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Modified Jarratt Method Without Memory With
Twelfth-Order Convergence

F. Soleymani, D.K.R. Babajee, and M. Sharifi

Abstract. Re-obtaining some old zero-finding iterative methods is not a rarity in numerical
analysis. Routinely, most of the improvements of root solvers increase the order of convergence
by adding a new evaluation of the function or its derivatives per iteration. In the present article,
we give a simple way to develop the local order of convergence by using Jarratt method in
the first step of a three-step cycle. The analysis of convergence illustrates that the proposed
method without memory is a twelfth-order iterative scheme and its classical efficiency index is
1.644, which is greater than that of Jarratt. Some numerical examples are provided to support
and re-verify the novel method.

The discussion of the new iteration in complex plane by presenting basins of attraction
will also be given. Although the proposed technique is not optimal due to its local 12th-order
convergence with five (functional) evaluations per full iteration, it consists of two evaluations
of the first-order derivatives and three evaluations of the function. In fact, there is no optimal
method with 5 (functional) evaluations per iteration in the literature with local 16th-order
convergence, in which there is two first-order derivative evaluations per cycle.
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1. Introduction

The boundary value problems (BVPs) in Kinetic theory of gases, elasticity and
other applied areas are mostly reduced in solving single variable nonlinear equations.
Hence, the problem of approximating a solution of the nonlinear equation f(x) = 0, is
important. The numerical methods for finding the roots of such equations are called
iterative methods, [1].

A large number of papers have been written about iterative methods for the solution
of nonlinear equations and systems; e.g. [2-5]. However, these iterative schemes can
be classified into two main categories; A: the derivative-free methods [6]. And, B:
high order methods that use the derivatives of the function in their structure, see e.g.
[7, 8]. Here, we focus on the category B. In this study, we consider iterative methods
to find a simple root α of the nonlinear equations, i.e., f(α) = 0 and f ′(α) 6= 0.

There exists an extension of Newton’s method, called Potra-Ptak iterative scheme
[9], which is of order three and given by

xn+1 = xn − f(xn) + f(xn − f(xn)/f ′(xn))
f ′(xn)

. (1)
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For quite some time, this had been the only reported third-order iterative method
with three evaluations per iteration. In 1966, a method of order four, Jarratt method
[10], which contains one evaluation of the function and two evaluations of the first
derivatives, had been investigated as follows

xn+1 = xn − Jf (xn)
f(xn)
f ′(xn)

, (2)

where kn = xn − 2
3

f(xn)
f ′(xn) , and

Jf (xn) =
3f ′(kn) + f ′(xn)
6f ′(kn)− 2f ′(xn)

. (3)

Some decades later, in 2009, an improvement of Jarratt method (2) had been
proposed in [11], which is a sixth-order method and can be defined as comes next

yn = xn − Jf (xn)
f(xn)
f ′(xn)

, (4)

xn+1 = yn − f(yn)
ψ(yn)

. (5)

Three different ways for calculating ψ(yn) (note that f ′(yn) ≈ ψ(yn)) are provided
in [11] as well, such as

ψ(yn) =
2f ′(xn)f ′(yn)

3f ′(xn)− f ′(yn)
. (6)

This iterative scheme consists of two evaluations of the function and two evalua-
tions of the first derivative. Generally speaking, many methods have been developed
in the recent years by more calculations of the function or its derivatives per itera-
tion at the new points. In fact, the idea is to compose two or more familiar iterative
schemes in order to reach better convergence order. But unfortunately in this way, the
method is inefficient, unless the number of (functional) evaluations per full iteration
has been decreased by approximating the new-appeared values of the function or its
derivatives.

On the other hand, from a practical standpoint, it is fascinating to improve the
order of convergence of the known efficient methods. In this work, an accurate twelfth-
order iterative scheme is developed by considering a three-step cycle using (2) in its
first step.

Note that in 1974, the fundamental work in root finding was published by Kung
and Traub that provided methods of order 2n consisting of n + 1 evaluation per iter-
ation [12]. As a matter of fact, they conjectured that a multi-point iteration without
memory using n+1 (functional) evaluation can reach the maximum convergence rate
2n. Taking into account of this, the optimal efficiency index of an iteration is 2

n
n+1 .

See for more on this topic or an application of nonlinear equations [13, 14].

2. A new method

Let us consider a three-step cycle in which the Jarratt method is in the first step
and we have the Newton’s method in the second and third steps in the following way:





yn = xn − Jf (xn) f(xn)
f ′(xn) ,

zn = yn − f(yn)
f ′(yn) ,

xn+1 = zn − f(zn)
f ′(zn) .

(7)
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In order to obtain a novel variant of Jarratt method with better efficiency index,
we estimate the two new-appeared first derivatives of the function (at the new points)
in the second and third steps, by two different approximations. First, we estimate
f ′(yn) by a polynomial of degree three as follows:

q(t) = a1 + a2(t− xn) + a3(t− xn)2 + a4(t− xn)3. (8)

Note that this estimation function meets the function f(t) in the points xn, kn, yn,
i.e., by considering

q(xn) = f(xn), q(yn) = f(yn),

q′(xn) = f ′(xn), q′(kn) = f ′(kn),
we have four linear equations with four unknowns a1, a2, a3 and a4. By solving this
system of linear equations we have a1 = f(xn), a2 = f ′(xn),

a4 =
2f [yn, xn](−xn + kn) + (xn − 2kn + yn)f ′(xn) + (xn − yn)f ′(kn)

(xn − kn)(xn − yn)(xn − 3kn + 2yn)
, (9)

and
a3 = f [yn, xn, xn]− (yn − xn)a4, (10)

where

f [yn, xn, xn] =
f [yn, xn]− f ′(xn)

yn − xn
.

Now we have a powerful approximation of f ′(yn) in the following form

f ′(yn) ≈ q′(yn) = a2 + 2a3(yn − xn) + 3a4(yn − xn)2. (11)

Although we have used all of the past four known values in estimating f ′(yn), the
order will arrive at 6 (according to Theorem 1) by using (11) at the end of the second
step of (7). That is to say, the Kung-Traub hypothesis cannot be achieved. The
reason is that, the first two steps in this way consume two evaluations of the function
and two evaluations of the first derivatives.

In fact, the maximum order that could be achieved by four evaluations per full
cycle in which there are two first-order derivative evaluations is 6. We should remark
that there is no optimal three-point without memory method including two deriva-
tive evaluations and two function evaluations per full iteration in the literature. Note
that we cannot build any weight function at this step to fulfill the conjecture of Kung-
Traub. As a matter of fact, any try by the authors for providing weight functions to
increase the order from 6 to 8 without more evaluations per step have failed.

Anyhow now, we can double the convergence order by adding only one more eval-
uation of the function at the new added step (the third step of (7)). For the last
new-appeared first derivative of the function in the third step, i.e. f ′(zn), we con-
sider a same interpolating polynomial as in (8) but with different coefficients. Let us
consider the interpolating polynomial

m(t) = b0 + b1(t− xn) + b2(t− xn)2 + b4(t− xn)3, (12)

as an approximation for the function f(t) which meets the function in xn, yn, zn. That
is,

m(xn) = f(xn), m′(xn) = f ′(xn), m(yn) = f(yn) and m(zn) = f(zn).
Hence, by solving a new system of linear equations just like the previous case, we

obtain the four unknowns (b1, b2, b3 and b4) and consequently we have an estimation
of f ′(zn) as comes next

f ′(zn) ≈ 2f [xn, zn] + f [yn, zn]− 2f [xn, yn] + (yn − zn)f [yn, xn, xn], (13)
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wherein f [xn, yn], f [xn, zn] and f [yn, zn] are divided differences. Another interesting
point of Jarratt-type methods has appeared now. Although, at the third step we omit
using the known value f ′(kn) in approximating f ′(zn), the order has doubled. In fact,
the use of f ′(kn) in finding approximates of f ′(zn) just increase the computational
load and the order will remain unchanged.

Note that if we consider the interpolation conditions as follows

m(xn) = f(xn), m′(kn) = f ′(kn), m(yn) = f(yn) and m(zn) = f(zn),

then a new approximation for f ′(zn) will be attained.
Now we could write down our novel iterative method without memory as follows:





yn = xn − Jf (xn) f(xn)
f ′(xn) ,

zn = yn − f(yn)
2f [yn,xn]−f ′(xn)+a4(yn−xn)2 ,

xn+1 = zn − f(zn)
2f [xn,zn]+f [yn,zn]−2f [xn,yn]+(yn−zn)f [yn,xn,xn] .

(14)

wherein Jf (xn) and a4 are defined by (3) and (9), respectively. The theoretical proof
of this without memory Jarratt-type method is given in Theorem 1.

Theorem 1. Let α ∈ D be a simple zero of a sufficiently differentiable function
f : D ⊂ R→ R in an open interval D, which contains x0 as an initial approximation
of α. Then the method (14) is of order twelve and includes three evaluations of the
function and two evaluations of the first derivative per full iteration.

Proof. We write down the Taylor’s series expansion of the function f and its first
derivative around the simple zero in the n-th iterate. For simplicity, we assume that

ck =
(

1
k!

)
f (k)(α)
f ′(α)

, k ≥ 2. (15)

Also let en = xn − α. Thus, we have

f(xn) = f ′(α)(en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n + c6e

6
n + c7e

7
n + · · ·+ O(e13

n )), (16)

and

f ′(xn) = f ′(α)(1+2c2en +3c3e
2
n +4c4e

3
n +5c5e

4
n +6c6e

5
n +7c7e

6
n + · · ·+O(e12

n )). (17)

Dividing the new two expansions (16) and (17) on each other, gives us

f(xn)
f ′(xn)

= en − c2e
2
n + 2(c2

2 − c3)e3
n + (7c2c3 − 4c3

2 − 3c4)e4
n + · · ·+ O(e13

n ). (18)

Now we have

xn − 2
3

f(xn)
f ′(xn)

− α =
en

3
+

2c2e
2
n

3
− 4

3
(c2

2 − c3)e3
n +

2
3
(4c3

2 − 7c2c3 + 3c4)e4
n

−4
3
(4c4

2 − 10c2
2c3 + 3c2

3 + 5c2c4 − 2c5)e5
n + · · ·+ O(e13

n ). (19)

We expand f ′(kn) around the simple root and then we obtain:

xn − 3f ′(kn) + f ′(xn)
6f ′(kn)− 2f ′(xn)

f(xn)
f ′(xn)

− α = (c3
2 − c2c3 +

c4

9
)e4

n

+(−4c4
2 + 8c2

2c3 − 2c2
3 −

20c2c4

9
+

8c5

27
)e5

n +
2
27

(135c5
2 − 405c3

2c3

+165c2
2c4 − 99c3c4 + 9c2(27c2

3 − 5c5) + 7c6)e6
n + · · ·+ O(e13

n ). (20)
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For the second step of (14), we provide the Taylor expansion in the same form for
f(yn) at first, and then for the approximation function q′(yn). Accordingly, we attain

yn − f(yn)
2f [yn, xn]− f ′(xn) + a4(yn − xn)2

− α = − (c4(9c3
2 − 9c2c3 + c4))

81c2
e6
n

+
(6c4(18c5

2 − 27c3
2c3 + 10c2

2c4 + c3c4)− 8c2(9c3
2 − 9c2c3 + 2c4)c5)

243c2
2

e7
n

+
1

729c3
2

(729c10
2 −1458c8

2c3−81c7
2c4 + · · ·+c2

2(27c3c
2
4−64c2

5−84c4c6))e8
n + · · ·+O(e13

n ).

(21)
This shows that our iterative scheme (14) arrives at 6th order of convergence in

the end of the second step. For the last step, by writing the Taylor expansion of f(zn)
around the simple root α, we have

f(zn) = −((c4(9c3
2 − 9c2c3 + c4)f(α))e6

n)/(81c2) + (2(3c4(18c5
2 − 27c3

2c3

+10c2
2c4 + c3c4)− 4c2(9c3

2 − 9c2c3 + 2c4)c5)f(α)e7
n)/(243c2

2)
+(1/(729c3

2))(729c10
2 − 1458c8

2c3 − 81c7
2c4 − 36c2

3c
2
4 + 27c6

2(27c2
3 + 25c5)

−9c4
2(77c2

4 + 123c3c5) + c2(25c3
4 + 96c3c4c5) + 27c5

2(45c3c4 − 14c6) + 27c3
2(−24c2

3c4

+27c4c5 + 14c3c6) + c2
2(27c3c

2
4 − 64c2

5 − 84c4c6))f(α)e8
n − (1/(2187c4

2))2((8748c12
2

−26244c10
2 c3 + 8262c9

2c4 − 108c3
3c

2
4 + 162c8

2(135c2
3 − 4c5) + 6c2c3c4(25c2

4

+48c3c5)− 486c7
2(17c3c4 + 3c6) + 27c5

2(−81c2
3c4 + 124c4c5 + 96c3c6)

+3c2
2(27c2

3c
2
4 − 82c2

4c5 − 64c3c
2
5 − 84c3c4c6)− 9c6

2(486c3
3 + 159c2

4 + 306c3c5

−92c7) + 3c4
2(999c3c

2
4 + 675c2

3c5 − 332c2
5 − 564c4c6 − 276c3c7) + c3

2(−93c3
4

+336c5c6 + 8c4(−27c3c5 + 23c7)))f(α))e9
n + 1/(6561c5

2)(236196c14
2 − 944784c12

2 c3

+361584c11
2 c4 − 1296c4

3c
2
4 + 243c10

2 (4752c2
3 − 437c5) + 108c2c

2
3c4(25c2

4 + 32c3c5)
+243c9

2(−2919c3c4 + 50c6) + c2
2(972c3

3c
2
4 − 625c4

4 − 5904c3c
2
4c5 − 144c2

3(16c2
5

+21c4c6)) + 27c8
2(−16524c3

3 + 3003c2
4 + 5040c3c5 + 406c7) + 9c6

2(2916c4
3 + 1764c3c

2
4

+729c2
3c5 − 1514c2

5 − 2922c4c6 − 2322c3c7) + 3c3
2(−864c2

3c4c5 + c4(1024c2
5 + 807c4c6)

+c3(−588c3
4 + 1344c5c6 + 736c4c7)) + 9c7

2(28188c2
3c4 + 1086c4c5 + 1782c3c6 − 731c8)

+c4
2(−243c2

3c
2
4 + 3771c2

4c5 − 1764c2
6 + 108c3(16c2

5 + 21c4c6)− 2944c5c7 − 1462c4c8)
+3c5

2(1944c3
3c4 − 4755c3

4 − 5832c2
3c6 + 5790c5c6 + 4603c4c7

+3c3(−6429c4c5 + 731c8)))f(α)e10
n + O(e11

n ).

By considering the obtained formula and the Taylor expansion of m′(zn), we have
that 2f [xn, zn] + f [yn, zn] − 2f [xn, yn] + (yn − zn)f [yn, xn, xn] = f(α) + (7/81)c4(9c3

2 −
9c2c3 + c4)f(α)e6

n +(2(−3c4(126c5
2− 270c3

2c3 +81c2c
2
3 +70c2

2c4− 2c3c4)+ c2(171c2(c
2
2− c3)+

47c4)c5)f(α)e7
n)/(243c2) + 1/(729c2

2)(1458c10
2 − 2916c8

2c3 + 7128c7
2c4 − 72c2

3c
2
4 + 54c6

2(27c2
3 −

83c5)+45c4
2(169c2

4+210c3c5)+c2(59c3
4+192c3c4c5)+27c5

2(−720c3c4+53c6)+27c3
2(438c2

3c4−
156c4c5− 53c3c6)+ c2

2(−5373c3c
2
4− 2916c2

3c5 +304c2
5 +453c4c6))f(α)e8

n +O(e9
n). We finally

obtain

en+1 = −8(c2
4(9c3

2 − 9c2c3 + c4)2)
6561c2

e12
n + O(e13

n ), (22)

which shows that the convergence order of the proposed three-step algorithm (14) in
this contribution is twelve. ¤

The analysis of error shows that the method can be used as a great tool for solving
nonlinear equations. By this new and simple approach, we have developed the order
of convergence by one additional calculation of the function in lieu of method (5).
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This new method includes three evaluations of the function and two evaluations of
the first derivative per iteration.

Clearly, the classical efficiency index [1] of the proposed method (if we suppose that
all the evaluations have the same computational cost) is 12

1
5 ≈ 1.644 which is more

than lots of existed methods, such as, 2
1
2 ≈ 1.414 of Newton’s method, 3

1
3 ≈ 1.442 of

method (1), 4
1
3 ≈ 1.587 of method (2) and 6

1
4 ≈ 1.565 of method (5).

We note that again the highest possible order up to now in the literature for
without memory iterations with two evaluations of the first-order derivatives and
three evaluations of the function is 12, and with two evaluations of the first-order
derivative and two evaluations of the function is 6. Although such iterations do not
satisfy the Kung-Traub conjecture on the optimality, they have some advantages,
e.g. the convergence radius of Jarratt-type methods for starting points which are
in the vicinity of the root but not so close are greater than that of Newton-type or
Steffensen-type methods [15].

3. Examples

In this section, we employ the presented method (PM) (14), to solve some nonlinear
single valued equations and compare the results with some famous existing methods.
The test functions and their roots are listed as follows.

• f1(x) = (sin x)2 − x2 + 1, α ≈ 1.4044916482153412260350868177868680771766,

• f2(x) = ex2+7x−30 − 1, α = 3,
• f3(x) = x3 − 10, α ≈ 2.1544346900318837217592935665193504952593,
• f4(x) = x2 − ex − 3x + 2, α ≈ 0.2575302854398607604553673049372417813845,
• f5(x) = (x− 1)3 − 1, α = 2.

Note that some optimal three-step eighth-order methods without memory have
recently been developed in [16] as comes next





yn = xn − f(xn)
f ′(xn) ,

zn = yn − f(yn)
f ′(xn){ 2f(xn)−f(yn)

2f(xn)−5f(yn)},
xn+1 = zn − f(zn)

2f [zn,xn]−f ′(xn){1 + ( f(zn)
f(xn) )

2

+ f(zn)
f(yn) + ( f(zn)

f(yn) )
2 − 3

2 ( f(yn)
f(xn) )

3 − 2( f(yn)
f ′(xn) )

2 − f(zn)
f ′(xn)},

(23)

and 



yn = xn − f(xn)
f ′(xn) ,

zn = yn − f(yn)
f ′(xn){ 2f(xn)−f(yn)

2f(xn)−5f(yn)},
xn+1 = zn − f(zn)

2f [zn,xn]−f ′(xn){1 + ( f(zn)
f(xn) )

2

+ f(zn)
f(yn) + ( f(zn)

f(yn) )
2 − 3

2 ( f(yn)
f(xn) )

3 − 31
4 ( f(yn)

f(xn) )
4 + ( f(yn)

f ′(xn) )
3 − 2 f(zn)

f ′(xn)},

(24)

and also



yn = xn − f(xn)
f ′(xn) ,

zn = yn − f(yn)
f ′(xn){ 2f(xn)−f(yn)

2f(xn)−5f(yn)},
xn+1 = zn − f(zn)

2f [zn,xn]−f ′(xn){1 + ( f(zn)
f(xn) )

2

+ f(zn)
f(yn) + ( f(zn)

f(yn) )
2 − 3

2 ( f(yn)
f(xn) )

3 − 31
4 ( f(yn)

f(xn) )
4 − ( f(yn)

f ′(xn) )
2 − ( f(zn)

f ′(xn) )
2}.

(25)
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High-order iterative methods are significant because numerical applications use
high precision in their computations. By virtue of this, numerical computations have
been performed using variable precision arithmetic in Matlab 7.6 with 1000 signifi-
cant digits. We use the following stopping criterion in our computations: |f(xn)| < ε.
For numerical illustrations in this section we used the fixed stopping criterion ε =
1.10−1000.

In numerical comparisons, we have used the Newton’s method of order two, Jarratt
scheme of optimal order four (2), the sixth-order method of Wang et al. by (5), the
new and efficient optimal eighth-order method of Wang and Liu by (WLM), relation
(16) of [17], the eighth-order methods (23) and (24), alongside with our contributed
algorithm (14), shown as PM. We present the numerical test results for the iterative
methods in Table 1. In this Table, e.g. 3(154), shows that the absolute value of the
test function after three full steps is correct up to 154 decimal places, i.e. it is zero
up to 154 decimal places.

To have a fair comparison, we have tried to consider the Total Number of Evalua-
tions (TNE) in different methods at a somewhat similar level. In some cases, we let
the iteration to cycle more for reaching the convergence phase.

Table 1.

Comparison of results for presented method (PM) and some well-known methods

Test Functions x0 PM (23) (24) WLM (5) (2) NM
f1 15 3(154) 4(2) Div. 4(151) 4(81) 5(67) 9(33)
f1 4.2 3(311) 3(90) 3(106) 4(736) 4(250) 5(180) 9(118)
f1 0.3 3(4) Div. Div. Div. 5(1) 5(15) 9(10)
f2 3.2 3(219) 4(227) 4(232) 4(637) 4(247) 5(40) 9(52)
f2 3.4 3(29) 3(26) 4(227) 4(115) 4(42) 5(31) 9(7)
f2 2.85 3(128) Div. Div. Div. 4(4) 5(114) 9(8)
f3 0.5 3(109) Div. Div. Div. 5(1) 5(29) 9(6)
f3 0.2 3(4) Div. Div. Div. 10(3) 6(5) 12(1)
f3 9 3(307) Div. Div. 4(251) 4(125) 5(81) 9(32)
f4 -300 3(18) Div. Div. 4(13) 4(24) 5(4) 9(1)
f4 6 3(35) 4(222) 3(19) 4(96) 4(48) 5(53) 9(30)
f4 -100 3(51) Div. Div. 4(47) 4(38) 5(16) 9(8)
f5 6 3(228) Div. Div. 4(182) 4(90) 5(61) 9(24)
f5 10 3(85) Div. Div. 4(64) 4(40) 5(23) 9(8)
f5 1.3 3(237) Div. Div. 7(0) 4(5) 5(64) 9(18)

Note that in Table 1, ”Div.” represents that the iteration diverges for the consid-
ered starting points. The computational order of convergence, namely COC, which
is defined as follows

COC ≈ ln | en+1
en

|
ln | en

en−1
| , (26)

where en = xn − α, is very close to 12 for PM and 8 for WLM, (23) and (24) in case
of converging, which shows that numerical results are in concordance with the theory
developed in the previous section. Table 1 also shows that the convergence radius of
without memory iterations in which the Jarratt-type methods are employed at the
beginning of them is better than that of optimal Newton-type methods. In fact, the
results of Table 1 manifest that Jarratt-type methods are better choices when the
starting points are in the vicinity of the root but not so close.
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In the next section, we will discuss on the basins of attractions for the fourth-order
method of Jarratt (2), the sixth-order method has obtained at the end of the second
step of (14), i.e.

{
yn = xn − Jf (xn) f(xn)

f ′(xn) ,

xn+1 = yn − f(yn)
2f [yn,xn]−f ′(xn)+a4(yn−xn)2 ,

(27)

and also the twelfth-order method (14). According to Table 1, we do not include
the comparison with eighth-order methods, because Jarratt-type high order methods
have better convergence radius. Note that we need the some basic definitions before
going to Section 4. Thus, now we shortly present them. Let R : C → C be a
rational map on the Riemann sphere. Then, a periodic point z0 of period m is such
that Rm(z0) = z0 where m is the smallest such integer. And also point z0 is called
attracting if |R′(z0)| < 1, repelling if |R′(z0)| > 1, and neutral if |R′(z0)| = 1. If the
derivative is also zero then the point is called super-attracting.

Note that the Julia set of a nonlinear map R(z), denoted J(R), is the closure of
the set of its repelling periodic points. The complement of J(R) is the Fatou set
F(R). A point z0 belongs to the Julia set if and only if dynamics in a neighborhood
of z0 displays sensitive dependence on the initial conditions, so that nearby initial
conditions lead to wildly different behavior after a number of iterations.

4. Basins of Attractions

In this section, we describe the basins of attractions for the higher order Jarratt-
type methods for finding the complex roots of the polynomials x2 − 1, x3 − 1 and
x4 − 1 for x ∈ C.

The iteration (14) can be written as Iterative Functions:




yn = ψ4thJM (xn),

zn = ψ6thJM (xn),

xn+1 = ψ12thJM (xn).

(28)

Bahman Kalantari coined the term ”polynomiography” to be the art and science of
visualization in the approximation of roots of polynomial using Iteration Functions.
We describe the methods in (28), (the method at the end of its first step, the method at
the end of its second step, the method at the end of its third step) to produce the poly-
nomiographs using Matlab 7.6.

4.1. Polynomiographs of x2 − 1

We now draw the polynomiographs of f(x) = x2 − 1 with roots α1 = −1 and α2 = 1.
Let x0 be the initial point. A square grid of 80000 points, composed of 400 columns
and 200 rows corresponding to the pixels of a computer display would represent a
region of the complex plane [18]. We consider the square [−2, 2]× [−2, 2]. Each grid
point is used as a starting value x0 of the sequence ψIF (xn) and the number of it-
erations until convergence is counted for each gridpoint. We assign pale blue color
if the iterates xn of each grid point converge to the root α1 = −1 and green color if
they converge to the root α2 = 1 in at most 100 iterations and if |αj − xn| < 1.e− 4,
j = 1, 2. In this way, the basin of attraction for each root would be assigned a char-
acteristic color. The common boundaries of these basins of attraction constitute the
Julia set of the Iteration Function. If the iterates do not satisfy the above criterion
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Figure 1. Polynomiographs of 4thJM , 6thJM and 12thJM meth-
ods for f(x) = x2 − 1.

for convergence we assign the dark blue color.
The Iteration Functions of the higher order Jarratt-type methods are given by

ψ4thJM (x) =
x4 + 6x2 + 1
x4 + 6x2 + 1

,

ψ6thJM (x) =
x8 + 28x6 + 70x4 + 28x2 + 1

8x7 + 56x5 + 56x3 + 8x
,

and

ψ12thJM (x)

=
x16 + 120x14 + 1820x12 + 8008x10 + 12870x8 + 8008x6 + 1820x4 + 120x2 + 1

16x15 + 560x13 + 4368x11 + 11440x9 + 11440x7 + 4368x5 + 560x3 + 16x
.

We observe as the order increases, the order of the numerator and denominator of
the iteration function increases. This shows the complexity of higher order methods.

Fig. (1) shows the polynomiograph of the quadratic polynomial. We observe that
it is the same for the 3 methods all starting points converge. The Julia set is the imagi-
nary y-axis.

4.2. Polynomiographs of x3 − 1

The roots are α1 = 1, α2 = −0.5000− 0.8660i and α3 = −0.5000 + 0.8660i. Each
grid point over the region [−2, 2]× [−2, 2] is colored accordingly, brownish yellow for
convergence to α1, blue for convergence to α2 and pale green for convergence to α3.
We use the same conditions for convergence as in the quadratic polynomial.
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Figure 2 (a) Polynomiographs of 4thJM method for f(x) = x3 − 1.

Figure 2 (b) Polynomiographs of 6thJM method for f(x) = x3 − 1.
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Figure 2 (c) Polynomiographs of 12thJM method for f(x) = x3 − 1.

Figure 3 (a) Polynomiographs of 4thJM method for f(x) = x4 − 1.
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Figure 3 (b) Polynomiographs of 6thJM method for f(x) = x4 − 1.

Figure 3 (c) Polynomiographs of 12thJM method for f(x) = x4 − 1.
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The Iteration Functions of the higher order Jarratt methods for cubic polynomial
contain higher order polynomials in both the numerator and denominator:

ψ4thJM (x) =
O(x9)
O(x8)

, ψ6thJM (x) =
O(x27)
O(x26)

, ψ12thJM (x) =
O(x81)
O(x80)

.

Fig. 2 (a)-(c) show the polynomiographs of the methods for the cubic polynomial.
All starting points are convergent. Compared to 4thJM method, the poynomiographs
of the 6thJM and 12thJM are deformed and the basins of attractions for the roots α2

and α3 are bigger. The polynomiograph of 12thJM method is almost similar to that of
6thJM but the basins of attractions is smaller.

4.3. Polynomiographs of x4 − 1

The roots are α1 = 1, α2 = −1, α3 = i and α4 = −i. Note that we used blue
for α2, brown for α3, red for α1, green for α4 in the Polynomiographs in this case.
The Iteration Functions of the higher order Jarratt methods for quartic polynomial
contain higher order polynomials in both the numerator and denominator:

ψ4thJM (x) =
O(x16)
O(x15)

, ψ6thJM (x) =
O(x72)
O(x71)

, ψ12thJM (x) =
O(x288)
O(x287)

.

Fig. (3) (a)-(c) show the polynomiographs of the methods for the quartic poly-
nomial. There are diverging points for 6thJM and 12thJM methods. The 12thJM
method have more diverging points and its fractal shape is bigger. The 6thJM and
12thJM methods have a larger basin of attraction for the root α2 but they have
smaller basins of attractions for other roots when compared to 4thJM method.

From this comparison based on the basins of attractions, we could generally say
Jarratt-type methods are reliable in solving nonlinear equations. Anyhow, we should
point out that for some roots the higher-order Jarratt-type methods are better while
for some other roots of a nonlinear equation in the complex plane the Jarratt method
(2) is better.

5. Conclusion

As Table 1 and the error analysis have manifested, our novel second derivative-
free iterative scheme, which includes three evaluations of the function and two of its
first-order derivative, is efficient and can be used as a great tool in solving single
variable nonlinear equations. The efficiency index of the proposed method is 12

1
5 ≈

1.644, which is higher than a lot of well-known iterative methods. However, we
should mention that the convergence behavior of the considered multi-point methods
strongly depends on the structure of tested functions and the accuracy of initial
approximations.

We end this paper with an attraction to one of the features of Jarratt-type methods.
Although multi-point without memory methods of the same order (e.g. 8) and the
same computational cost show a similar convergence behavior and produce results of
approximately same accuracy, this equalized behavior is especially valid when such
methods are Newton-like methods in essence. As can be seen from Table 1 and
the discussion in Section 4, Jarratt-type method have greater convergence radius
according to their first step.
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