Strict partial orders between ω-trees

Cristina Zamfir(Tudorache)

Abstract

We consider the set $O B T(\omega)$ of the ω-labeled trees ([4]) and the equivalence relation \simeq on this set introduced in [5]. In this paper we define and study a strict partial order \prec on the set $O B T(\omega)$ and a strict partial order \sqsubset on the factor set $O B T(\omega) / \simeq$. We characterize these relations and finally we show that $t_{1} \prec t_{2}$ if and only if $\left[t_{1}\right] \sqsubset\left[t_{2}\right]$, where $[t]$ denotes the equivalence class of t.

2000 Mathematics Subject Classification. Primary 05C20; Secondary 18A10. Key words and phrases. directed ordered graph, tree, ordered tree, partial order, embedding mapping.

1. Introduction

More and more the mechanisms of universal algebras are implied in computer science. Most times these mechanisms are associated with other mechanisms such as those offered by graph theory. This paper is developed in considering this circumstances. The starting point in this research was given by the need to formalize cooperating systems based on semantic schemas ([2], [3]). From this point of view in this paper we develop the series of results published in [4], [5] and [6].

This paper is organized as follows: In Section 2 we recall the main notions and results that are used in subsequent sections. In Section 3 we prove two helpful results that are used in the subsequent sections of this paper. Section 4 defines a strict order on the set $O B T(\omega)$ of the ω-trees and we study this relation. In Section 5 we study a strict order on the factor set $O B T(\omega) / \simeq$. A connection between these two strict orders is given also in Section 5. The Section 6 contains the conclusions of our study.

2. Basic concepts and results

We consider a finite set L and a decomposition $L=L_{N} \cup L_{T}$, where $L_{N} \cap L_{T}=\emptyset$. The elements of L_{N} are called nonterminal labels and those of L_{T} are called terminal labels. The elements of L are called labels. A split mapping on L ([4]) is a function $\omega: L_{N} \longrightarrow L \times L$.

The relation parent-child in a directed graph can be defined by means of a list $\left[\left(i, i_{1}\right), \ldots,\left(i, i_{n}\right)\right]$, where i_{1}, \ldots, i_{n} are all children of $i([1])$. In this case the children are ordered by the place of a child in the sequence i_{1}, \ldots, i_{n}. Particularly we can obtain an ordered tree as a pair (A, D), where A is the set of nodes and D is the set of all lists describing the relation parent-child.

[^0]An ω-tree ([4]) is a tuple $t=(A, D, h)$, where

- (A, D) is an ordered tree and every element of D is of the form $\left[\left(i, i_{1}\right),\left(i, i_{2}\right)\right]$;
- $h: A \longrightarrow L$ is a mapping such that

$$
\begin{equation*}
\left[\left(i, i_{1}\right),\left(i, i_{2}\right)\right] \in D \Rightarrow h(i) \in L_{N} \& \omega(h(i))=\left(h\left(i_{1}\right), h\left(i_{2}\right)\right) \tag{1}
\end{equation*}
$$

For each $i \in A$ the element $h(i)$ is called the label of the node i. The mapping h is named the labeling mapping of t. By $O B T(\omega)$ we denote the set of all ω-trees.

Let $t_{1}=\left(A_{1}, D_{1}, h_{1}\right)$ and $t_{2}=\left(A_{2}, D_{2}, h_{2}\right)$ be two elements of $O B T(\omega)$ and an arbitrary mapping $\alpha: A_{1} \longrightarrow A_{2}$. For every $u=\left[\left(i, i_{1}\right),\left(i, i_{2}\right)\right] \in D_{1}$ we denote

$$
\bar{\alpha}(u)=\left[\left(\alpha(i), \alpha\left(i_{1}\right)\right),\left(\alpha(i), \alpha\left(i_{2}\right)\right)\right]
$$

If $t=(A, D, h)$ is an ω-tree then we denote by $\operatorname{root}(t)$ the element of A designated by the root of t.

If $t_{1}=\left(A_{1}, D_{1}, h_{1}\right) \in O B T(\omega)$ and $t_{2}=\left(A_{2}, D_{2}, h_{2}\right) \in O B T(\omega)$ then we define the relation $t_{1} \preceq t_{2}$ if there is a mapping $\alpha: A_{1} \longrightarrow A_{2}$ such that:

$$
\begin{gather*}
u \in D_{1} \Longrightarrow \bar{\alpha}(u) \in D_{2} \tag{2}\\
h_{1}\left(\operatorname{root}\left(t_{1}\right)\right)=h_{2}\left(\alpha\left(\operatorname{root}\left(t_{1}\right)\right)\right) \tag{3}
\end{gather*}
$$

Such a mapping α is an embedding mapping of t_{1} into t_{2} ([4]). The relation \preceq is reflexive and transitive, but is not antisymmetric. Thus \preceq is not a partial order on the set $O B T(\omega)$.

If $t=(A, D, h) \in O B T(\omega)$ then a pair $\left(i, i_{j}\right)$ appearing in a list of D is an arc of t. A sequence $\left(j_{0}, j_{1}, \ldots, j_{k}\right)$ is a path of t if $\left(j_{r}, j_{r+1}\right)$ is an arc of t for every $r \in\{0, \ldots, k-1\}$. We denote by $\operatorname{Path}(t)$ the set of all paths of t.
Proposition 2.1. ([4]) Suppose that $t_{1}=\left(A_{1}, D_{1}, h_{1}\right) \in O B T(\omega), t_{2}=\left(A_{2}, D_{2}, h_{2}\right)$ $\in O B T(\omega)$ and $\alpha: A_{1} \longrightarrow A_{2}$ is a mapping such that (2) is satisfied. Then
(1) If (m, n) is an arc in t_{1} then $(\alpha(m), \alpha(n))$ is an arc in t_{2}.
(2) If $d=\left(n_{0}, n_{1}, \ldots, n_{k}\right) \in \operatorname{Path}\left(t_{1}\right)$ then $\alpha(d)=\left(\alpha\left(n_{0}\right), \alpha\left(n_{1}\right), \ldots, \alpha\left(n_{k}\right)\right) \in$ $\operatorname{Path}\left(t_{2}\right)$.
We consider $t_{1}=\left(A_{1}, D_{1}, h_{1}\right) \in O B T(\omega)$ and $t_{2}=\left(A_{2}, D_{2}, h_{2}\right) \in O B T(\omega)$. We define $t_{1} \simeq t_{2}$ if $t_{1} \preceq t_{2}$ and $t_{2} \preceq t_{1}$. The relation \simeq is reflexive, symmetric and transitive therefore it is an equivalence relation ([5]). We denote by $[t]$ the equivalence class of t.

Let us consider $\left[t_{1}\right] \in O B T(\omega) / \simeq$ and $\left[t_{2}\right] \in O B T(\omega) / \simeq$. We define the relation $\left[t_{1}\right] \sqsubseteq\left[t_{2}\right]$ if $t_{1} \preceq t_{2}$. The relation \sqsubseteq does not depend on representatives, it is a reflexive, antisymmetric and transitive binary relation ([5]). As a consequence, the pair $(O B T(\omega) / \simeq, \sqsubseteq)$ becomes a partial ordered set.

Finally we relieve the following useful result.
Proposition 2.2. ([5]) Suppose that $t_{1}=\left(A_{1}, D_{1}, h_{1}\right) \in O B T(\omega)$ and $t_{2}=\left(A_{2}, D_{2}\right.$, $\left.h_{2}\right) \in O B T(\omega)$. The following two conditions are equivalent:
(1) $t_{1} \simeq t_{2}$
(2) There is a bijective mapping $\alpha: A_{1} \longrightarrow A_{2}$ such that the conditions (4), (5) and (6) are satisfied:

$$
\begin{gather*}
\alpha\left(\operatorname{root}\left(t_{1}\right)\right)=\operatorname{root}\left(t_{2}\right) \tag{4}\\
u \in D_{1} \Longleftrightarrow \bar{\alpha}(u) \in D_{2} \tag{5}\\
h_{1}\left(\operatorname{root}\left(t_{1}\right)\right)=h_{2}\left(\alpha\left(\operatorname{root}\left(t_{1}\right)\right)\right) \tag{6}
\end{gather*}
$$

Moreover, if the bijective mappings $\alpha: A_{1} \longrightarrow A_{2}$ and $\beta: A_{1} \longrightarrow A_{2}$ satisfy conditions (4), (5) and (6) then $\alpha=\beta$.

3. Preliminary results

In this section we prove two helpful results that are used in the subsequent sections of this paper. First we prove the following help result.

Proposition 3.1. Suppose that $t_{1} \in O B T(\omega)$ and $t_{2} \in O B T(\omega)$. If $t_{1} \preceq t_{2}$ and there is a bijective embedding mapping of t_{1} onto t_{2} then $t_{1} \simeq t_{2}$.

Proof. Suppose that $t_{1}=\left(A_{1}, D_{1}, h_{1}\right), t_{2}=\left(A_{2}, D_{2}, h_{2}\right)$ and $\alpha: A_{1} \longrightarrow A_{2}$ is a bijective embedding mapping of t_{1} onto t_{2}. In order to prove that $t_{1} \simeq t_{2}$ we verify that (4), (5) and (6) are satisfied.

- Let us prove (4). We suppose by contrary that $\alpha\left(\operatorname{root}\left(t_{1}\right)\right) \neq \operatorname{root}\left(t_{2}\right)$. There is $i \in A_{1} \backslash\left\{\operatorname{root}\left(t_{1}\right)\right\}$ such that $\alpha(i)=\operatorname{root}\left(t_{2}\right)$ because α is a bijective mapping. Denote $p=\alpha\left(\operatorname{root}\left(t_{1}\right)\right)$. There is a path and only one $\left(\operatorname{root}\left(t_{1}\right), p_{1}, \ldots, p_{r}, i\right) \in \operatorname{Path}\left(t_{1}\right)$. By Proposition 2.1 we have $\left(\alpha\left(\operatorname{root}\left(t_{1}\right)\right), \alpha\left(p_{1}\right), \ldots, \alpha\left(p_{r}\right), \alpha(i)\right) \in \operatorname{Path}\left(t_{2}\right)$. In other words there is a path $\left(p, \ldots, \operatorname{root}\left(t_{2}\right)\right)$, which is not true because the graph associated to $\left(A_{2}, D_{2}\right)$ is a tree. It follows that our assumption is false and thus (4) is true.
- In order to prove (5) we prove first the following useful property: $i \in A_{1}$ is a leaf of t_{1} if and only if $\alpha(i) \in A_{2}$ is a leaf of t_{2}.

Suppose that $\alpha(i)$ is a leaf of t_{2} and that i is not a leaf of t_{1}. There is $\left[\left(i, k_{1}\right),\left(i, k_{2}\right)\right] \in$ D_{1}, therefore $\left[\left(\alpha(i), \alpha\left(k_{1}\right)\right),\left(\alpha(i), \alpha\left(k_{2}\right)\right)\right] \in D_{2}$. This shows that $\alpha(i)$ is not a leaf of t_{2}, which is not true.

Conversely, suppose that i is a leaf of t_{1}. By contrary, suppose that $\alpha(i)$ is not a leaf of t_{2}. It follows that there is $[(\alpha(i), p),(\alpha(i), q)] \in D_{2}$. The mapping α is surjective, therefore there are $m \in A_{1}$ and $r \in A_{1}$ such that $\alpha(m)=p$ and $\alpha(r)=q$. There is a path $\left(\operatorname{root}\left(t_{1}\right), r_{1}, \ldots, r_{s}, r\right) \in \operatorname{Path}\left(t_{1}\right)$. Because we proved before that $\alpha\left(\operatorname{root}\left(t_{1}\right)\right)=\operatorname{root}\left(t_{2}\right)$ and $\alpha(r)=q$, we obtain a path $\left(\operatorname{root}\left(t_{2}\right), \alpha\left(r_{1}\right), \ldots, \alpha\left(r_{s}\right), q\right) \in$ $\operatorname{Path}\left(t_{2}\right)$. If $\alpha\left(r_{s}\right)=\alpha(i)$ then $r_{s}=i$ and this case is not possible because $\left(r_{s}, r\right)$ is an arc of $t_{1}, r_{s}=i$ and i is a leaf of t_{1}. It follows that $\alpha\left(r_{s}\right) \neq \alpha(i)$, therefore $r_{s} \neq i$. But in this case $(\alpha(i), q)$ and $\left.\alpha\left(r_{s}\right), q\right)$ are arcs in t_{2}, which is not possible because the graph associated to $\left(A_{2}, D_{2}\right)$ is a tree. This shows that $\alpha(i)$ is a leaf of t_{2}.

- Let us prove (5). The implication from left to right is true because α is an embedding mapping of t_{1} into t_{2}. It remains to prove the implication from right to left. Suppose that $i, i_{1}, i_{2} \in A_{1}$ and $\left[\left(\alpha(i), \alpha\left(i_{1}\right)\right),\left(\alpha(i), \alpha\left(i_{2}\right)\right)\right] \in D_{2}$. As we shown before, $i \in A_{1}$ is not a leaf of t_{1} because $\alpha(i)$ is not a leaf of t_{2}. It follows that there is $\left[\left(i, j_{1}\right),\left(i, j_{2}\right)\right] \in D_{1}$. We have $\left[\left(\alpha(i), \alpha\left(j_{1}\right)\right),\left(\alpha(i), \alpha\left(j_{2}\right)\right)\right] \in D_{2}$ because α is an embedding mapping of t_{1} into t_{2}. But we have chosen $i, i_{1}, i_{2} \in A_{1}$ such that $\left[\left(\alpha(i), \alpha\left(i_{1}\right)\right),\left(\alpha(i), \alpha\left(i_{2}\right)\right)\right] \in D_{2}$. It follows that $\alpha\left(i_{1}\right)=\alpha\left(j_{1}\right)$ and $\alpha\left(i_{2}\right)=\alpha\left(j_{2}\right)$. The mapping α is injective and this implies $i_{1}=j_{1}$ and $i_{2}=j_{2}$. It results that $\left[\left(i, i_{1}\right),\left(i, i_{2}\right)\right] \in D_{1}$.
- Finally we remark that (6) is nothing else than (3), which is true because α is an embedding mapping of t_{1} into t_{2}.

Proposition 3.2. Suppose that $t_{1}=\left(A_{1}, D_{1}, h_{1}\right) \in O B T(\omega), t_{2}=\left(A_{2}, D_{2}, h_{2}\right) \in$ $O B T(\omega)$. If $t_{1} \preceq t_{2}$ then one and only one of the following conditions is satisfied:
(1) $t_{1} \simeq t_{2}$
(2) $\alpha\left(A_{1}\right) \subset A_{2}$ for every embedding mapping α of t_{1} into t_{2}

Proof. Suppose that $\alpha: A_{1} \longrightarrow A_{2}$ is an embedding mapping of t_{1} into t_{2}. This is an injective mapping, therefore $\alpha\left(A_{1}\right) \subseteq A_{2}$. It follows that either $\alpha\left(A_{1}\right)=A_{2}$ or $\alpha\left(A_{1}\right) \subset A_{2}$. In the first case the mapping α is bijective. From Proposition 3.1 we know that $t_{1} \simeq t_{2}$. It remains to consider the case $\alpha\left(A_{1}\right) \subset A_{2}$. Consider another embedding mapping $\beta: A_{1} \longrightarrow A_{2}$ of t_{1} into t_{2}. If we would have $\beta\left(A_{1}\right)=A_{2}$ then β is a bijective mapping, therefore by Proposition 3.1 we should have $t_{1} \simeq t_{2}$. It follows that $\beta=\alpha$. This is not possible because $\alpha\left(A_{1}\right) \subset A_{2}$ and $\beta\left(A_{1}\right)=A_{2}$. It remains the case $\beta\left(A_{1}\right) \subset A_{2}$.

4. The strict partial order \prec on $O B T(\omega)$

First we recall the concept of strict partial order. A binary relation $\rho \subseteq X \times X$ on the set X is a strict partial order if the following conditions are fulfilled:
(1) ρ is irreflexive: $x \rho x$ does not hold for any $x \in X$;
(2) ρ is transitive: $x \rho y$ and $y \rho z$ implies $x \rho z$.

Remark 4.1. A strict partial order is asymmetric. In other words, if x ρ y then y ρx does not hold. Really, if by contrary we suppose that there x and y such that $x \rho y$ and $y \rho x$ then by transitivity we obtain $x \rho x$.

We can define now the following binary relation $\prec \subseteq O B T(\omega) \times O B T(\omega)$.
Definition 4.1. We write $t_{1} \prec t_{2}$ if the following conditions are satisfied:
(1) $t_{1} \preceq t_{2}$
(2) Every embedding mapping of t_{1} into t_{2} is not surjective.

Proposition 4.1. The relation \prec is a strict partial order on $O B T(\omega)$.
Proof. - The relation \prec is irreflexive: $t_{1} \prec t_{1}$ does not hold for any $t_{1} \in O B T(\omega)$. Really, if $\alpha: A_{1} \longrightarrow A_{1}$ is an embedding mapping of t_{1} into t_{1} then α is surjective because every embedding mapping is injective and A_{1} is a finite set. This case is not possible.

- The relation \prec is transitive: $t_{1} \prec t_{2}$ and $t_{2} \prec t_{3}$ implies $t_{1} \prec t_{3}$. From Definition 4.1 we have $t_{1} \preceq t_{2}$ and $t_{2} \preceq t_{3}$ therefore $t_{1} \preceq t_{3}$ because \preceq is transitive. By Proposition 3.2 we have one and only one of the following two properties:
$-t_{1} \simeq t_{3}$
- every embedding mapping of t_{1} into t_{3} is not surjective.

Let us suppose that we have the first property, $t_{1} \simeq t_{3}$. If $\alpha: A_{1} \longrightarrow A_{2}$ is an embedding mapping of t_{1} into t_{2} and $\beta: A_{2} \longrightarrow A_{3}$ is an embedding mapping of t_{2} into t_{3} then $\alpha \circ \beta: A_{1} \longrightarrow A_{3}$ is an embedding mapping of t_{1} into t_{3}. We supposed that $t_{1} \simeq t_{3}$, therefore $\alpha \circ \beta$ is a bijective mapping. We have also $\alpha\left(A_{1}\right) \subset A_{2}$ and $\beta\left(A_{2}\right) \subset A_{3}$ because $t_{1} \prec t_{2}$ and $t_{2} \prec t_{3}$. For every $z \in A_{3}$ there is $x \in A_{1}$ such that $\beta(\alpha(x))=z$ because $\alpha \circ \beta$ is a surjective mapping. It follows that β is a surjective mapping, which is not true because $\beta\left(A_{2}\right) \subset A_{3}$. It follows that the condition $t_{1} \simeq t_{3}$ can not be satisfied, therefore embedding mapping of t_{1} into t_{3} is not surjective. In conclusion the conditions from Definition 4.1 are satisfied and we have $t_{1} \prec t_{3}$.

5. The strict partial order \sqsubset on the set $O B T(\omega) / \simeq$

In this section we study a strict partial order on the set $O B T(\omega) / \simeq$. This is generated by means of the relation \sqsubseteq.

Every partial order $\rho \subseteq X \times X$ induces a strict order $\rho_{s} \subseteq X \times X$ defined as follows:

$$
x \rho_{s} y \Longleftrightarrow x \rho y \& x \neq y
$$

This method can be applied for the partial order \sqsubseteq. We denote by \sqsubset the strict order induced by \sqsubseteq. We have

$$
\left[t_{1}\right] \sqsubset\left[t_{2}\right] \Longleftrightarrow\left[t_{1}\right] \sqsubseteq\left[t_{2}\right] \&\left[t_{1}\right] \neq\left[t_{2}\right]
$$

We can give the following characterization of this relation.
Proposition 5.1. The following sentences are equivalent:
(1) $\left[t_{1}\right] \sqsubset\left[t_{2}\right]$
(2) $\left[t_{1}\right] \sqsubseteq\left[t_{2}\right]$ and there is an embedding mapping of t_{1} into t_{2} which is not surjective.
(3) $\left[t_{1}\right] \sqsubseteq\left[t_{2}\right]$ and every embedding mapping of t_{1} into t_{2} is not surjective.

Proof. We prove the following implications

$$
(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(1)
$$

- Suppose that $\left[t_{1}\right] \sqsubset\left[t_{2}\right]$. This means that $\left[t_{1}\right] \sqsubseteq\left[t_{2}\right]$ and $\left[t_{1}\right] \neq\left[t_{2}\right]$. Suppose by contrary that (2) is not true. This means that every embedding mapping of t_{1} into t_{2} is surjective. Consider such a mapping α. From Proposition 3.1 we deduce that $t_{1} \simeq t_{2}$, therefore $\left[t_{1}\right]=\left[t_{2}\right]$. This contradicts the property $\left[t_{1}\right] \neq\left[t_{2}\right]$.
- Suppose that (2) is true, but (3) is not true. Therefore there is a surjective embedding mapping β of t_{1} into t_{2}. By Proposition 3.1 we have $t_{1} \simeq t_{2}$ and therefore if α is an embedding mapping of t_{1} into t_{2} then $\beta=\alpha$. This shows that (2) is not true.
- Suppose that (3) is true. We prove that $\left[t_{1}\right] \neq\left[t_{2}\right]$. Really, if we suppose that $\left[t_{1}\right]=\left[t_{2}\right]$ then there is only one embedding mapping of t_{1} into t_{2} and this is a bijective mapping. This contradicts (3).

The next proposition establishes the connection between \sqsubset and \prec.
Proposition 5.2. We have $t_{1} \prec t_{2}$ is and only if $\left[t_{1}\right] \sqsubset\left[t_{2}\right]$.
Proof. Suppose that $t_{1} \prec t_{2}$. From Definition 4.1 we obtain $t_{1} \preceq t_{2}$, therefore $\left[t_{1}\right] \sqsubseteq$ $\left[t_{2}\right]$. The same definition shows that every embedding mapping of t_{1} into t_{2} is not surjective. The third condition from Proposition 5.1 is satisfied, therefore $\left[t_{1}\right] \sqsubset\left[t_{2}\right]$.

Conversely, suppose that $\left[t_{1}\right] \sqsubset\left[t_{2}\right]$. We apply again Proposition 5.1 and the third condition of this proposition is satisfied. It follows that $t_{1} \preceq t_{2}$ and every embedding mapping of t_{1} into t_{2} is not surjective. From Definition 4.1 we obtain $t_{1} \prec t_{2}$.

Proposition 5.3. If $t_{1} \prec t_{2}, t_{1}^{*} \simeq t_{1}$ and $t_{2}^{*} \simeq t_{2}$ then $t_{1}^{*} \prec t_{2}^{*}$
Proof. We have $t_{1}^{*} \in\left[t_{1}\right], t_{2}^{*} \in\left[t_{2}\right]$ and $\left[t_{1}\right] \sqsubseteq\left[t_{2}\right]$, therefore $t_{1}^{*} \preceq t_{2}^{*}$. It remains to prove that every embedding mapping of t_{1}^{*} into t_{2}^{*} is not surjective. By contrary, we suppose that there is a surjective embedding mapping of t_{1}^{*} onto t_{2}^{*} denoted by α. There is a bijective mapping β_{1}, which is the embedding mapping of t_{1} into t_{1}^{*} because $t_{1}^{*} \in\left[t_{1}\right]$. We have $t_{2}^{*} \in\left[t_{2}\right]$ and therefore there is a bijective mapping β_{2}, which gives the embedding mapping of t_{2}^{*} onto t_{2}. If $\alpha: A_{1} \longrightarrow A_{2}$ is an embedding mapping of t_{1} into t_{2} and $\beta: A_{2} \longrightarrow A_{3}$ is an embedding mapping of t_{2} into t_{3} then $\alpha \circ \beta: A_{1} \longrightarrow A_{3}$ is an embedding mapping of t_{1} into t_{3}. It follows that the mapping $\beta_{1} \circ \alpha \circ \beta_{2}$ is an embedding mapping of t_{1} into t_{2}. This is a surjective mapping, which contradict the fact that $t_{1} \prec t_{2}$ and

6. Conclusions

In this section we defined and studied two strict partial orders: one relation is defined for ω-trees and other order for equivalence classes of ω-trees. The results presented in this paper complements some results presented in the paper [6], where an extension based on nonterminal leaves of an ω-tree is studied.

References

[1] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation and Compiling, Prentice-Hall, Vol. I, 1972.
[2] N. Ţăndăreanu, Master-Slave Systems of Semantic Schemas and Applications, The 10th IASTED International Conference on Intelligent Systems and Control (ISC 2007), November 19-21, (2007), Cambridge, Massachusetts, 150-155.
[3] N. Ţăndăreanu, An Extension of Semantic Schemas to Represent Multiple Meanings, International Multi-Conference on Engineering and Technological Innovation (IMETI 2008), June 29th- July 2nd (2008), Vol.I, 143-148.
[4] N. Ţăndăreanu and C.Zamfir, Algebraic properties of ω-trees (I), Annals of the University of Craiova, Mathematics and Computer Science Series 37 (2010), No. 1, 80-89.
[5] N. Ţăndăreanu and C.Zamfir, Algebraic properties of ω-trees (II), Annals of the University of Craiova, Mathematics and Computer Science Series 37 (2010), No. 2, 7-17.
[6] N. Ţăndăreanu and C.Zamfir, Slices and extensions of ω-trees, Annals of the University of Craiova, Mathematics and Computer Science Series 38 (2011), No. 1, 72-82.
(Cristina Zamfir(Tudorache)) Department of Informatics, University of Pitesti
E-mail address: cristina.tudorache@star-storage.ro

[^0]: Received February 17, 2011. Revision received May 02, 2011.
 This article was produced under the project "Supporting young Ph.D students with frequency by providing doctoral fellowships", co-financed from the EUROPEAN SOCIAL FUND through the Sectoral Operational Program Development of Human Resources.

