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Analytical approximate solutions of systems of
differential-algebraic equations by Laplace homotopy analysis
method

R. AL-MASAEED AND H.M. JARADAT

ABSTRACT. This paper presents a numerical technique for solving system of differential-
algebraic equations (DAEs) by employing the Laplace homotopy analysis method (LHAM).
The biggest advantage over the existing standard analytical techniques is that it overcomes
the difficulty arising in calculating complicated terms. Numerical examples are examined to
highlight the significant features of this method. Moreover, the solution procedure is easier,
more effective and straightforward.
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Introduction

Differential-algebraic equations are normally obtained when modeling chemical en-
gineering systems. Chemical processes are modeled dynamically using differential—
algebraic equations. Chemical processes are inherently nonlinear and multivariable
and are typically modeled by coupled differential and algebraic equation. A system of
DAE:s is characterized by its index, which is the number of differentiations required
to convert it into a system of ODEs. DAEs with index > 1 are generally hard to solve
and are still under active research.

In the past decades, both mathematicians and physicists have devoted considerable
effort to the study of explicit and numerical solutions to DAEs. Many powerful
methods have been presented [1-16, 19].

The subject of DAEs has researched and solidified only very recently (in the past
35 years). Through many exact solutions for linear DAEs has been found, in general,
there exists no method that yields an exact solution for nonlinear DAEs.

The objective of the present paper is to modify the LHAM to provide symbolic
approximate solutions for linear and nonlinear differential-algebraic equations. The
LHAM is a combination of HAM [17,18] and Laplace transforms.

Therefore, in this work we will introduce a new alternative procedure for solving
DAEs. The newly developed technique by no means depends on complicated tools
from any field. This can be the most important advantage over the other methods. It
is worth mentioning that the proposed algorithm is an elegant combination of Laplace
transform method and the homotopy analysis method. Some DAE are examined to
illustrate the effectiveness, accuracy and convenience of this method, and in all cases,
the presented technique performed excellently.
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1. Laplace Homotopy analysis method
In this section, we employ the Laplace homotopy analysis method to the discussed
problem. To show the basic idea, let us consider the DAEs

w(t) = filt,ur,ug,y ..U, ul,uhy o ul), i =1,2,.00,n — 1, (1)

0=g(t,ur,ug,..., u,),
subject to the initial conditions
UZ(O) = A4, i = 1,2,...,n

where f; are known analytical functions.
Applying the Laplace transform to both sides of system (1) and using linearity of
Laplace transforms we get
£[U;(t)] = £[fi(tvu17u2a cee 7un7u,17u/27‘ . 7ufn)]7 i= 1727‘ s, = ]-7

0=g(t,ur,ug,..., u,),

we get

i, 1 .
Ui(s) = % + gf[fi(t,ul,uQ,...,umu'l,u’z,...,u;)], i=1,2,....,n—1,
Ozg(taulvu%"'aun)a (2)
where U;(s) = £(u;(t)).
The so-called zeroth-order deformation equations of the Laplace Equations(2) are
(1= @)[®i(5,0) = Uio(s)] = ahal®i(5.0) =

- %f[fi(mm(t;% s On(tsq), %%(t;q), s %qﬁn(t;q))]],
(1= @)dn(t; ) — uno(t)] = —ahng(t, d1(t;q), . dn(t;q)), i=1,2,....n =1, (3)
where ¢ € [0,1] is an embedding parameter, when ¢ = 0 and ¢ = 1, we have
D,;(s,0) = Ui o(s), ®i(s,1) =Uj(s), i=1,2,...,n—1,
Pn(t;0) = un,o(t), dn(t;0) = un(t).
Expanding ®;(s,q),i = 1,2,...,n — 1 and ¢,(t;¢) in Taylor series with respect to ¢

we get

D,(s59) =Uio(s) + ZUi,m(s)qm, i=1,2,...,n—1,
m=1

bn(t;q) = un,o(t) + io:umn(t)q””b7 (4)
m=1
where
Uiim(s) = nilamgzgf;q)q_o, i=1,2,...,n—1,

If the initial guesses and the nonzero auxiliary parameters h; are properly chosen so
that the power series (4) converges at ¢ = 1, then we have, under these assumptions
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the solution series

o0
Ui(s) = ®i(s;1) = Ui o(s) + Y Uim(s), i=1,2,...,n—1,
m=1

un(t) = ¢n(t7 1) = ui,O(t) + Zui,m(t)

For brevity, define the vectors
Uim(s) = {Uio(8), Ui (5), Ui a(s), .., Uim(s)}, i =1,2,...,n — 1,
Un,m(s) = {un,O(s)a un,l(s)a Um,2<5>7 o 7un,m(3)}a

Differentiating the zero-order deformation equation (3) m times with respective to g,
dividing by m! and finally setting ¢ = 0, we have the so-called high-order deformation
equation

Usin(8) = XenUsm1(5) + hiRim(Usm1(s)), i =1,2,....n =1, (5)
un,m(t) - Xmun,m—l(t) + hn%n,m(ﬂ)n,m—l(t))

where

%i,m(ﬁi,mfl(s)) = Ui,mfl(s) - =

1{( 1 om- (L[fi(t, 01(t;q), - -, dnlt; q),

s | (m—1)! 9gm—1
1o} 0 a; .
agf)l(tv Q)v LI} a(ﬁn(tv q))])|q—0:| - ?(1 - Xm)7 v = 17 27 s, — 1;
R (T e A . .
nm (Wn,m—1(t)) = mw[g(@d)l(tﬂ)» - On(t5.9))]lg=0,
and
. 0, m<1
Xm =191, m>1

Finally, applying the inverse Laplace transforms of (5), then we have a power series
solution

ui(t) = Zui7m(t), i=1,2,...,n (6)
m=0

Note that we have great freedom to choose the value of the auxiliary parameters h;.
Mathematically the value of u;(t) at any finite order of approximation depends upon
the auxiliary parameter h;, because the zeroth and high order deformation equations
contain h;. Let Ry, denote the set of all values of h; which ensure the convergence of
the HAM series solution (6) of u;(t). Let h; be the variable of the horizontal axis and
the limit of the series solution (6) of u;(t) be the variable of vertical axis. Plot the
curve u;(t) ~ h;, where u;(t) denotes the limit of the series (6). Because the limit of
all convergent series solutions (6) is the same for a given a, there exists a horizontal
line segment above the region h € Rp,,. So, by plotting the curve w;(t) ~ h; at a high
enough order approximation, one can find an approximation of the set Ry,.

2. Applications

In this part, we introduce some applications on LHAM to solve differential-algebraic
equations with fractional derivatives.
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Example 1. Consider the following system of linear DAEs :

ul — (t+ 1) uh —tuy =0,
upb+(t—1)v+u = (—1)exp(t), (7)
v —tu; = exp (t) —lsin (t) y Y1 (0) - O7y/1 (0) - 17y2 (0) = 2; Y3 (0) - 17
the exact solution is uy (t) = sin (), ua (t) = cos (t) + 1, us (t) = exp ().
To derive the solution, take the Laplace transform of both sides of (7) we get
s2Uy (8) — 1 — £ (tuhy (t)) — Uz (8) + 2 — £ (tuy (1)) = 0,
sUs(s) =24+ £(tv(t)) =V (s) + U1 (s) = £((t — 1) exp (1)),
v (t) —ty; = exp (t) — tsin (¢),

or
Un (5) = 5 £ (tuh (1) + U (s) — 5 + 5 £ (tur (1),
Us () = 2 L £(tu(B) + -V (s) — Us () + £((t ~ Dexp (1),

v (t) = tug +exp (t) — tsin(t),
In this line the mth—order deformation equation has the form
—
Ui,m(8) = xmUtm—1(8) = haR1 1 (U 1,m—1(5)),

Uz,m(8) = xmUz,m—1(s) = hQ%z,m(ﬁz,mq(S)),
VUm (t) = XmVm—1(t) = haRa (VU m-1(t)), m=1,2,3,...

or
Ur,m () = xmUi,m-1(s) + h1%1,m(ﬁ1,m—1(5))’
Usan(8) = XmUsm—1(5) + hoRo,m (T 2.m—1(5)), (8)
’Um(t) = Xm’l)mfl(t) + hgg%g’m(?mfl(t)), m = ]., 2, 3,
where
— 1 , 1
Rim(Usm-1(s)) = Ur(s) — 5 & (tuy 1 () — 2V2m-1(s)

1 1
- ?-’6 (tul,mfl (t) — 2 (1= Xm),

Raun(U2.n1(5) = Usn1(5) + £ (b0 (1)) = Vit () + Vs (5)

_ (i + £((t—1) exp(t))> (1 —=xm),
R3,m (0 m—1(t)) = vm1 (1) = tur -1 — (exp (t) — tsin () (1 = xm) ,

According to the initial condition in (8), we can choose the initial guess of U;(s) and
v(t) as follows:

1 2
Uio(s) = 2 Uso(s) = 3 vo(t) = 1.
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FIGURE 1. The h; -curve of 5th-order approximation for u;(0.2) and v(0.2).

Then the solution is

o0
wi(t) = Y uim(t), i =1,2,
m=0

v(t) = va(t).
m=0

The proper values of hy, hs, hs found from the h;-curve shown in Figure 1, it is clear
that the series of u;(t),v(t) convergent when —1.6 < h; < —0.3 ¢ = 1,2,3. Using
hi =hy = hg = —1in (8) we find that

0o t3 t5 t7 t9
t = m t = t - Tan aroeen
ui (t) Z:: urm (t) 6 7120 5040 362880

83
o

(t)=1+1 A
- 2 724 720 40320

23t t°
H=14+t+—4+— 4+ —+ — +---
U (t) + +2+6+24+120+

('5) (t) =

g
5
3

3
I
=

NE

v(t) =

0

3
]

The obtained series solutions are the Taylor series expansion of the exact solutions
up (t) =sin () ,ug (t) = cos (t) + 1,v (t) = exp (¢) .
Example 2. Consider the system of nonlinear DAEs of three variables:
uh — up + v =13,
uh — (t+1)u; = —tsinh (¢), (9)
ugv —tcosh (t) =0, uy (0) =0, uz (0) =1, v(0) =0,

the exact solution is given as uj (t) = sinh (¢), ug (t) = cosh (t), v (t) =t.
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To derive the solution, take the Laplace transform of both sides of (9) we get
sUL(s) — Ua(s) + £(t2v(t)) = £L(t3),
sUa(s) =1 — £((t+ Dui(t)) = £(—tsinh(z)),
£(uz(t)v(t)) — £(tcosh(t)) = 0,

or

—_

Uils) = JUs(s) = S £(P0(0) + £(°),

= ®»

Us(s) = = £((t + Dui(t)) + éf(—tsinh(t)) + %,
£(uz(t)v(t)) — £L(tcosh(t)) = 0.
The LHAM has the form
Uim(s) = XmUi,m—1(s) = h1§R1,m((—f>1,m—1(S))y
Uz, (8) = xmUzm—1(s) = h2§R27m(ﬁ>2,m—l(S)),
Vm(t) = XmUm—1(t) = haRzm (v

»

where

1
§R1,m(ﬁ)1,m—1(5)) - Ul,m—l(s) - EUZ,m—l(S) + g£(t2vm—1(t)) - £(t3)(1 - X'm);

Ran(U2.n-1(5)) = Usn-1(5) = T £((¢+ Dot (8)) = 5 (£(-5inb(0) + 1)1 = xm),

)

R3m(Vm—1(t)) = £(Zu27i(t)vm_i_1(t)) — £(tcosh(t))(1 — xm), m=1,2,3,...

According to the initial condition in (9), we can choose the initial guess of U(s)

and v(t) as follows:

1
Uio(s) =0, Usp(s) = 3 vo(t) = 0.

Hence, the mth-order deformation equations can be given by
Uim(s) = xmUim—1(s) + hi%i,m(ﬁmfl(s))a 1=1,2,
Vi (t) = XmVm—1(t) + hR3.m (Vm—1(2)), m=1,2,3,... (10)
subject to the initial condition

Ui (0) = v, (0) =0, i =1,2.

If hy = ho = hy = —1 in (10), then we obtain the following series solution
P 7 9
- =t —
ur(t) = uro(t *Z“Im % T 120 T 5040 " 362880 T
t2 tt t8 ¢
ug(t) = ugo(t *Z“m =S o T 720 T 10320 T 3628800 T

) = volt va =t +0+0+---

The obtained series solutions are the Taylor series expansion of the exact solutions
up (t) =sinh (¢), ug (t) = cosh (t), v (t) =t.
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Example 3. Consider the following system of differential-algebraic equations
uy(t) = up(t) — ug(t)v(t) + sin(t) + t cos(t),
uh(t) = to(t) + ud(t) + sec(t) — t*(sin?(t) + cos(t)) (11)
v(t) = uq(t) + t(cos(t) — sin(t)), u1(0) = u1(0) = v(0) =0,

the exact solution wuq(t) = tsin(t), ua(t) = tan(t), v(t) = tcos(t).
To derive the solution, take the Laplace transform of both sides of (11) we get

sU1L(s) = Ur(s) — £(uz(t)v(t)) + £L(sin(t) + t cos(t)),
sUy(s) = £(tv(t)) + £(ui(t)) + £(sec?(t) — t*(sin®(t) + cos(t))),
v(t) = w1 (t) + t(cos(t) — sin(t)),

or

Ui(s) = %Ul(s) — é£(uz(t)v(t)) + éi’(sin(t) + tcos(t)),

Us(s) = %.,E(tv(t)) + éf(u%(t)) + %.,E(secz(t) — t2(sin®(t) + cos(t))),
v(t) = uq(t) + t(cos(t) — sin(t)).
The LHAM has the form

Uim(s) = XmUi,m—1(s) = h1§}31,m(ﬁ1,m71(8)),
Un.in(8) = XmUsm—1(8) = haRom (T 2.m_1(s)),
U (t) — XmVUm—1(t) = h3§R3’m(7m,1(t)),m =1,2,3,
where
m—1
R (T 1 1(8)) = Vi1 (5) = <01 (5) 4~ £( waa(Bomi1(6)
=0

_ %f(sin(t) + tcos(t))(1 — xm)s

%2,771(5)271%—1(5)) = Um—-1(s) — éf(tvm—l(t)) - %f(mz_ w1 (t)ur,m—i—1(t))
i=0

- éi’(secQ(t) — t2(sin?(¢) + cos(t))) (1 — Xm),

R3m(Vim—1(t)) = Vim—1(t) — ur m—1(t) — (t(cos(t) — sin()))(1 — xm),m = 1,2,3, ...
According to the initial condition in (11), we can choose the initial guess of U(s) and
v(t) as follows:

Ur,0(s) =0, Uazp(s) =0, v(t) =0.
Hence, the mth-order deformation equations can be given by
Ui (5) = XmUsm-1(8) + hiRs.m (T s.m—1(5)),i = 1,2,
Vi (t) = XmVm—1(t) + h3R3.m (Vm—1(2)), m=1,2,3,... (12)
subject to the initial condition
Uim(0) =v,,(0) =0, i =1,2.

By plotting the h;-curves at high enough order approximation, one can find the
proper values hi, ho, hs. It is clear that the series of u;(t),v(t) are convergent when
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—1.4 < h; < —0.45, i =1,2,3; so, if we set hy = hg = hg = —1 in (1
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FIGURE 2. The h; -curve of 8th-order approximation for w(0.1), u2(0.4)
and v(0.3) of example 3.

obtain the following series solutions

46 8 t10
ug(t) = uq,0(t +Zu1m = _64_?0_50404—%
325 17T 62t°
_ (D) =t = 4
us(t) U20 +Zun +3+ 15+315 2835
t3 t5 t7 t9
)+ mZ:l” 5 "1 720 T 20320 T

2), then we

which are the same as the solutions given by F. Soltanian, S.M. Karbassi, M.M.
Hosseini [19] using He’s variational iteration method.

3. Conclusion

A combined form of the Laplace transform method with Homotopy analysis method
is effectively used to handle linear and nonlinear for system of differential-algebraic
equations. The main advantage of the method is its fast convergence to the solution.
Moreover, it avoids the volume of calculations that required by other existing ana-
lytical methods. In practice, the utilization of the method is straightforward if some
symbolic software as Matlab is used to implement the calculations. The new method
leads to higher accuracy and simplicity, and in all cases the solutions obtained are
easily programmable approximates to the analytic solutions of the original problems
with the accuracy required. The proposed scheme can be applied for other nonlinear

equations.
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