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Model-free Approaches in Learning the Multivariate Linear
Regressive Models

Iuliana Paraschiv-Munteanu

Abstract. Learning from data means to have a learning method that is an algorithm im-
plemented in software that estimates an unknown dependency between a system’s inputs and
outputs from the available data, namely from known samples. Once such a dependency has
been accurately estimated, it can be used for prediction of future system outputs for known

input values. The paper provides a series of results concerning the learning from data a lin-
ear regressive model in a multivariate framework. The parameter estimates of the regressive
model are determined using the maximum likelihood principle and the adaptive learning algo-

rithms are derived using the gradient ascend technique. In the second section of the paper the
parameters of the linear regressive model are determined by minimizing the arithmetic mean
of square errors and an adaptive learning scheme of gradient descent type is also considered.
We consider a probabilistic approach in the third section for modeling the effects of both the

latent variables and noise. The cumulative effects of latent variables and noise are modeled in
terms of multivariate Gaussian distributions. The predicted output is expressed as the sum
of a linear combination of the entries of the input and the random vector that represents the
effects of the unobservable factors and noise. The parameters of the regressive model are esti-

mated by maximizing the likelihood function for given finite length sequence of observations,
and an adaptive learning algorithm of gradient ascent type is proposed in the final part of the
section. A series of concluding remarks and suggestions for further work are formulated in the
final section of the paper.
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1. Introduction

Machine Learning deals with programming computers to optimize a performance
criterion on the basis of finite sets of example data or past experience. Dealing with
the design of algorithms and techniques that allow machines to learn in the sense that
they improved the performance through experience, machine learning can be viewed
as a branch of artificial intelligence ([1], [6]).

The tremendous growth in practical applications of machine learning over the past
decade has been accompanied by a wide variety of important developments in the
underlying algorithms and techniques that make use of concepts and results coming
from several areas as mathematical statistics, computer science and engineering.

We consider the learning environment described in Figure 1 ([2]). Let S be a system
that for any n-dimensional input x computes an m-dimensional output y according to
an unknown law. In the simplest approach we can assume that the output y is uniquely
determined by the input x. However, the output can be influenced by a series of
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Figure 1. The scheme of learning environment.

unobservable factors, and the dependency between the inputs and outputs of S could
be of non-deterministic type. Consequently, in a more sophisticated approach we are
forced to take into account a non-deterministic dependency, modelled for instance
in probabilistic terms, as a reasonable hypothesis concerning the unknown law. In
our model we consider the Generator, denoted by G, the source that generates the
inputs. Mainly, there are two ways to model G, namely when the mechanism of
generating inputs is known by the observer and when the law according to which
the inputs are generated is also unknown, respectively. The third component of
our learning environment denoted by L, is responsible with possible models of the
unknown dependency corresponding to S. The learning component L implements
a class of hypothesis (models) Ω, such that to each particular hypothesis ω ∈ Ω
corresponds a function φω : X → Y defined on the space of inputs X and taking values
in the space of outputs Y. For each particular input x0, ŷ0 = φω (x0) is the estimate
of the S’s output corresponding to x0 in case of the model ω. Being given a criterion
function C that expresses numerically the fitness of each model with respect to the
available evidence E, about S, the best model ω0(E) is a solution of the optimization
problem

arg (optimizeω∈Ω C(ω,E)) . (1)

In the case of supervised learning the available evidence E is represented by a finite
set of pairs {(xi, yi) , 1 ≤ i ≤ N} ⊂ X × Y, where each yi is the actual output of S
for the input xi. If we assume that the unknown dependency is of deterministic type,
that is the inputs and the outputs of S are functionally related a reasonable choice of
the criterion function C is the arithmetic mean of the square errors, that is for each
ω ∈ Ω,

C(ω,E) =
1

N

N∑
i=1

∥yi − φω (xi)∥2 . (2)

The optimization problem (1) becomes

arg

(
min
ω∈Ω
C(ω,E)

)
, (3)

and its solutions are called the Minimum Square Errors (MSE) models computed on
the basis of {(xi, yi) , 1 ≤ i ≤ N}.

In case we adopt a more complex approach by including the effects of possible
existing latent variables, each hypothesis ω ∈ Ω corresponds to a probabilistic model
for the latent vector. For simplicity sake, we consider that the latent vector is a
continuous random vector, that is to each ω ∈ Ω corresponds a conditional density
function f(·|·, ; ω). Put in other words, for each ω ∈ Ω, x ∈ X , y ∈ Y, f(y|x ; ω)
expresses ’the chance’ of getting the output y for the input x in case of the model
ω. If the available evidence about S is {(xi, yi) , 1 ≤ i ≤ N} then a reasonable choice
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of C(ω,E) is the likelihood function. If we assume that the inputs x1, . . . , xN are
independently generated by G then

C(ω,E) =
N∏
i=1

f (yi|xi ; ω) , (4)

and the optimization problem (1) becomes

arg

(
max
ω∈Ω

C(ω,E)

)
. (5)

The solutions of (5) are the Maximum Likelihood (ML) models computed on the basis
of {(xi, yi) , 1 ≤ i ≤ N}.

2. Modeling the Learning component in terms of linear hypothesis

Let P be the procedure used by the learning component, L, to extract information
from the available data (x1, y1) , . . . , (xN , yN ) in order to compute an approximation
of the actual but unknown dependency between the inputs and the outputs of S. If
we denote by ω̂ the model computed by P then ŷ = φω̂ (x) is the predicted output if
the input x is applied to S where, φω̂ : IRn −→ IRm. The simplest class of hypothesis
is the linear class where each individual hypothesis corresponds to a linear transform.

In this case for each model ω ∈ Ω, the predicted output is φω(x) = βT

(
1
x

)
,

β ∈ M(n+1)×m(IR). From the point of view of the MSE (Minimum Square Errors)
criterion, being given the data (x1, y1) , . . . , (xN , yN ), the optimal model is ω̂ = ωβ̂MSE

where

β̂MSE = arg

(
inf

β∈M(n+1)×m(IR)
FN (β)

)
, (6)

and FN (β) =
1

N

N∑
i=1

∥∥yi − βT zi
∥∥2, zi = ( 1

xi

)
, 1 ≤ i ≤ N .

Using straightforward computations we get

FN (β) = tr
(
P̂N

)
− 2 tr

(
βT Q̂N

)
+ tr

(
βT ŜNβ

)
,

where

P̂N =
1

N

N∑
i=1

yiy
T
i ∈Mm(IR) , Q̂N =

1

N

N∑
i=1

ziy
T
i ∈M(n+1)×m(IR)

and ŜN =
1

N

N∑
i=1

ziz
T
i ∈Mn+1(IR).

If we denote by Z=(z1, . . . , zN) and Y =(y1, . . . , yN) the matrices of augmented
inputs and corresponding outputs respectively, we get the compact forms,

NFN (β)=tr
((
Y −βTZ

)(
Y −βTZ

)T)
, NP̂N =Y Y T , NQ̂N =ZY T , NŜN =ZZT .

Theorem 2.1. ([7], [8]) The MSE estimation for parameter β for given data (x1, y1),
(x2, y2) , . . . , (xN , yN ), is

β̂MSE =
(
Y Z+

)T
. (7)
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Figure 2. Architecture feed-forward type neural model of the System.

Obviously, Ŝ+
N = N

(
ZT
)+

Z+ and Ŝ+
N Q̂N =(Y Z+)

T
, therefore β̂MSE = (Y Z+)

T
=

Ŝ+
N Q̂N ∈ S . For a new input x, the best prediction about the output of S computed

on the basis of the available data is ŷ = β̂MSEx, that is

β̂MSE = Ŝ+
N Q̂N =

(
Y Z+

)T
. (8)

is the ”best model” for S computed on the basis of the available data.
Adaptive learning based on data (x1, y1) , . . . , (xN , yN ) can be done using gradient

descent methods and/or stochastic gradient methods.
A learning scheme obtained using the gradient descent method (”batch”) updates

the parameter β according to the rule
βnew ← βold + ρ

(
Q− Sβold

)
.

The stochastic gradient method is the sequential version of the gradient descent
procedure. The advantages of using the stochastic gradient method scheme, on one
hand from its computational simplicity, and on the other hand from the locality
feature that allows implementation on a simple feed-forward neural network ([4]).
The stochastic gradient descent learning scheme is briefly,

Input: (x1, y1), . . . , (xN , yN )
Initializations: β0, ρ > 0, C, zi =

(
1
xi

)
, 1 ≤ i ≤ N;

βold ← β0

repeat

β = βold

for i← 1, N
for k ← 1,m

for j ← 1, n+ 1

βnew
jk ← βjk + ρz

(j)
i

(
y
(k)
i −

n+1∑
p=1

z
(p)
i βpk

)
end for

end for

β ← βnew

end for

evaluate C
βold ← βnew

until C
Output: βnew
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where C is a stopping condition and a learning rate ρ is a conventionally selected
positive number.

The stochastic gradient learning algorithm can be implemented on a simple two-
layer feed-forward neural architecture where the input layer FX and the output layer
FY consist of n+1 and m neurons respectively, the synaptic memories of the neurons
in the output layer FY being the columns of the currently computed matrix β. The
scheme is presented in Figure 2.

During the learning process, if (xi, yi) is the current test example, xi=
(
x
(1)
i ,

x
(2)
i , . . . , x

(n)
i

)
, yi=

(
y
(1)
i , . . . , y

(m)
i

)
, then the entries of zi =

(
1
xi

)
are applied as

inputs to the neurons of FX and the entries of yi are combined at the level of each
neuron k of FY to update its synaptic memory according to the rule

βjk ← βjk + ρz
(j)
i

(
y
(k)
i −

n+1∑
p=1

z
(p)
i βpk

)
, j = 1, . . . , n+ 1 .

3. A Probabilistic Model for the System input-output dependency

An alternative approach to the modeling of System input-output dependency can
be considered by postulating certain parametric expression for the conditional repar-
tition of the outputs on the inputs, f (y|x, θ), denoting by Θ the domain of the
parameter θ, f(·|θ) is a possible model of the unknown dependency for each θ ∈ Θ,
such that for each input x and output y, f (y|x, θ) is the probability that being given
the input x and the model θ to obtain the output y. Several intuitively justified
criteria can be considered in order to identify the ”fittest” model on the basis of the
available data {(xi, yi) , 1 ≤ i ≤ N}. In the following we consider the likelihood func-
tion L (θ, x1, . . . , xN , y1, . . . , yN ) to express the quality of each model θ to explain the
available data. Assuming that the data are independent,

L (θ, x1, . . . , xN , y1, . . . , yN ) =

N∏
i=1

f (yi|xi, θ) ,

an optimal model θ̂MLE according to the principle of maximum likelihood being a
solution of the optimization problem

arg

(
max
θ∈Θ

(L (θ, x1, . . . , xN , y1, . . . , yN ))

)
.

Usually, the outputs of the System are conditioned not only on the observable input,
but by some unobservable latent variables as well as by noise. In other words, for
each input xi the output yi of the System depends on xi and on unobservable vari-
ables ε. If we consider a parametric expression to model the effect of xi on yi then
yi = g (β, xi) + ε.

A natural extension of the model proposed in section 2 is to combine a linear
dependency on the input entries to a Gaussian multi-variational model for the effect
of noise and/or latent variables, that is the estimate of the unknown conditional

repartition of the output of S on the input is p̂(y|x)=βT

(
1
x

)
+ h(ε), where h is the

density function of the m-dimensional Gaussian repartition h(ε) ∼ N (µ,Σ). Put in
other words, the estimate of the output of L for the input xi is ỹi = βT zi + ε, where
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zi=

(
1
xi

)
, ε ∼ N (µ,Σ), µ ∈ IRm and Σ ∈Mm(IR) is a symmetric positive definite

matrix.
In this case, a particular hypothesis ω ∈ Ω corresponds to a tuple (β, µ,Σ), the

conditional repartition of the output of L being given the input xi is modeled by the
density function of ỹi. Obviously, in case of the normal model for the effect of noise
and latent variables we get ỹi ∼ N

(
βT zi + µ,Σ

)
, that is the expression of the density

function in the hypothesis ω = (β, µ,Σ) is,

f (yi|xi, β, µ,Σ)=
1√

(2π)
m |Σ|

exp

{
−1

2

(
yi − βT zi − µ

)T
Σ−1

(
yi − βT zi − µ

)}
.

In the following will try to fit the best model using the paradigm of the maxi-
mum likelihood being given the set of examples {z1, . . . , zN}. For simplicity sake,
we consider that the latent variables are uncorrelated and of unit variance that is
for all hypothesis Σ = Im therefore ω = (β, µ). The log-logarithm of the maximum
likelihood function is

l (β, µ) = l (β, µ, x1, . . . , xN , y1, . . . , yN ) =

−mN

2
ln(2π)− 1

2

N∑
i=1

(
(yi − µ)

T − zTi β
) (

(yi − µ)− βT zi
)
,

therefore the best model is(
β̂MLE , µ̂MLE

)
= arg

(
max

β∈M(n+1)×m(IR),µ∈IRm
l (β, µ)

)
=

arg

(
min

β∈M(n+1)×m(IR),µ∈IRm

N∑
i=1

(
(yi − µ)

T − zTi β
) (

(yi − µ)− βT zi
))

Theorem 3.1. The maximum likelihood estimates of the parameters β, µ are

β̂MLE =
(
Y (ZA)

+
)T

, µ̂MLE =
1

N

(
Y u− Y (ZA)

+
Zu
)
, (9)

where Y = (y1, . . . , yN ) ∈Mm×N (IR), Z = (z1, . . . , zN ) ∈M(n+1)×N (IR),

u = (1, . . . , 1)T ∈ IRN , A = IN −
1

N
uuT .

Proof. The entries of the gradient of the log-logarithm of the likelihood function with
respect to (β, µ) are

∇βl (β, µ, x1, . . . , xN , y1, . . . , yN ) = ZY T − (Zu)µT − ZZTβ ,

∇µl (β, µ, x1, . . . , xN , y1, . . . , yN ) = Y u−Nµ− βT (Zu) ,

that is the space of critical points is the set of the solution of the system{
ZY T − (Zu)µT − ZZTβ = O(n+1)×m

Y u−Nµ− βT (Zu) = 0m .

Since from the second vectorial equation we get

µ =
1

N

(
Y u− βTZu

)
,

by replacing it in the first vectorial equation we obtain

β0=
(
ZAZT

)+(
ZAY T

)
.

Using the obvious properties

A2=A=AT and A+=A,
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we obtain

β0=
(
Y (ZA)

+
)T

therefore, by replacing it in the expression of µ we get

µ0=
1

N
Y
(
IN−Y (ZA)

+
Z
)
u.

Using straightforward computations we obtain

l (β0, µ0) = −
mN

2
ln(2π)− 1

2
tr

(
Y
(
A− (ZA)

+
ZA
)(

A− (ZA)
+
ZA
)T

Y T

)
.

In order to prove that (β0, µ0) is the maxima point of the log-likelihood function,
for arbitrary (β, µ) we get

l (β, µ) = −mN

2
ln(2π)− 1

2
tr
((

Y − µuT − βTZ
) (

Y − µuT − βTZ
)T)

.

In order to compare the values of the log-likelihood function for (β, µ) and (β0, µ0)
using the relations(

A− (ZA)
+
ZA
)(

A− (ZA)
+
ZA
)T

= A−A (ZA)
+
(ZA) ,

Y − µuT − βTZ = Y
(
A−(ZA)

+
(ZA)

)
+(µ0 − µ)uT +(β0−β)T Z

we obtain

l (β, µ) = l (β0, µ0)−
1

2
tr
(
(β0−β)T ZZT (β0−β)

)
−

tr
(
Y
(
IN−(ZA)

+
Z
)
Au (µ0 − µ)

T
)
−tr

(
Y
(
IN−(ZA)

+
Z
)
AZT (β0−β)T

)
.

Obviously, Au = 0N and
(
IN − (ZA)

+
Z
)
AZT =ON,n+1, therefore

l (β, µ) = l (β0, µ0)−
1

2
tr
(
(β0−β)T ZZT (β0−β)

)
≤l (β0, µ0) . �

The adaptive learning of the parameters µ and β may be installed using for instance
the gradient ascent method yielding to the following learning algorithm

Input: (x1, y1), . . . , (xN , yN )
Initializations: β0, µ0, C, ρ > 0

Compute zi =

(
1
xi

)
, 1 ≤ i ≤ N; Q =

N∑
i=1

ziy
T
i ; S =

N∑
i=1

ziz
T
i

βold ← β0 , µold ← µ0

repeat

βnew ← βold + ρ

(
Q−

(
N∑
i=1

zi

)(
µold

)T − Sβold

)

µnew ← µold + ρ

((
N∑
i=1

yi

)
−

N∑
i=1

(
βold

)T
zi −Nµold

)
evaluate C
βold ← βnew; µold ← µnew

until C
Output: βnew , µnew.
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4. Conclusion

In this paper are presented two linear regressive models: one is a linear regressive
model determined by minimizing the arithmetic mean of square errors, and the other
is a probabilistic model which includes effects of the latent variables and the noise.
For both models we found exact solutions for the parameters. The novelty of this
study is demonstration of the Theorem 3.1 which gives the exact expressions of the
parameters for proposed probabilistic model. In the future we will try to generalize
the probabilistic model by increasing the number of parameters.
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