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Analytical approximate solutions of systems of
differential-algebraic equations by Laplace homotopy analysis
method

R. Al-masaeed and H.M. Jaradat

Abstract. This paper presents a numerical technique for solving system of differential-
algebraic equations (DAEs) by employing the Laplace homotopy analysis method (LHAM).
The biggest advantage over the existing standard analytical techniques is that it overcomes
the difficulty arising in calculating complicated terms. Numerical examples are examined to
highlight the significant features of this method. Moreover, the solution procedure is easier,
more effective and straightforward.
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Introduction

Differential–algebraic equations are normally obtained when modeling chemical en-
gineering systems. Chemical processes are modeled dynamically using differential–
algebraic equations. Chemical processes are inherently nonlinear and multivariable
and are typically modeled by coupled differential and algebraic equation. A system of
DAEs is characterized by its index, which is the number of differentiations required
to convert it into a system of ODEs. DAEs with index > 1 are generally hard to solve
and are still under active research.

In the past decades, both mathematicians and physicists have devoted considerable
effort to the study of explicit and numerical solutions to DAEs. Many powerful
methods have been presented [1-16, 19].

The subject of DAEs has researched and solidified only very recently (in the past
35 years). Through many exact solutions for linear DAEs has been found, in general,
there exists no method that yields an exact solution for nonlinear DAEs.

The objective of the present paper is to modify the LHAM to provide symbolic
approximate solutions for linear and nonlinear differential–algebraic equations. The
LHAM is a combination of HAM [17,18] and Laplace transforms.

Therefore, in this work we will introduce a new alternative procedure for solving
DAEs. The newly developed technique by no means depends on complicated tools
from any field. This can be the most important advantage over the other methods. It
is worth mentioning that the proposed algorithm is an elegant combination of Laplace
transform method and the homotopy analysis method. Some DAE are examined to
illustrate the effectiveness, accuracy and convenience of this method, and in all cases,
the presented technique performed excellently.
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1. Laplace Homotopy analysis method

In this section, we employ the Laplace homotopy analysis method to the discussed
problem. To show the basic idea, let us consider the DAEs

u′i(t) = fi(t, u1, u2, . . . , un, u′1, u
′
2, . . . , u

′
n), i = 1, 2, . . . , n− 1, (1)

0 = g(t, u1, u2, . . . , un),

subject to the initial conditions

ui(0) = ai, i = 1, 2, . . . , n

where fi are known analytical functions.
Applying the Laplace transform to both sides of system (1) and using linearity of

Laplace transforms we get

£[u′i(t)] = £[fi(t, u1, u2, . . . , un, u′1, u
′
2, . . . , u

′
n)], i = 1, 2, . . . , n− 1,

0 = g(t, u1, u2, . . . , un),

we get

Ui(s) =
ai

s
+

1
s
£[fi(t, u1, u2, . . . , un, u′1, u

′
2, . . . , u

′
n)], i = 1, 2, . . . , n− 1,

0 = g(t, u1, u2, . . . , un), (2)

where Ui(s) = £(ui(t)).
The so-called zeroth-order deformation equations of the Laplace Equations(2) are

(1− q)[Φi(s, q)− Ui,0(s)] = qhi[Φi(s, q)− ai

s

− 1
s
£[fi(t, φ1(t; q), . . . , φn(t; q),

∂

∂t
φ1(t; q), . . . ,

∂

∂t
φn(t; q))]],

(1− q)[φn(t; q)− un,0(t)] = −qhng(t, φ1(t; q), . . . , φn(t; q)), i = 1, 2, . . . , n− 1, (3)

where q ∈ [0, 1] is an embedding parameter, when q = 0 and q = 1, we have

Φi(s, 0) = Ui,0(s),Φi(s, 1) = Ui(s), i = 1, 2, . . . , n− 1,

φn(t; 0) = un,0(t), φn(t; 0) = un(t).

Expanding Φi(s, q), i = 1, 2, . . . , n − 1 and φn(t; q) in Taylor series with respect to q
we get

Φi(s; q) = Ui,0(s) +
∞∑

m=1

Ui,m(s)qm, i = 1, 2, . . . , n− 1,

φn(t; q) = un,0(t) +
∞∑

m=1

un,m(t)qm, (4)

where

Ui,m(s) =
1
m!

∂mΦi(s; q)
∂qm

|q=0, i = 1, 2, . . . , n− 1,

un,m(t) =
1
m!

∂mφn(t; q)
∂qm

|q=0.

If the initial guesses and the nonzero auxiliary parameters hi are properly chosen so
that the power series (4) converges at q = 1, then we have, under these assumptions
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the solution series

Ui(s) = Φi(s; 1) = Ui,0(s) +
∞∑

m=1

Ui,m(s), i = 1, 2, . . . , n− 1,

un(t) = φn(t; 1) = ui,0(t) +
∞∑

m=1

ui,m(t)

For brevity, define the vectors
−→
U i,m(s) = {Ui,0(s), Ui,1(s), Ui,2(s), . . . , Ui,m(s)}, i = 1, 2, . . . , n− 1,
−→u n,m(s) = {un,0(s), un,1(s), um,2(s), . . . , un,m(s)},

Differentiating the zero-order deformation equation (3) m times with respective to q,
dividing by m! and finally setting q = 0, we have the so-called high-order deformation
equation

Ui,m(s) = χmUi,m−1(s) + hi<i,m(
−→
U i,m−1(s)), i = 1, 2, . . . , n− 1, (5)

un,m(t) = χmun,m−1(t) + hn<n,m(−→u n,m−1(t))

where

<i,m(
−→
U i,m−1(s)) = Ui,m−1(s)− 1

s

[
1

(m− 1)!
∂m−1

∂qm−1
(£[fi(t, φ1(t; q), . . . , φn(t; q),

∂

∂t
φ1(t; q), . . . ,

∂

∂t
φn(t; q))])|q=0

]
− ai

s
(1− χm), i = 1, 2, . . . , n− 1,

<n,m(−→u n,m−1(t)) =
−1

(m− 1)!
∂m−1

∂qm−1
[g(t, φ1(t; q), . . . , φn(t; q))]|q=0,

and

χm =
{

0, m ≤ 1
1, m > 1 .

Finally, applying the inverse Laplace transforms of (5), then we have a power series
solution

ui(t) =
∞∑

m=0

ui,m(t), i = 1, 2, . . . , n (6)

Note that we have great freedom to choose the value of the auxiliary parameters hi.
Mathematically the value of ui(t) at any finite order of approximation depends upon
the auxiliary parameter hi, because the zeroth and high order deformation equations
contain hi. Let Rhi denote the set of all values of hi which ensure the convergence of
the HAM series solution (6) of ui(t). Let hi be the variable of the horizontal axis and
the limit of the series solution (6) of ui(t) be the variable of vertical axis. Plot the
curve ui(t) ∼ hi, where ui(t) denotes the limit of the series (6). Because the limit of
all convergent series solutions (6) is the same for a given a, there exists a horizontal
line segment above the region h ∈ Rhi . So, by plotting the curve ui(t) ∼ hi at a high
enough order approximation, one can find an approximation of the set Rhi .

2. Applications

In this part, we introduce some applications on LHAM to solve differential-algebraic
equations with fractional derivatives.
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Example 1. Consider the following system of linear DAEs :

u′′1 − (t + 1) u′2 − tu1 = 0,

u′2 + (t− 1) v + u1 = (t− 1) exp (t) , (7)

v − tu1 = exp (t)− t sin (t) , y1 (0) = 0, y′1 (0) = 1, y2 (0) = 2, y3 (0) = 1,

the exact solution is u1 (t) = sin (t) , u2 (t) = cos (t) + 1, u3 (t) = exp (t) .
To derive the solution, take the Laplace transform of both sides of (7) we get

s2U1 (s)− 1−£ (tu′2 (t))− U2 (s) + 2−£ (tu1 (t)) = 0,

sU2 (s)− 2 + £ (tv (t))− V (s) + U1 (s) = £((t− 1) exp (t)),

v (t)− ty1 = exp (t)− t sin (t) ,

or

U1 (s) =
1
s2

£ (tu′2 (t)) +
1
s2

U2 (s)− 1
s2

+
1
s2

£ (tu1 (t)) ,

U2 (s) =
2
s
− 1

s
£ (tv (t)) +

1
s
V (s)− 1

s
U1 (s) + £((t− 1) exp (t)),

v (t) = tu1 + exp (t)− t sin (t) ,

In this line the mth−order deformation equation has the form

U1,m(s)− χmU1,m−1(s) = h1<1,m(
−→
U 1,m−1(s)),

U2,m(s)− χmU2,m−1(s) = h2<2,m(
−→
U 2,m−1(s)),

vm(t)− χmvm−1(t) = h3<3,m(−→v m−1(t)), m = 1, 2, 3, . . .

or

U1,m(s) = χmU1,m−1(s) + h1<1,m(
−→
U 1,m−1(s)),

U2,m(s) = χmU2,m−1(s) + h2<2,m(
−→
U 2,m−1(s)), (8)

vm(t) = χmvm−1(t) + h3<3,m(−→v m−1(t)), m = 1, 2, 3, . . .

where

<1,m(
−→
U 1,m−1(s)) = U1 (s)− 1

s2
£

(
tu′2,m−1 (t)

)− 1
s2

U2,m−1 (s)

− 1
s2

£ (tu1,m−1 (t))− 1
s2

(1− χm) ,

<2,m(
−→
U 2,m−1(s)) = U2,m−1(s) +

1
s
£ (tvm−1 (t))− 1

s
Vm−1 (s) +

1
s
U1,m−1 (s)

−
(

2
s

+ £((t− 1) exp(t))
)

(1− χm) ,

<3,m(−→v m−1(t)) = vm−1 (t)− tu1,m−1 − (exp (t)− t sin (t)) (1− χm) ,

According to the initial condition in (8), we can choose the initial guess of Ui(s) and
v(t) as follows:

U1,0(s) =
1
s2

, U2,0(s) =
2
s
, v0(t) = 1.
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Figure 1. The hi -curve of 5th-order approximation for ui(0.2) and v(0.2).

Then the solution is

ui(t) =
∞∑

m=0

ui,m(t), i = 1, 2,

v (t) =
∞∑

m=0

vm (t) .

The proper values of h1, h2, h3 found from the hi-curve shown in Figure 1, it is clear
that the series of ui(t), v(t) convergent when −1.6 ≤ hi ≤ −0.3 i = 1, 2, 3. Using
h1 = h2 = h3 = −1 in (8) we find that

u1 (t) =
∞∑

m=0

u1,m (t) = t− t3

6
+

t5

120
− t7

5040
+

t9

362880
− · · ·

u2 (t) =
∞∑

m=0

u2,m (t) = 1 + 1− t2

2
+

t4

24
− t6

720
+

t8

40320
− · · ·

v (t) =
∞∑

m=0

vm (t) = 1 + t +
t2

2
+

t3

6
+

t4

24
+

t5

120
+ · · ·

The obtained series solutions are the Taylor series expansion of the exact solutions
u1 (t) = sin (t) , u2 (t) = cos (t) + 1, v (t) = exp (t) .
Example 2. Consider the system of nonlinear DAEs of three variables:

u′1 − u2 + t2v = t3,

u′2 − (t + 1) u1 = −t sinh (t) , (9)

u2v − t cosh (t) = 0, u1 (0) = 0, u2 (0) = 1, v (0) = 0,

the exact solution is given as u1 (t) = sinh (t) , u2 (t) = cosh (t) , v (t) = t.
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To derive the solution, take the Laplace transform of both sides of (9) we get

sU1(s)− U2(s) + £(t2v(t)) = £(t3),

sU2(s)− 1−£((t + 1)u1(t)) = £(−t sinh(t)),

£(u2(t)v(t))−£(t cosh(t)) = 0,

or

U1(s) =
1
s
U2(s)− 1

s
£(t2v(t)) + £(t3),

U2(s) =
1
s
£((t + 1)u1(t)) +

1
s
£(−t sinh(t)) +

1
s
,

£(u2(t)v(t))−£(t cosh(t)) = 0.

The LHAM has the form

U1,m(s)− χmU1,m−1(s) = h1<1,m(
−→
U 1,m−1(s)),

U2,m(s)− χmU2,m−1(s) = h2<2,m(
−→
U 2,m−1(s)),

vm(t)− χmvm−1(t) = h3<3,m(−→v m−1(t)), m = 1, 2, 3, . . .

where

<1,m(
−→
U 1,m−1(s)) = U1,m−1(s)− 1

s
U2,m−1(s) +

1
s
£(t2vm−1(t))−£(t3)(1− χm),

<2,m(
−→
U 2,m−1(s)) = U2,m−1(s)− 1

s
£((t + 1)u1,m−1(t))− 1

s
(£(−t sinh(t)) + 1)(1− χm),

<3,m(−→v m−1(t)) = £(
m−1∑

i=0

u2,i(t)vm−i−1(t))−£(t cosh(t))(1− χm), m = 1, 2, 3, . . .

According to the initial condition in (9), we can choose the initial guess of U(s)
and v(t) as follows:

U1,0(s) = 0, U2,0(s) =
1
s
, v0(t) = 0.

Hence, the mth-order deformation equations can be given by

Ui,m(s) = χmUi,m−1(s) + hi<i,m(
−→
U m−1(s)), i = 1, 2,

vm(t) = χmvm−1(t) + h3<3,m(−→v m−1(t)), m = 1, 2, 3, . . . (10)

subject to the initial condition

ui,m(0) = vm(0) = 0, i = 1, 2.

If h1 = h2 = h3 = −1 in (10), then we obtain the following series solution

u1(t) = u1,0(t) +
∞∑

m=1

u1,m(t) = t +
t3

6
+

t5

120
+

t7

5040
+

t9

362880
+ · · ·

u2(t) = u2,0(t) +
∞∑

m=1

um(t) = 1 +
t2

2
+

t4

24
+

t6

720
+

t8

40320
+

t10

3628800
+ · · ·

v(t) = v0(t) +
∞∑

m=1

vm(t) = t + 0 + 0 + · · ·

The obtained series solutions are the Taylor series expansion of the exact solutions
u1 (t) = sinh (t) , u2 (t) = cosh (t) , v (t) = t.
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Example 3. Consider the following system of differential-algebraic equations

u′1(t) = u1(t)− u2(t)v(t) + sin(t) + t cos(t),

u′2(t) = tv(t) + u2
1(t) + sec2(t)− t2(sin2(t) + cos(t)) (11)

v(t) = u1(t) + t(cos(t)− sin(t)), u1(0) = u1(0) = v(0) = 0,

the exact solution u1(t) = t sin(t), u2(t) = tan(t), v(t) = t cos(t).
To derive the solution, take the Laplace transform of both sides of (11) we get

sU1(s) = U1(s)−£(u2(t)v(t)) + £(sin(t) + t cos(t)),

sU2(s) = £(tv(t)) + £(u2
1(t)) + £(sec2(t)− t2(sin2(t) + cos(t))),

v(t) = u1(t) + t(cos(t)− sin(t)),

or

U1(s) =
1
s
U1(s)− 1

s
£(u2(t)v(t)) +

1
s
£(sin(t) + t cos(t)),

U2(s) =
1
s
£(tv(t)) +

1
s
£(u2

1(t)) +
1
s
£(sec2(t)− t2(sin2(t) + cos(t))),

v(t) = u1(t) + t(cos(t)− sin(t)).

The LHAM has the form

U1,m(s)− χmU1,m−1(s) = h1<1,m(
−→
U 1,m−1(s)),

U2,m(s)− χmU2,m−1(s) = h2<2,m(
−→
U 2,m−1(s)),

vm(t)− χmvm−1(t) = h3<3,m(−→v m−1(t)),m = 1, 2, 3, . . .

where

<1,m(
−→
U 1,m−1(s)) = U1,m−1(s)− 1

s
U1,m−1(s) +

1
s
£(

m−1∑

i=0

u2,i(t)vm−i−1(t))

− 1
s
£(sin(t) + t cos(t))(1− χm),

<2,m(
−→
U 2,m−1(s)) = U2,m−1(s)− 1

s
£(tvm−1(t))− 1

s
£(

m−1∑

i=0

u1,i(t)u1,m−i−1(t))

− 1
s
£(sec2(t)− t2(sin2(t) + cos(t)))(1− χm),

<3,m(−→v m−1(t)) = vm−1(t)− u1,m−1(t)− (t(cos(t)− sin(t)))(1− χm),m = 1, 2, 3, . . .

According to the initial condition in (11), we can choose the initial guess of U(s) and
v(t) as follows:

U1,0(s) = 0, U2,0(s) = 0, v0(t) = 0.

Hence, the mth-order deformation equations can be given by

Ui,m(s) = χmUi,m−1(s) + hi<i,m(
−→
U i,m−1(s)), i = 1, 2,

vm(t) = χmvm−1(t) + h3<3,m(−→v m−1(t)), m = 1, 2, 3, . . . (12)

subject to the initial condition

ui,m(0) = vm(0) = 0, i = 1, 2.

By plotting the hi-curves at high enough order approximation, one can find the
proper values h1, h2, h3. It is clear that the series of ui(t), v(t) are convergent when
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Figure 2. The hi -curve of 8th-order approximation for u1(0.1), u2(0.4)
and v(0.3) of example 3.

−1.4 ≤ hi ≤ −0.45, i = 1, 2, 3; so, if we set h1 = h2 = h3 = −1 in (12), then we
obtain the following series solutions

u1(t) = u1,0(t) +
∞∑

m=1

u1,m(t) = t2 − t4

6
+

t6

120
− t8

5040
+

t10

362880
+ · · ·

u2(t) = u2,0(t) +
∞∑

m=1

um(t) = t +
t3

3
+

2t5

15
+

17t7

315
+

62t9

2835
+ · · ·

v(t) = v0(t) +
∞∑

m=1

vm(t) = t− t3

2
+

t5

24
− t7

720
+

t9

40320
+ · · ·

which are the same as the solutions given by F. Soltanian, S.M. Karbassi, M.M.
Hosseini [19] using He’s variational iteration method.

3. Conclusion

A combined form of the Laplace transform method with Homotopy analysis method
is effectively used to handle linear and nonlinear for system of differential-algebraic
equations. The main advantage of the method is its fast convergence to the solution.
Moreover, it avoids the volume of calculations that required by other existing ana-
lytical methods. In practice, the utilization of the method is straightforward if some
symbolic software as Matlab is used to implement the calculations. The new method
leads to higher accuracy and simplicity, and in all cases the solutions obtained are
easily programmable approximates to the analytic solutions of the original problems
with the accuracy required. The proposed scheme can be applied for other nonlinear
equations.
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