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Local Greatest Equivalence Classes of ω-trees

Nicolae Ţăndăreanu and Cristina Zamfir

Abstract. In [18] we defined the concept of ω-labeled tree as a binary, ordered and labeled
tree with several features concerning the labels and order between the direct descendants
of a node. In [19] we introduced an equivalence relation ≃ on the set OBT (ω) of ω-trees

and a partial order on the factor set OBT (ω)/≃. In this paper we decompose the factor
set OBT (ω)/≃ into disjoint ”local” subsets K, we show that if the relation defined by the
mapping ω is a noetherian one then every local subset K has a greatest element, we define

an increasing operator on the set OBT (ω)/≃, which allows to obtain the greatest element of
a local subset. In order to relieve the local features of a subset K we give an example which
shows that the greatest element of K is not necessarily a maximal element of the factor set.
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1. Introduction

More and more the algebraic structures are used in the computer science domain.
This can be explained by the fact that the sets without any explicit operations are
not of interest. An algebraic structure links the sets and their operations. Frequently
the algebraic structures are viewed as universal algebras to obtain an uniform char-
acterization.

The methods of the graph theory were fully implied in the domain of knowledge
representation. The graph theory was combined with the mathematical logic and the
universal algebras to obtain improved methods of knowledge representation. In order
to enumerate only some of them we relieve the aspects treated in [2] [5], [6], [9], [12],
[14], [15] [16], [17]. The implications of the algebraic methods into deductive systems
is also a fruitful research area ([3], [4], [10]). Various algebraic structures of trees were
used to obtains models in artificial intelligence ([7], [8], [11], [13], [18], [19], [20]).

In this paper we develop the ideas initiated in [18] and [19]. The final task of this
research line is to build a mathematical description of the process of communication
between the entities of a cooperating system. These results will be used to describe
the valuation process in master-slave systems based on semantic schemas ([17]).

In [18] we defined the concept of ω-labeled tree. In [19] we introduced an equiv-
alence relation ≃ on the set OBT (ω) of ω-trees and a partial order ⊑ on the factor
set OBT (ω)/≃ such that (OBT (ω)/≃,⊑) becomes a partial ordered set. We define
a decomposition OBT (ω)/≃ =

∪
i Ki and Ki is named a local subset of OBT (ω)/≃.

Two distinct local subsets are disjoint. We show that if the relation defined by the
mapping ω is a noetherian one then every local subset Ki has a greatest element. We
define an increasing operator with respect to ⊑ on the set OBT (ω)/≃. This operator
allows to obtain the greatest element of a local subset. In order to relieve the local
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feature of a subset Ki we show by an example that the greatest element of Ki is not
necessarily a maximal element of the set OBT (ω)/≃.

The paper is organized as follows. In section 2 we recall the basic concepts and
results used in this paper. In Section 3 we define the increasing operator that allows
to build the greatest element of a local subset. In Section 4 we present the aspects
connected by the existence of the local greatest element and we give a method to
obtain such an element. The last section contains the conclusions and future works.

2. Basic concepts

A directed ordered graph ([1]) is a pair G = (A,D), where
• A is a finite set of elements called nodes
• D is a finite set of elements of the form [(i, i1), . . . , (i, in)], where n ≥ 1 and
i, i1, . . .,in ∈ A

• D satisfies the following condition: if [(i, i1), . . . , (i, in)] ∈ D and [(j, j1), . . . ,
(j, js)] ∈ D then i ̸= j.

If G = (A,D) is a directed ordered graph then we can associate to G a directed graph
G′ = (A,D′), where D′ = {(i, j) | ∃[(i, i1), . . . , (i, in)] ∈ D, ∃r ∈ {1, . . . , n} : j = ir}.
An ordered tree is a directed ordered graph G = (A,D) such that G′ is a tree and the
following property is satisfied:

[(i, i1), . . . , (i, in)] ∈ D, j, r ∈ {1, . . . , n}, j ̸= r ⇒ ij ̸= ir (1)

Let L = LN ∪ LT be a set of labels such that LN ∩ LT = ∅. The elements of LN

are called nonterminal labels and those of LT are called terminal labels. The elements
of L are called labels. A split mapping on L ([18]) is a function ω : LN −→ L× L.
An ω-tree ([18]) is a tuple t = (A,D, h), where

• (A,D) is an ordered tree and every element of D is of the form [(i, i1), (i, i2)];
• h : A −→ L is a mapping such that if [(i, i1), (i, i2)] ∈ D then{

h(i) ∈ LN

ω(h(i)) = (h(i1), h(i2))

For each i ∈ A the element h(i) is called the label of the node i. The mapping h is
named the labeling mapping of t.

By OBT (ω) we denote the set of all ω-trees. An element t = (A,D, h) such that
D = ∅ is named a degenerate element of OBT (ω).

Let t1 = (A1, D1, h1) and t2 = (A2, D2, h2) be two elements of OBT (ω) and an
arbitrary mapping α : A1 −→ A2. For every u = [(i, i1), (i, i2)], where i, i1, i2 ∈ A1,
we denote α(u) = [(α(i), α(i1)), (α(i), α(i2))].

If t = (A,D, h) is an ω-tree then we denote by root(t) the element of A designated
by the root of t. If i ∈ A then by t(i) we denote the subtree of t such that root(t(i)) = i.

If t1 = (A1, D1, h1) ∈ OBT (ω) and t2 = (A2, D2, h2) ∈ OBT (ω) then we write
t1 ≼ t2 ([18]) if there is a mapping α : A1 −→ A2 such that:

α(D1) ⊆ D2 (2)

h1(root(t1)) = h2(α(root(t1))) (3)

Such a mapping α is an embedding mapping of t1 into t2. The relation ≼ is
reflexive and transitive, but is not antisymmetric.

We define the binary relation ≃ on the set OBT (ω) as follows: t1 ≃ t2 if t1 ≼ t2
and t2 ≼ t1. This is an equivalence relation ([19]). We denote by OBT (ω)/≃ the
factor set. If t ∈ OBT (ω) then by [t] we denote the equivalence class of t.
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Let us consider [t1] ∈ OBT (ω)/≃ and [t2] ∈ OBT (ω)/≃. We define the relation
[t1] ⊑ [t2] if t1 ≼ t2. The relation ⊑ does not depend on representatives. The pair
(OBT (ω)/≃,⊑) is a partial ordered set ([19]).

We define recursively the mapping F : OBT (ω) −→ L∗ as follows ([20]):
• If t = ({i}, ∅, h) is a degenerate element of OBT (ω) then F (t) = h(i).
• If t = (A,D, h) ∈ OBT (ω), [(root(t), i), (root(t), j)] ∈ D then by means of the
concatenation operation on L∗ we define

F (t) = F (t(i))F (t(j))

For every k ≥ 1 we define the operator Tk : OBT (ω) −→ OBT (ω) as follows: Tk(t) is
obtained from t by deleting all nodes which are reachable from root(t) by a path of
length greater than k. Tk is named the slicing operator ([20]). The operator Tk is
well defined ([20]). In other words, if t ∈ OBT (ω) then Tk(t) ∈ OBT (ω). If t1 ≃ t2
then for every k ≥ 1 we have Tk(t1) ≃ Tk(t2) and the embedding mapping of Tk(t1)
into Tk(t2) is the restriction of the embedding mapping of t1 into t2 ([20]). If t1 ≃ t2
then F (t1) = F (t2) ([20]).

Consider an element t = (A,D, h) ∈ OBT (ω) such that F (t) = w1h(i1)w2 . . . wn

h(in)wn+1 /∈ L∗
T , where w1, . . . , wn+1 ∈ L∗

T and h(i1), . . . , h(in) ∈ LN . An immedi-
ate extension ([20]) of t is an element t1 = (A1, D1, h1) ∈ OBT (ω) such that

A1 = A ∪
∪

i∈{i1,...,in}

{ji,1, ji,2} (4)

D1 = D ∪
∪

i∈{i1,...,in}

{[(i, ji,1), (i, ji,2)]} (5)

h1(x) = h(x) for x ∈ A (6)

We denote by E(t) the set of all immediate extensions of t. If t ∈ OBT (ω) and
F (t) ∈ L∗

T then we take E(t) = [t].

3. An increasing operator on OBT (ω)/≃

In [20] we proved that
∪

t0∈[t] E(t0) is an equivalence class. More precisely, we have

the following proposition:

Proposition 3.1. ([20]) If t ∈ OBT (ω) then∪
t0∈[t]

E(t0) ∈ OBT (ω)/≃ (7)

Moreover, if t1 ∈ E(t) then
∪

t0∈[t] E(t0) = [t1].

Another useful result is specified in the next proposition.

Proposition 3.2. ([20]) If t = (A,D, h) ∈ OBT (ω) and F (t) /∈ L∗
T then

(1) t ≺ t1 for all t1 ∈ E(t)
(2) if t1 ∈ E(t) and t2 ∈ E(t) then t1 ≃ t2

This property allows us to define an operator on the factor set OBT (ω)/≃ as we
specify in the next definition.



ω-TREES 35

Definition 3.1. We define the operator U : OBT (ω)/≃ −→ OBT (ω)/≃ as follows

U([t]) =


[t] if F (t) ∈ L∗

T∪
t0∈[t] E(t0) if F (t) /∈ L∗

T

(8)

Proposition 3.3. For every t ∈ OBT (ω) we have [t] ⊑ U([t]).

Proof. If F (t) ∈ L∗
T then U([t]) = [t]. But [t] ⊑ [t] because ⊑ is reflexive. It follows

that in this case we have [t] ⊑ U([t]). Consider now that F (t) /∈ L∗
T . In this case we

have U([t]) =
∪

t0∈[t] E(t0). By Proposition 3.1 we have U([t]) = [t1], where t1 ∈ E(t)

is an arbitrary element. By Proposition 3.2 we have t ≺ t1, therefore [t] ⊑ [t1]. In
other words we have [t] ⊑ U([t]). �

The following property is a useful one to obtain other properties of the operator
U .

Proposition 3.4. If t1 ≼ t2, t
∗
1 ∈ E(t1) and t∗2 ∈ E(t2) then t∗1 ≼ t∗2.

Proof. Denote t1 = (A1, D1, h1) and t2 = (A2, D2, h2). Consider an embedding map-
ping α : A1 −→ A2 of t1 into t2. This means that

u ∈ D1 =⇒ α(u) ∈ D2 (9)

h1(root(t1) = h2(α(root(t1))) (10)

From the properties of an embedding mapping we know that h1(i) = h2(α(i)) for
every i ∈ A1.
Take t∗1 = (A∗

1, D
∗
1 , h

∗
1) ∈ E(t1) and t∗2 = (A∗

2, D
∗
2 , h

∗
2) ∈ E(t2). From (4), (5) and (6)

we can suppose that the components of t∗1 and t∗2 satisfy the following conditions:

A∗
1 = A1 ∪

∪
i∈{i1,...,in}

{ji,1, ji,2}

D∗
1 = D1 ∪

∪
i∈{i1,...,in}

{[(i, ji,1), (i, ji,2)]}

We define the mapping α∗ : A∗
1 −→ A∗

2 as follows:
1) α∗(x) = α(x) for x ∈ A1;
2) We have

A∗
1 \A1 = {ji1,1, ji1,2, . . . , jin,1, jin,2} (11)

and
D∗

1 \D1 = {[(i1, ji1,1), (i1, ji1,2)], . . . , [(in, jin,1), (in, jin,2)]} (12)

Take an element z ∈ A∗
1 \ A1. From (11) we can suppose that z = jim,1 for some

m ∈ {1, . . . , n}. From (12) we deduce that [(im, jim,1), (im, jim,2)] ∈ D∗
1 \ D1. We

have h2(α(im)) = h1(im) and h1(im) ∈ LN , therefore h2(α(im)) ∈ LN . We have to
consider the following two cases:

1) α(im) is not a leaf of t2.
In this case there is [(α(im), r1), (α(im), r2)] ∈ D2.

2) α(im) is a leaf of t2.
In this case there is [(α(im), r1), (α(im), r2)] ∈ D∗

2 \D2.
Both in the first case and in the second case we take α∗(z) = α∗(jim,1) = r1 and
α∗(jim,2) = r2. Now we can prove that α∗(D∗

1) ⊆ D∗
2 .

Take an arbitrary element u ∈ D∗
1 . If u ∈ D1 then α(u) ∈ D2, therefore α∗(u) ∈ D2

because α∗ extends α. If u ∈ D∗
1 \ D1 then u = [(im, jim,1), (im, jim,2)]. If α(im) is

not a leaf of t2 then α∗(u) ∈ D2. If α(im) is a leaf of t2 then α∗(u) ∈ D∗
2 \ D2. In

fact we have α∗(u) ∈ D∗
2 and the property is proved. �
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Proposition 3.5. U : (OBT (ω)/≃,⊑) −→ (OBT (ω)/≃,⊑) is an increasing opera-
tor.

Proof. Suppose that [t1] ⊑ [t2]. We have to prove that

U([t1]) ⊑ U([t2]) (13)

If F (t1) ∈ L∗
T then U([t1]) = [t1]. From Proposition 3.3 we obtain [t2] ⊑ U([t2]).

It follows that U([t1]) = [t1] ⊑ [t2] ⊑ U([t2]). It follows that in this case (13) is
true. It remains to consider the case F (t1) /∈ L∗

T . Denote t1 = (A1, D1, h1) and
t2 = (A2, D2, h2). The relation [t1] ⊑ [t2] can be written equivalently as t1 ≼ t2. Take
t∗1 = (A∗

1, D
∗
1 , h

∗
1) ∈ E(t1) and t∗2 = (A∗

2, D
∗
2 , h

∗
2) ∈ E(t2). From Proposition 3.1 we

have U([t1]) = [t∗1] and U([t2]) = [t∗2]. Now we apply Proposition 3.4 and deduce that
t∗1 ≼ t∗2. In other words we have (13). �

Definition 3.2. We define the mapping F : OBT (ω)/≃ −→ L∗ by F([t]) = F (t).

The next proposition shows that the above definition is a correct one.

Proposition 3.6. The definition of the mapping F does not depend on representa-
tives.

Proof. Really, if t1 ≃ t2 then F (t1) = F (t2) ([20]). �

It is known that a binary relation ρ ⊆ X × X is named a noetherian relation on
X if can not find an infinite sequence

x1, x2, . . . , xn, . . .

such that

x1ρx2, x2ρx3, . . . , xiρxi+1, . . .

Obviously a reflexive binary relation is not a noetherian relation because the sequence
x, x, . . . satisfies the condition xρx.

Remark 3.1. If a finite sequence x1, x2, x3, . . . , xn, xn+1 contains two identical ele-
ments and xiρxi+1 for i ∈ {1, . . . , n} then ρ is not a noetherian relation. Really, if
i < j and xi = xj then x1, . . . , xi, xi+1, . . . , xj , xi+1, . . . , xj , . . . is an infinite sequence
of consecutive elements belonging to ρ.

Definition 3.3. The binary relation ρω generated by ω is the binary relation ρω ⊆
L × L defined as follows: xρωy if and only if there is z ∈ L such that ω(x) = (y, z)
or ω(x) = (z, y).

Proposition 3.7. Suppose that ρω is a noetherian relation and t0 ∈ OBT (ω). The
sequence (rn)n≥1 defined by {

r1 = [t0]
rn+1 = U(rn), n ≥ 1

(14)

satisfies the following properties:
• r1 ⊑ r2 ⊑ . . . ⊑ rn ⊑ . . .
• There is a natural number k0 ≥ 1 such that r1 < r2 < . . . < rk0 = rk0+j for
every j ≥ 1.

• F(rk0) ∈ L∗
T

• If t0 = (A0, D0, h0) and tj = (Aj , Dj , hj) ∈ rj+1 then h0(root(t0)) = hj(root(tj))
for every j ≥ 1.
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Proof. 1) We consider the first case, F (t0) ∈ L∗
T .

We prove by induction on i ≥ 0 that F(ri) ∈ L∗
T . For i = 0 this property is true

because F(r1) = F (t0) and F (t0) ∈ L∗
T . Suppose that this property is true for some

i ≥ 0. But ri+1 = U(ri) and from Definition 3.1 we have U(ri) = ri because F(ri) ∈
L∗
T by the inductive assumption. It follows that F(ri+1) ∈ L∗

T . As a consequence we
have r1 = r2 = . . . and the proposition is proved and k0 = 1.

2) We consider the second case, F (t0) /∈ L∗
T .

The property
r1 ⊑ r2 ⊑ . . . ⊑ rn ⊑ . . . (15)

is obtained from Proposition 3.3 and Proposition 3.5. We prove that in the sequence
(15) there is n0 ≥ 1 such that rn0 = rn0+1.
In order to prove this property we suppose, by contrary, that ri < ri+1 for every i ≥ 1.
In other words, the relation (15) is an infinite sequence of the form

r1 < r2 < . . . < rn < . . . (16)

From (16) we deduce that for every i ≥ 1 we have F(ri) /∈ L∗
T . Really, if for some

i ≥ 1 we have F(ri) ∈ L∗
T then U(ri) = ri. But U(ri) = ri+1, therefore ri = ri+1 and

this fact contradicts (16).
Using (8) we obtain for every i ≥ 1:

ri+1 =
∪
t∈ri

E(t) (17)

For each i ≥ 1 take an arbitrary, but fixed element ti ∈ E(ti−1). We verify by
induction on i ≥ 1 the property ti ∈ ri+1. We have r1 = [t0], therefore t0 ∈ r1. From
(17) we have t1 ∈ E(t0) ⊆ r2 and thus the property is true for i = 1. If we suppose
that ti ∈ ri+1 then ti+1 ∈ E(ti) ⊆ ri+2. It follows that ti ∈ ri+1 for every i ≥ 0. But
F (ti) = F(ri+1) and therefore F (ti) /∈ L∗

T because F(ri+1) /∈ L∗
T .

We obtained an infinite sequence t0 ≺ t1 ≺ . . . ≺ tn ≺ . . . of successive immediate
extensions. It follows that for every i ≥ 0 there is a leaf qni of ti such that hi(qni) ∈
LN . Consider a natural number i > Card(LN ). Denote root(t0) = q0. By the general
properties of a tree and because ti+1 is an immediate extension of ti we deduce that
there is

(q0, p1, . . . , ps, qn0 , qn1 , . . . qni) ∈ Path(ti)

such that
• (q0, p1, . . . , ps, qn0) ∈ Path(t0)
• (q0, p1, . . . , ps, qn0 , qn1 , . . . qnj ) ∈ Path(tj) for j ∈ {1, . . . , i}.
Moreover, every node of these paths is labeled by a nonterminal in the correspond-

ing tree:
{hi(q0), hi(p1), . . . , hi(qn0), hi(qn1), . . . , hi(qni)} ⊆ LN

To simplify the notation we denote m0 = q0, m1 = q1, . . ., ms = ps, ms+1 = qn0 ,
ms+2 = qn1 , . . ., ms+i+1 = qni . Tacking into account the definition of ρω we obtain
hi(mj)ρωhi(mj+1) for j ∈ {0, . . . , s+i}. Because i > Card(LN ) and LN is a finite set,
in the sequence {hi(mj)}j∈{0,...,s+i} there are j1 and j2 such that hi(mj1) = hi(mj2).
By Remark 3.1 this is not possible because ρω is a noetherian binary relation. It
results that our assumption (16) is false.

Let us denote by k0 the least natural number such that rk = rk+1, therefore
r1 < t2 < . . . < rk0 = rk0+1. In this case we have rk0 = U(rk0). In other words we
have F(rk0) ∈ L∗

T .
The last sentence of the proposition is proved by induction on j. We verify this

sentence for j = 1. We have t0 ∈ r1, t1 ∈ r2 and r1 < r2. It follows that t1 ∈ U([t0])
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and more precisely we have t1 ∈ E(t) for some t ∈ [t0]. From t1 ∈ E(t) we obtain
root(t1) = root(t) and h1(root(t1)) = h(root(t)), where h is the labeling mapping of
t. From t ∈ [t0] we have h(root(t)) = h0(root(t0)). It follows that h1(root(t1)) =
h0(root(t0)). Thus the property is verified for j = 1.

We suppose that the property is true for every j ∈ {0, . . . , n − 1} and take
tn ∈ rn+1. If rn+1 = rn then the property is proved. It remains to study the case
rn < rn+1. By the inductive assumption we have h0(root(t0)) = hn−1(root(tn−1)).
Obviously tn ∈ E(tn−1), therefore root(tn) = root(tn−1). Moreover, hn(root(tn)) =
hn−1(root(tn−1)). It follows that h0(root(t0)) = hn(root(tn)), therefore the property
is true for j = n. �

4. Local partial ordered sets of ω-trees and their greatest elements

For every a ∈ LN we consider the set

OBTa(ω) = { t ∈ OBT (ω) | t = (A,D, h), h(root(t)) = a}

We remark that

OBT (ω)/≃ =
∪

a∈LN

OBTa(ω)/≃

OBTa(ω)/≃ ∩OBTb(ω)/≃ = ∅
for a ̸= b. In this way we obtained a partition of the set OBT (ω)/≃.

For each a ∈ LN we can consider the partial ordered set (OBTa(ω)/≃,⊑). Such a
structure is named local partial ordered set of ω-trees.

In this section we study the greatest element of a local partial ordered set of ω-trees.

Proposition 4.1. Suppose that ρω is a noetherian relation and a ∈ LN . Let us
consider t1, t2 ∈ OBTa(ω). If t1 ≼ t2 and α is an embedding mapping of t1 into t2
then α(root(t1)) = root(t2).

Proof. Suppose that t1 = (A1, D1, h1), t2 = (A2, D2, h2), α(root(t1)) = j and j ̸=
root(t2). There is a path (root(t2), q1, . . . , qm, j) ∈ Path(t2). Take the sequence
h2(root(t2)), h2(q1), . . . , h2(qm), h2(j).

We have h2(root(t2)) = a because t2 ∈ OBTa(ω) and h2(j) = a. Really, h2(α(i)) =
h1(i) for every i therefore we have h2(j) = h2(α(root(t1))) = h1(root(t1)) = a. It
follows that we have the sequence aρωh(q1), h(q1)ρωh(q2), . . . , h(qm)ρωh(j), where
h(j) = a and thus there is an infinite sequence of elements from LN such that two by
two belong to ρω. This is not possible because ρω is a noetherian relation. �

Proposition 4.2. Suppose that ρω is a noetherian relation and a ∈ LN . If t0 ∈
OBTa(ω) then the element rk0 given by Proposition 3.7 is the greatest element of the
partial ordered set (OBTa(ω)/≃,⊑).

Proof. We have to prove the following two properties:
(i) rk0 ∈ OBTa(ω)/≃
(ii) For every [t] ∈ OBTa(ω)/≃ we have [t] ⊑ rk0 .

Consider a representative tk0 = (Ak0 , Dk0 , hk0) of rk0 . The sentence (i) is obtained
immediately from Proposition 3.7 because

a = h0(root(t0)) = hk0(root(tk0))

Let us prove the sentence (ii). Take an arbitrary element t = (A,D, h) ∈ OBTa(ω).
We shall build an embedding mapping α : A −→ Ak0 of t into tk0 such that α is
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an embedding mapping of Tk(t) into Tk(tk0) for every k ≥ 1, where Tk is the slicing
operator.

The first step in this construction is to define

α(root(t)) = root(tk0) (18)

We have hk0(α(root(t))) = hk0(root(tk0)) = a and h(root(t)) = a because tk0 , t ∈
OBTa(ω). It follows that hk0(α(root(t))) = h(root(t)).

Because an ω-tree can not contain a single node we deduce that there are the
elements [(root(t), i1), (root(t), i2)] ∈ D and [(root(tk0), j1), (root(tk0), j2)] ∈ Dk0 . We
can define

α(i1) = j1, α(i2) = j2

As a consequence we have

T1(t) ≼ T1(tk0) (19)

where Tk is the slicing operator.
In what follows we prove by induction on k ≥ 1 that

Tk(t) ≼ Tk(tk0) (20)

From (19) we have (20) for k = 1. Suppose that (20) is true for k = p and α is
the embedding mapping of Tp(t) into Tp(tk0). We prove now that α can be extended
so that it becomes an embedding mapping of Tp+1(t) into Tp+1(tk0). We have the
following two cases:

1) If Tp+1(t) = Tp(t) then Tp+1(t) = Ts(t) for every s ≥ p. But Tp(t) ≼ Tp(tk0)
therefore Ts(t) ≼ Tp(tk0) for every s ≥ p. In other words Tp+i(t) ≼ Tp(tk0) for every
i ≥ 1. But Tp(tk0) ≼ Tp+i(tk0). By transitivity we obtain Tp+i(t) ≼ Tp+i(tk0) for
every i ≥ 1. Particularly we have (20) for k = p+ 1.

2) If remains to consider the case Tp+1(t) ̸= Tp(t). By Proposition 3.2 we have Tp(t)
≺ Tp+1(t) and consider a maximal path (root(t), q1, . . . , qp, qp+1) ∈ Path(Tp+1(t)). In
order to make a choice we can suppose that

[(qp, qp+1), (qp,mp+1)] ∈ D (21)

It follows that h(qp) ∈ LN . We have (root(t), q1, . . . , qp) ∈ Path(Tp(t)). But α is
an embedding mapping of Tp(t) into Tp(tk0) therefore (α(root(t)), α(q1), . . . , α(qp)) ∈
Path(Tp(tk0)). From Tp(t) ≼ Tp(tk0) we have hk0(α(qp)) = h(qp) therefore hk0(α(qp)) ∈
LN . Because F (tk0) ∈ L∗

T we deduce that α(qp) is not a leaf of tk0 , therefore there is

[(α(qp), j1), (α(qp), j2)] ∈ Dk0 (22)

From (21) and (22) we can extend the mapping α taking α(qp+1) = j1 and α(mp+1) =
j2. We proceed in this way for every path (root(t), q1, . . . , qp, qp+1) ∈ Path(Tp+1(t))
and thus (20) is true for k = p + 1. In conclusion we have t ≼ tk0 , therefore [t] ⊑
rk0 . �

Proposition 4.3. Suppose that a ∈ LN , ρω is a noetherian relation and t ∈ OBTa(ω).
The following two sentences are equivalent:
(1) F (t) ∈ L∗

T

(2) [t] is the greatest element of the set (OBTa(ω)/≃,⊑)

Proof. Let us prove first that (2) ⇒ (1). Suppose that [t] is the greatest element
of the set (OBTa(ω)/≃,⊑). Starting with t0 = t we obtain from (14) the greatest
element rk0 of (OBTa(ω)/≃,⊑). It follows that [t] = rk0 , therefore [t] = [tk0 ], where
tk0 is a representative of rk0 . It follows that F (t) = F (tk0). But F (tk0) ∈ L∗

T by
Proposition 3.7, so F (t) ∈ L∗

T . Thus (1) is true.
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Figure 1. t0, t1 ∈ OBT (ω)

We prove now the implication (1) ⇒ (2). Suppose that F (t) ∈ L∗
T . We apply (14)

for t0 = t. Because F (t) ∈ L∗
T we obtain r2 = U(r1) = r1, therefore r1 is the greatest

element. But r1 = [t], therefore (2) is proved. �

In conclusion, if a ∈ LN and ρω is a noetherian relation then there is an element
and only one which is the greatest element of the set (OBTa(ω)/≃,⊑). This element
can be computed as follows:

Step 1: Take the ω-tree t0 = (A0, D0, h0), where A0 = {r0, i1, i2}, D0 =
{[(r0, i1), (r0, i2)]}, h0(r0) = a, ω(a) = (h0(i1), h0(i2)).
Step 2: Starting with i = 0 we choose ti+1 ∈ E(ti) while F (ti) /∈ L∗

T .
Step 3: If F (ti) ∈ L∗

T then ti is a representative of the greatest element.
This method allows us to prove the following property:

Proposition 4.4. The local greatest element is not a maximal element of the whole
partial ordered set (OBT (ω)/≃,⊑).

Proof. Consider LT = {b, c}, LN = {a, b1, c1} and the split mapping ω(a) = (b, c1),
ω(c1) = (b1, c) and ω(b1) = (c, c). Obviously ρω is a noetherian binary relation.
Consider the element t0 = ({p0, p1, p2}, {[(p0, p1), (p0, p2)]}, h0), where h0(p0) = c1,
h0(p1) = b1 and h0(p2) = c. We have t0 ∈ OBT (ω). Take t1 ∈ E(t0), which
is represented in Figure 1. We have F (t1) ∈ L∗

T , therefore by Proposition 4.3 the
element [t1] is the greatest element of the set (OBTc1(ω)/≃,⊑). But [t1] is not a
maximal element of OBT (ω) because the element t represented in Figure 2 has the
property [t1] < [t]. �

5. Conclusions

In this paper we develop the initial ideas presented in [18], [19] and [20]. The
ultimate goal of this research is to build a formalism for the valuation process in a
cooperating system based on semantic schemas. In this paper we defined a decom-
position of the factor set into local partial ordered subset such that we can build the
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Figure 2. t ∈ OBT (ω) and t1 ≺ t

greatest element of a subset. In a forthcoming paper we show that the greatest ele-
ment allows to define a ”template” for the inference process in a master-slave system
based on semantic schemas.
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