x) = x yields the expression for common convexity and φ(x) =
x, ψ(x) = log x yields the expression for log-convexity. If f : I ⊂ ⟨0,∞⟩ → ⟨0,∞⟩
is an (M[φ],M[ψ]) − convex function, then g := ψ ◦ f ◦ φ−1 is convex. One can
find a more detailed discussion on this issue in the paper [6] of C.P. Niculescu. We
are going to consider the case of M[φ] − convex functions, having ψ(x) = x. In this

setting, f ◦ φ−1 is a convex function. If x = (x1, . . . , xn) is a monotonic n-tuple, and
if we denote φ(x) := (φ(x1), . . . , φ(xn)), we have that φ(x) is a monotonic n-tuple,
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too. Hence inequality (1), with p = (p1, . . . , pn) satisfying corresponding Jensen-
Steffensen’s conditions, becomes

(f ◦ φ−1)

(
1

Pn

n∑
i=1

piφ(xi)

)
≤ 1

Pn

n∑
i=1

pi(f ◦ φ−1)(φ(xi)) =
1

Pn

n∑
i=1

pif(xi).

Similarly as before, we consider the functional

T (f,x,p) =
n∑
i=1

pif(xi)− Pnf

(
φ−1

(
1

Pn

n∑
i=1

piφ(xi)

))
. (31)

Functional (31) was recently analyzed in the paper [5] of F.C. Mitroi, whose one
result we intend to improve here. Note that functional (31) is actually functional (2),
obtained by f ↔ f ◦ φ−1 and xi ↔ φ(xi). Hence the results corresponding to those
in Section 2, starting with Theorem 2.1, are given in the following corollaries.

Corollary 4.1. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two n-tuples from Pn and
let φ : I → I, I ⊆ R, be a continuous, monotonic and bijective function. If f : I → R
is an M[φ] − convex function and if x = (x1, . . . , xn) ∈ In is any monotonic n-tuple,
then T (f,x, ·) defined by (31) is superadditive on Pn, i.e.

T (f,x,p+ q) ≥ T (f,x,p) + T (f,x,q) ≥ 0. (32)

Proof. Since f ◦ φ−1 is a convex function and φ(x) is a monotonic n-tuple, the proof
follows the same lines as in Theorem 2.1. �

Regarding Theorem 2.2 we have the following related result.

Corollary 4.2. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two n-tuples from Pn,
satisfying the same conditions as in Theorem 2.2. Let φ : I → I, I ⊆ R, be a
continuous, monotonic and bijective function. If f : I → R is an M[φ] − convex
function and if x = (x1, . . . , xn) ∈ In is any monotonic n-tuple, then for functional
T (f,x, ·) defined by (31) inequality

T (f,x,p) ≥ T (f,x,q) (33)

holds on Pn.

Proof. Since f ◦ φ−1 is a convex function and φ(x) is a monotonic n-tuple, the proof
follows the same lines as in Theorem 2.2. �

In the following remark we consider the bounding of the functional (31) with a
non-weighted functional. We lean on Remark 2.2, using the same arguments as in the
previous corollaries.

Remark 4.1. Let p, m and M be as in Remark 2.2 and let φ : I → I, I ⊆ R, be
a continuous, monotonic and bijective function. If f : I → R is an M[φ] − convex
function and if x = (x1, . . . , xn) ∈ In is any monotonic n-tuple, then

MTN (f,x) ≥ T (f,x,p) ≥ mTN (f,x), (34)

where TN (f,x) =
∑n
i=1 f(xi)− nf

(
φ−1

(∑n
i=1 φ(xi)

n

))
.

Remark 4.2. Let us compare the left inequality in (34) with the one given in Theorem

3.1 in [5]. As in Remark 2.2, we have that M = max
1≤k≤n−1

{
Pk
k
,
Pn − Pk
n− k

}
. Let α =

max{p1, . . . , pn}. Obviously Pk ≤ kα i.e. Pk

k ≤ α and Pn−Pk

n−k ≤ α. This implies that

M ≤ α, which is better estimate than the corresponding bound in [5].
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In order to obtain integral versions of the previous results, we transform the func-
tional (17) by means of M[φ] − convex function f and the substitutions f ↔ f ◦ φ−1

(convex function) and x↔ φ ◦ x (monotonic function), and obtain the functional

T (f, x, λ) :=

∫ β

α

f(x(t))dλ(t)

−(λ(β)− λ(α))f

(
φ−1

(
1

λ(β)− λ(α)

∫ β

α

φ(x(t))dλ(t)

))
. (35)

Remark 4.3. For a monotonic function φ and an M[φ] − convex function f, and

according to the fore mentioned substitutions (f ↔ f ◦ φ−1 (convex function) and
x↔ φ ◦ x (monotonic function)), functional (35) can be applied to all integral results
from Section 3, under Jensen-Steffensen’s or Jensen-Steffensen-Boas’ conditions.
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