On a general sequence of Durrmeyer operators

Asha Ram Gairola and Girish Dobhal

Abstract

In this paper we establish direct and inverse theorems in simultaneous approximation using weighted Ditzian-Totik modulus of smoothness for a generalized sequence of Bernstein-Durrmeyer polynomials. The particular case are Szász Durrmeyer and Baskakov Durrmeyer operators.

2010 Mathematics Subject Classification. Primary 41A28; Secondary 26A15.
Key words and phrases. Simultaneous approximation, Ditzian-Totik modulus of continuity.

1. Introduction

With the aim of approximating Lebesgue integrable functions on $[0,1]$, Durrmeyer [5] introduced an integral modification of the well known Bernstein polynomials and were extensively studied by Derrienic [2]. Later in the year 1989 Heilmann [11] considered a general sequence of Durrmeyer operators defined on $[0, \infty)$ for $n>c$ and $x \in[0, \infty)$ as

$$
V_{n, r}(f, x)=\int_{0}^{\infty} K_{n, r}(x, t) f(t) d t
$$

where the kernel $K_{n, r}$ is given by

$$
K_{n, r}(x, t)= \begin{cases}(n-c) \sum_{k=0}^{\infty} p_{n, k}(x) p_{n, k}(t), & r=0 \\ (n-c) \beta(n, r, c) \sum_{k=0}^{\infty} p_{n+c r, k}(x) p_{n-c r, k+r}(t), & r>0\end{cases}
$$

where $r, n \in \mathbb{R} . p_{n, k}(x)=\frac{(-x)^{k}}{k!} \phi_{n}^{(k)}(x)$ and $\beta(n, r, c)=\prod_{l=0}^{r-1} \frac{n+c l}{n-c(l+1)}$.
The family of operators $V_{n, r}(f, x)$ is linear and positive. The special case $c=1$, and $r=0$ was considered very recently by Deo [3] wherein he studied the local asymptotic formula and an error estimation in simultaneous approximation for generalized Durrmeyer operators, which were introduced by [11]. There was several misprints in [3]. The authors in [7] corrected them and obtained local error estimates in simultaneous approximation by the operators $V_{n}(f)(x)$. In this paper we extend the work in [7] and obtain direct and inverse theorems in simultaneous approximation using weighted Ditzian-Totik modulus of smoothness. In the end we mention some of the particular cases of the main theorem.

Received June 02, 2011. Revision received October 25, 2011.

2. Definitions and Notations

The K-functional $\bar{K}_{2, \varphi^{\lambda}}\left(f^{(s)}, t\right)$ and the corresponding Ditzian-Totik modulus of smoothness $\omega_{\varphi^{\lambda}}^{2}\left(f^{(s)}, t\right)$ (cf. [4]) we shall use in our study are defined as:

Let $f^{(s)} \in C_{B}[0, \infty)$, the class of bounded and continuous functions on $[0, \infty), 0 \leqslant$ $\lambda \leqslant 1 \varphi(x)=\sqrt{x(1+c x)}$, then the Ditzian-Totik weighted modulus of smoothness of second order is given by
where the second order forward difference of the function $f^{(s)}$ at a point x is given by

$$
\vec{\Delta}_{h \varphi^{\lambda}(x)}^{2} f^{(s)}(x)=\left\{\begin{array}{l}
\sum_{j=0}^{2}(-1)^{2-j}\binom{2}{j} f^{(s)}\left(x+j h \varphi^{\lambda}(x)\right) \\
\text { if } x, x+2 h \varphi^{\lambda}(x) \in[0, \infty) \\
0, \quad \text { otherwise }
\end{array}\right.
$$

and

$$
\bar{K}_{2, \varphi^{\lambda}}\left(f^{(s)}, t^{2}\right)=\inf _{g \in W_{2, \lambda}}\left\{\left\|f^{(s)}-g\right\|+t^{2}\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|+t^{4}\left\|g^{\prime \prime}\right\|\right\}
$$

where the class $W_{2, \lambda}$ is given by $\left\{g:\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|<\infty, g^{\prime} \in A C_{l o c}(0, \infty)\right\}$ and $\varphi(x)=$ $\sqrt{x(1+c x)}$ is an admissible weight function of Ditzian-Totik modulus of smoothness. It is easy to see that $\varphi^{\lambda}(x)$ satisfies properties (I)-(III) p. $8[4]$. Moreover, the following equivalence is well known (p. 11, [4])

$$
\omega_{\varphi^{\lambda}}^{2}\left(f^{(s)}, t\right) \sim \bar{K}_{2, \varphi^{\lambda}}\left(f^{(s)}, t^{2}\right) .
$$

By \mathbb{N}^{0} we mean the set of non-negative integers and the constant M is not the same at each occurrence. In the present chapter, we study the rate of convergence in simultaneous approximation for the operators $V_{n, r}(f, x)$ for functions in class $L_{B}[0, \infty)$.

3. Some Lemmas

The contents of this section are some auxiliary results and lemmas which will be used in our main theorems.

Lemma 3.1. For the functions $W_{m, n}(x)$ given by

$$
W_{m, n}(x) \equiv \sum_{k=0}^{\infty}\left(\frac{k}{n+c r}-x\right)^{m} p_{n+c r, k}(x)
$$

we have :
(a) $W_{0, n}(x)=1, W_{1, n}(x)=x(n+c r-1)$;
(b) $(n+c r) W_{m+1, n}(x)=\varphi^{2}(x)\left\{W_{m, n}^{\prime}(x)+m W_{m-1, n}(x)\right\}$, where $m \geqslant 1, x \in[0, \infty)$ and $\varphi^{2}(x)=x(1+c x)$;
(c) $W_{2 m, n}(x) \leqslant C_{m} n^{-m+1}\left(\delta_{n}^{2 m}(x)+n^{-1}\right)$, for all $m \in \mathbb{N}^{0}$, where C_{m} is a constant that depends on m and $\delta_{n}(x)=\varphi(x)+\frac{1}{\sqrt{n}}$.

Proof. (a) and (b) follow from direct calculations and (c) follows in view of the relation $\varphi^{2}(x) p_{n+c r, k}^{\prime}(x)=\left(\frac{k}{n+c r}-x\right) p_{n+c r, k}(x)$, the recurrence relation (b) together the
equivalencies:

$$
\delta_{n}(x) \sim\left\{\begin{array}{l}
\frac{1}{\sqrt{n}} \text { for } x \in\left[0, \frac{1}{n}\right]=E_{n} \\
\varphi(x) \text { for } x \in\left(\frac{1}{n}, \infty\right)=E_{n}^{c}
\end{array}\right.
$$

Following is a Lorentz type lemma :
Lemma 3.2. [10] There exist polynomials $q_{i, j, r}(x)$ independent of n and k such that

$$
\varphi^{2 r}(x) \frac{d^{r}}{d x^{r}} p_{n+c r, k}(x)=\sum_{\substack{2 i+j \leqslant r \\ i, j \geqslant 0}}(n+c r)^{i}[k-(n+c r) x]^{j} q_{i, j, r}(x) p_{n+c r, k}(x)
$$

Lemma 3.3. [1] Let Ω be monotone increasing on $[0, c]$. Then $\Omega(t)=O\left(t^{\alpha}\right), t \rightarrow 0+$, if for some $0<\alpha<r$ and all $h, t \in[0, c]$

$$
\Omega(h)<M\left[t^{\alpha}+(h / t)^{r} \Omega(t)\right] .
$$

Lemma 3.4. Suppose f is s times differentiable on $[0, \infty)$ such that $f^{(s-1)}(t)=$ $O\left(t^{\alpha}\right)$, for some $\alpha>0$ as $t \rightarrow \infty$. Then for any $r, s \in \mathbb{R}$ and $n>\alpha+c s$, we have

$$
D^{s} V_{n, r}(f, x)=V_{n, r+s}\left(D^{s} f, x\right)
$$

We make use of the Lemma 3.4 to define the operators $V_{n, r, s}(f, x)$ as follows

$$
V_{n, r, s}(f, x)=V_{n, r+s}(f, x)=\int_{0}^{\infty} K_{n, r+s}(t) f(t) d t
$$

Obviously, $V_{n ; r}^{(s)}(f, x)=V_{n, r, s}\left(f^{(s)}, x\right)$ and $V_{n, r, s}$ are linear positive operators.
Lemma 3.5. For $m \in \mathbb{N}^{0}$, if we define the m-th order moment for the operators $V_{n, r, s}$ by $T_{n, m}(x)=V_{n, r, s}\left((t-x)^{m}, x\right)$ then
$T_{n, 0}(x)=\frac{(n-c) \beta(n, r+s, c)}{\{n-c(r+s+1)\}} ; \quad T_{n, 1}(x)=\frac{(n-c) \beta(n, r+s, c)(r+s+1)(1+2 c x)}{\{n-c(r+s+1)\}\{n-c(r+s+2)\}} ;$ and there holds the recurrence relation
$(n-(m+r+s+2) c) T_{n, m+1}(x)+n(1-x) T_{n, m}(x)$

$$
=((m+r+s+1)(1+2 c x)) T_{n, m}(x)+2 m \phi^{2}(x) T_{n, m-1}(x)+\varphi^{2}(x) T_{n, m}^{\prime}(x)
$$

Proof. The values of $T_{n, 0}(x)$ and $T_{n, 1}(x)$ follow from straight forward calculations. Writing $\alpha_{n, r+s}=(n-c) \beta(n, r+s, c)$ and using the relation $\varphi^{2}(x) p_{n+c r, k}^{\prime}(x)=\left(\frac{k}{n+c r}-\right.$
x) $p_{n+c r, k}(x)$, we obtain

$$
\begin{aligned}
& \varphi^{2}(x)\left(T_{n, m}(x)+m T_{n, m-1}(x)\right) \\
& =\alpha_{n, r+s} \sum_{k=0}^{\infty} \varphi^{2}(x) p_{n+c r, k}^{\prime}(x) \int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t)(t-x)^{m}, d t \\
& =\alpha_{n, r+s} \sum_{k=0}^{\infty} p_{n+c r, k}(x) \int_{0}^{\infty} \varphi^{2}(t) p_{n-c(r+s), k+r+s}(t)(t-x)^{m}, d t \\
& +(n-(r+s) c) T_{n, m+1}(x)+(n-r-s-(n+2 c(r+s)) x) T_{n, m}(x) \\
& =\alpha_{n, r+s} \sum_{k=0}^{\infty} p_{n+c r, k}(x) \int_{0}^{\infty}\left\{\varphi^{2}+(1+2 c x)(t-x)+c(t-x)^{2}\right\} \times \\
& \times p_{n-c(r+s), k+r+s}(t)(t-x)^{m}, d t \\
& +(n-(r+s) c) T_{n, m+1}(x)+(n-r-s-(n+2 c(r+s)) x) T_{n, m}(x)
\end{aligned}
$$

Now, integration by parts and rearrangements of the terms gives the recurrence relation.

Corollary 3.1. From Lemma 3.5, and in view of $\alpha_{n, r+s}=O(1)$, it follows that

$$
T_{n, 2}(x)=\frac{\alpha_{n, r+s}}{n-c(r+s+1)} \frac{2(n-c) \varphi^{2}(x)+(r+s+1)(r+s+2)(1+2 c x)^{2}}{\{n-c(r+s+1)\}\{n-c(r+s+1)\}}
$$

This gives $T_{n, 2}(x) \leqslant C \delta_{n}^{2}(x)$, where $\delta_{n}(x)=\varphi(x)+\frac{1}{\sqrt{n}}$.
Our next result is a Bernstein type lemma which we shall use in inverse theorem.
Lemma 3.6. If $f \in L_{B}[0, \infty), f^{(l-1)} \in A C_{l o c}(0, \infty)$ and $l \in N$ then, there hold the inequality:

$$
\left|V_{n, r, s}^{(l)}(f, x)\right| \leqslant M \varphi^{-\lambda l}(x)\left\|\varphi^{\lambda l} f^{(l)}\right\|
$$

where $M=M(l)$ is a constant that depends on r but is independent of f and n.
Proof. By the assumption we can write $f(t)=\sum_{\nu=0}^{l-1} \frac{f^{(\nu)}(x)(t-x)^{\nu}}{\nu!}+R_{l}(f, t ; x)$, where $R_{l}(f, t ; x)=\frac{1}{(\nu-1)!} \int_{x}^{t}(t-u)^{l-1} f^{(s)}(u) d u$. Since, from Lemma 3.5 it follows that $V_{n, r, s}\left((t-x)^{\nu}, x\right)$ are polynomials in x of degree ν so that $V_{n, r, s}^{(r)}\left((t-x)^{\nu}, x\right)=0$ for $\nu<r$, it is sufficient to consider $V_{n, r, s}^{(l)}\left(R_{l}(f, t ; x), x\right)$.

Making use of $\left|\int_{x}^{t}(t-u)^{l-1} f^{(l)}(u) d u\right| \leqslant \frac{|t-x|^{l}\left\|\varphi^{\lambda l} f^{(s)}\right\|}{x^{\lambda l / 2}}\left(\frac{1}{(1+c x)^{\lambda l / 2}}+\frac{1}{(1+c t)^{\lambda l / 2}}\right)$ we get,

$$
\begin{aligned}
& \left|V_{n, r, s}^{(l)}(f, x)\right| \\
& \quad \leqslant \frac{\left\|\varphi^{\lambda l} f^{(s)}\right\|}{(l-1)!} \alpha_{n, r+s} \sum_{\substack{2 i+j \leqslant l \\
i, j \geqslant 0}} \sum_{k=0}^{\infty}(n+c r)^{i}|k-(n+c r) x|^{j} \times \\
& \quad \times \frac{\left|q_{i, j, l}(x)\right|}{\varphi^{2 l}(x)} p_{n+c(r+s), k}(x)\left[\int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t) \frac{|t-x|^{l}}{\varphi^{\lambda l}(x)} d t+\right. \\
& \left.\quad+\int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t) \frac{|t-x|^{l}}{x^{\lambda l / 2}} \frac{1}{(1+c t)^{\lambda l / 2}} d t\right] \\
& \quad=I_{1}+I_{2} \text { say. }
\end{aligned}
$$

We write $M=\sup _{\substack{2 i+j \leq l \\ i, j \geqslant 0}}\left\|q_{i, j, l}(x)\right\|$ and make use of Hölder's inequalities for integration and summation, the value $\int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t)=\frac{1}{n+c(k-1)}$ and Lemma 3.1, Lemma 3.5 to obtain following estimates

$$
\begin{aligned}
I_{1} & \leqslant \frac{M\left\|\varphi^{\lambda l} f^{(l)}\right\|}{(l-1)!\varphi^{2 l+2 \lambda}(x)} \sqrt{\alpha_{n, r+s}} \sum_{\substack{2 i+j \leqslant l \\
i, j \geqslant 0}}\left(\sum_{k=0}^{\infty}\left(\frac{k}{n+c r}-x\right)^{2 j} p_{n+c(r+s), k}(x)\right)^{\frac{1}{2}} \times \\
& \times \frac{(n+c r)^{i+j}}{\sqrt{n+c(k-1)}}\left(\alpha_{n, r+s} \sum_{k=0}^{\infty} p_{n+c(r+s), k}(x) \int_{0}^{\infty}(t-x)^{2 l} p_{n-c(r+s), k+r+s}(t) d t\right)^{\frac{1}{2}} \\
& \leqslant M \frac{\left\|\varphi^{\lambda l} f^{(l)}\right\|}{(l-1)!\varphi^{2 l+2 \lambda}(x)} \frac{1}{\sqrt{n+c(k-1)}} \sum_{\substack{2+j \leqslant l \\
i, j \geqslant 0}}(n+c r)^{i}\left(n^{-j+1} \delta_{n}^{2 j}(x)\right)^{\frac{1}{2}} n^{-l / 2} \delta_{n}^{l}(x) \\
& \leqslant M \varphi^{-\lambda l}(x)\left\|\varphi^{\lambda l} f^{(l)}\right\|,
\end{aligned}
$$

where we have used the equivalence $\delta_{n}(x) \sim \frac{1}{\sqrt{n}}$ for $x \in E_{n}$ and for $x \in E_{n}^{c}, \delta_{n}(x) \sim$ $\varphi(x)$. Now it follows by direct calculations that $\int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t)(1+c t)^{-l \lambda} d t \leqslant$ $M(1+c x)^{-l \lambda}$. Therefore, we get

$$
\begin{aligned}
I_{2} & \leqslant \varphi^{\lambda l} \frac{\left\|\varphi^{\lambda l} f\right\|}{x^{l \lambda / 2}} \alpha_{n, r+s} \sum_{\substack{2 i+j \leqslant l \\
i, j \geqslant 0}} \sum_{k=0}^{\infty}(n+c r)^{i}|k-(n+c r) x|^{j} \frac{\left|q_{i, j, l}(x)\right|}{\varphi^{2 l}(x)} \times \\
& \times p_{n+c(r+s), k}(x) \int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t)|t-x|^{l}(1+c t)^{-l \lambda / 2} d t
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant M \frac{\left\|\varphi^{\lambda l} f^{(l)}\right\|}{\varphi^{2 l}(x) x^{l \lambda / 2}} \alpha_{n, r+s} \sum_{\substack{2 i+j \leqslant l \\
i, j \geqslant 0}} \sum_{k=0}^{\infty}(n+c r)^{i}|k-(n+c r) x|^{j} p_{n+c(r+s), k}(x) \times \\
& \times\left(\int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t)(t-x)^{2 l} d t\right)^{\frac{1}{2}}\left(\int_{0}^{\infty} p_{n-c(r+s), k+r+s}(t)(1+c t)^{-l \lambda} d t\right)^{\frac{1}{2}} \\
& \leqslant M \frac{\left\|\varphi^{\lambda l} f^{(l)}\right\|}{\varphi^{(2+\lambda) l}(x)} \sqrt{\alpha_{n, r+s}} \sum_{\substack{2 i+j \leqslant l \\
i, j \geqslant 0}}(n+c r)^{i+j}\left(\sum_{k=0}^{\infty}\left(\frac{k}{n+c r}-x\right)^{2 j} p_{n+c(r+s), k}(x)\right)^{\frac{1}{2}} \\
& \times\left(\alpha_{n, r+s} \sum_{k=0}^{\infty} p_{n+c(r+s), k}(x) \int_{0}^{\infty}(t-x)^{2 l} p_{n-c(r+s), k+r+s}(t) d t\right)^{\frac{1}{2}} \\
& \leqslant M \| \varphi^{\lambda l} f^{(l) \| .}
\end{aligned}
$$

Lemma 3.7. If $f \in L_{B}[0, \infty)$ and $r \in N$ then, there hold the inequalities :

$$
\left|V_{n, r, s}^{(r)}(f, x)\right| \leqslant M n^{r / 2} \delta_{n}^{r}(x) \varphi^{-2 r}(x)\|f\|
$$

where $M=M(r)$ is a constant that depends on r but is independent of f and n.
The proof of is similar to Lemma 3.6.

4. Main Results

In this section we establish the direct and inverse theorems in simultaneous approximation by the operators $V_{n, r}(f, x)$.
Theorem 4.1. If $f \in L_{B}[0, \infty), f^{(s-1)} \in A C_{l o c}(0, \infty), 0 \leqslant \lambda \leqslant 1,0<\alpha<2$ and $\varphi(x)=\sqrt{x(1+c x)}$ then, we have

$$
\begin{aligned}
\left|V_{n, r}^{(s)}(f, x)-f^{(s)}(x)\right| & \leqslant M \omega_{\varphi^{\lambda}}^{2}\left(f^{(s)}, n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right) \\
& +\omega\left(f^{(s)}, \frac{(n-c) \beta(n, r+s, c)(r+s+1)(1+2 c x)}{\{n-c(r+s+1)\}\{n-c(r+s+2)\}}\right) .
\end{aligned}
$$

Proof. Let us take $g_{n, x, \lambda}=g \in W_{2, \lambda}$ such that

$$
\begin{equation*}
\left\|f^{(s)}-g\right\|+\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\| \leqslant 2 \bar{K}_{2, \varphi^{\lambda}}\left(f^{(s)},\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}\right) \tag{1}
\end{equation*}
$$

We introduce the auxiliary operators $\widehat{V}_{n, r, s}$ defined by

$$
\begin{equation*}
\widehat{V}_{n, r, s}(f, x)=\frac{1}{C_{n, r}}\left[V_{n, r, s}(f, x)-f^{(s)}(x+z)+f^{(s)}(x)\right] \tag{2}
\end{equation*}
$$

where $z=V_{n, r, s}(t-x, x)=\frac{(n-c) \beta(n, r+s, c)(r+s+1)(1+2 c x)}{\{n-c(r+s+1)\}\{n-c(r+s+2)\}}, C_{n, r}=V_{n, r, s}(1, x)=(n-$ c) $\beta(n, r+s, c) /\{n-c(r+s+1)\}$ and $x \in[0, \infty)$. The operators $\widehat{V}_{n, r, s}$ are linear and preserve the linear functions. Further, $\widehat{V}_{n, r, s}(1, x)=1, \widehat{V}_{n, r, s}(t-x, x)=0$ and from 2 it follows that $\left|\widehat{V}_{n, r, s}\left(f^{s}-g, x\right)\right| \leqslant M\left\|f^{s}-g\right\|$. Therefore,

$$
\begin{aligned}
& V_{n, r}^{(s)}(f, x)-f^{(s)}(x) \\
& \quad=C_{n, r}\left[\widehat{V}_{n, r, s}\left(f^{s}-g, x\right)+\left\{g(x)-f^{s}(x)\right\}\right. \\
& \left.\quad+\widehat{V}_{n, r, s}(g, x)-g(x)\right]+\left(C_{n, r}-1\right) f^{(s)}(x)+f^{(s)}(x+z)-f^{(s)}(x)
\end{aligned}
$$

Hence, in view of the limit $C_{n, r} \rightarrow 1$ as $n \rightarrow \infty$, we get

$$
\left|V_{n}^{(s)}(f, x)-f(x)\right| \leqslant M\left(4\left\|f^{(s)}-g\right\|+\left|\widehat{V}_{n, r, s}(g, x)-g(x)\right|+\omega\left(f^{(s)}, z\right)\right)
$$

Using the smoothness of g, and in view of $\widehat{V}_{n, r, s}(t-x, x)=0$, we get

$$
\left|\widehat{V}_{n, r, s}(g, x)-g(x)\right| \leqslant M \mid V_{n, r, s}\left(R _ { 2 } (g , t , x) \left|+\left|\int_{x}^{x+z}(x+z-u) g^{\prime \prime}(u) d u\right|\right.\right.
$$

where $R_{2}(g, t, x)=\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u$. Now following holds (see [4] p. 141.)

$$
\begin{aligned}
\left|R_{2}(g, t, x)\right| & \leqslant \frac{|t-x|}{x^{\lambda}}\left(\frac{1}{(1+c x)^{\lambda}}+\frac{1}{(1+c t)^{\lambda}}\right)\left|\int_{x}^{t} \varphi^{2 \lambda}(u)\right| g^{\prime \prime}(u)|d u| \\
& \leqslant\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|(t-x)^{2}\left(\frac{1}{x^{\lambda}(1+c x)^{\lambda}}+\frac{1}{x^{\lambda}(1+c t)^{\lambda}}\right)
\end{aligned}
$$

Also it can be verified (cf. [6])that $V_{n, r+s}\left((1+c t)^{-m}, x\right) \leqslant C(1+c x)^{-m}$ and $V_{n, r, s}((t-$ $\left.x)^{4}, x\right) \leqslant C\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}$. Therefore, we get

$$
\begin{aligned}
\left|V_{n, r, s}\left(R_{2}(g, t, x)\right)\right| & \leqslant \frac{\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|}{\varphi^{2 \lambda}(x)} V_{n, r, s}\left((t-x)^{2}, x\right)+\frac{\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|}{x^{\lambda}} V_{n, r, s}\left(\frac{(t-x)^{2}}{(1+c t)^{\lambda}}, x\right) \\
& \leqslant \frac{\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|}{\varphi^{2 \lambda}(x)} V_{n, r, s}\left((t-x)^{2}, x\right) \\
& +\frac{\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|}{x^{\lambda}}\left(V_{n, r, s}\left((t-x)^{4}, x\right)\right)^{1 / 2}\left(V_{n, r, s}\left((1+c t)^{-2 \lambda}, x\right)^{1 / 2}\right. \\
& \leqslant M\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2} .
\end{aligned}
$$

Since, $z \leqslant C\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}$ for all values of x, therefore we obtain

$$
\left|\int_{x}^{x+z}(x+z-u) g^{\prime \prime}(u) d u\right| \leqslant\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{4}\left\|g^{\prime \prime}\right\|
$$

Collecting these estimates, we get

$$
\left|\widehat{V}_{n, r, s}(g ; x)-g(x)\right| \leqslant M\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}+\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{4}\left\|g^{\prime \prime}\right\|
$$

Therefore, we have

$$
\begin{aligned}
& \left|V_{n, r}^{(s)}(f, x)-f^{(s)}(x)\right| \\
& \quad \leqslant M\left(\left\|f^{(s)}-g\right\|+\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}+\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{4}\left\|g^{\prime \prime}\right\|\right) \\
& \quad+\omega\left(f^{(s)}, z\right)
\end{aligned}
$$

This in view of equivalence of $\bar{K}_{2, \varphi^{\lambda}}\left(f, t^{2}\right)$ and $\omega_{\varphi^{\lambda}}^{2}(f, t)$ gives

$$
\begin{aligned}
\left|V_{n, r}^{(s)}(f, x)-f^{(s)}(x)\right| & \leqslant M \bar{K}_{2, \varphi^{\lambda}}\left(f,\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}\right)+\omega\left(f^{(s)}, z\right) \\
& \leqslant M \omega_{\varphi^{\lambda}}^{2}\left(f,\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)+\omega\left(f^{(s)}, z\right) .\right.
\end{aligned}
$$

This completes the proof of the theorem.

Corollary 4.1. Now, using Lemma 2.3 [14], it follows that $\omega_{\varphi^{\lambda}}^{2}(f, t)=O\left(t^{\alpha}\right), 0<\alpha 2$ implies that $\omega\left(f^{(s)}, t\right)=O\left(t^{\alpha(1-\lambda)}\right)$ for $0<1-\lambda<\frac{2}{\alpha}$. Therefore, $\omega_{\varphi^{\lambda}}^{2}(f, t)=O\left(t^{\alpha}\right)$ implies $\left|V_{n, r}^{(s)}(f, x)-f^{(s)}(x)\right|=O\left(t^{\alpha}\right)$.
Theorem 4.2 (Inverse). Let $f \in L_{B}[0, \infty), 0 \leqslant \lambda \leqslant 1,0<\alpha<2$ and $\varphi(x)=$ $\sqrt{x(1+c x)}$. Then, there holds the implication:

$$
\left|V_{n, r}^{(s)}(f, x)-f^{(s)}(x)\right|=O\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha} \Rightarrow \omega_{\varphi^{\lambda}}^{2}(f, x)=O(t)^{\alpha}
$$

Proof. We have

$$
\begin{aligned}
& \left|\vec{\Delta}_{h \varphi^{\lambda}(x)}^{2} f^{(s)}(x)\right| \\
& \leqslant\left|\vec{\Delta}_{h \varphi^{\lambda}(x)}^{2}\left(f^{(s)}(x)-V_{n, r}^{(s)}(f, x)\right)\right|+\left|\vec{\Delta}_{h \varphi^{\lambda}(x)}^{2} V_{n, r, s}\left(f^{(s)}, x\right)\right| \\
& \leqslant M\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}+\left|\int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} V_{n, r}^{\prime \prime}\left(f^{(s)}-g, x+u+v\right) d u d v\right| \\
& +\left|\int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} \int_{-\frac{h \varphi^{\lambda}(x)}{2}}^{\frac{h \varphi^{\lambda}(x)}{2}} V_{n, r}^{\prime \prime}(g, x+u+v) d u d v\right| .
\end{aligned}
$$

Using Lemma 3.6, and Lemma 3.7, we obtain

$$
\begin{aligned}
& \omega_{\varphi^{\lambda}}^{2}(f, h) \leqslant M\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}+\left(h \varphi^{\lambda}(x)\right)^{2} \times \\
& \times\left(\varphi^{-2 \lambda}\left(n^{1 / 2} \delta_{n}^{-(1-\lambda)}(x)\right)^{2}\left\|f^{(s)}-g\right\|+\varphi^{-2 \lambda}\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|\right) \\
& \leqslant M\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{+}\left(\frac{h}{n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)}\right)^{2} \times \\
& \times\left(\left\|f^{(s)}-g\right\|+\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{2}\left\|\varphi^{2 \lambda} g^{\prime \prime}\right\|\right) \\
& \leqslant M\left(n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}+\left(\frac{h}{n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)}\right)^{2} \omega_{\varphi^{\lambda}}^{2}\left(f, n^{-\frac{1}{2}} \delta_{n}^{1-\lambda}(x)\right) .
\end{aligned}
$$

Using Lemma 3.3 this implies $\omega_{\varphi^{\lambda}}^{2}(f, t)=O\left(t^{\alpha}\right)$.
Remark 4.1. Analogous to Theorem 1, [6] we can obtain the corresponding theorem for the range $0<\alpha<1$ while for $s=0$ from Theorem 4.1 and Theorem 4.2 we obtain following theorem for the range $0<\alpha<2$:
Theorem 4.3. Let $f \in L_{B}[0, \infty), \varphi(x)=\sqrt{x(1+c x)}, 0<\lambda \leqslant 1$ and $0<\alpha<2$. Then, there holds the implication (i) \Leftrightarrow (ii) in the following statements:
(i) $\left|V_{n, r}(f, t)-f(x)\right|=O\left(n^{-1 / 2} \delta_{n}^{1-\lambda}(x)\right)^{\alpha}$
(ii) $\omega_{\varphi^{\lambda}}^{2}(f, t)=O\left(t^{\alpha}\right)$.

Remark 4.2. We obtain following operators as the special cases of these operators: For $c=0, r=0$ and $\phi_{n}(x)=e^{-n x}$, we get the Szász-Mirakyan-Durrmeyer operators (see [8], [9], [13]).
For $c=1, r=0$ and $\phi_{n}(x)=e^{-n x}$, we obtain the Baskakov-Durrmeyer operators
(see [15]).
For $c=0$, and $\phi_{n}(x)=e^{-n x}$, we get the Szász-Durrmeyer operators (see [13]).
For $c>1, r=0$ and $\phi_{n}(x)=(1+c x)^{-n / c}$, we obtain general Baskakov-Durrmeyer operators (see [11]).
For $c=-1, r=0$ and $\phi_{n}(x)=(1-x)^{-n}$, we obtain Bernstein-Durrmeyer operators (see [5], [12]).

References

[1] H. Berens and G.G. Lorentz, Inverse theorem for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693-708.
[2] M.M. Derriennic, Sur l'approximation de functions integrable sur [0,1] par des polynomes de Bernstein modifies, J. Approx. Theory 31 (1981), 325-343.
[3] N. Deo, Direct result on exponential-type operators, Appl. Math. Comput. 204 (2008), 109-115.
[4] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer, New York, 1987.
[5] J.L. Durrmeyer, Une formule dinversion de la transformee de Laplace: Application a la Theorie des Moments, These de 3e Cycle, Faculte des Sciences de l' Universite de Paris (1967).
[6] A.R. Gairola and P.N. Agrawal, Direct and inverse theorems for the Bézier variant of certain summation-integral type operators, Turk. J. Math. 33 (2009), 1-14.
[7] V. Gupta, P.N. Agrawal and A.R. Gairola, On the integrated Baskakov type operators, Appl. Math. Comput. 213 (2009), 419-425.
[8] V. Gupta, Simultaneous approximation by Szász-Durrmeyer operators, Math. Student 64 (1995), no. 14, 27-36.
[9] V. Gupta and P.N. Agrawal, An estimate of the rate of convergence for modified Szász-Mirakyan operators of functions of bounded variation, Publ. Inst. Math. (Beograd) 49 (1991), no. 63, 97103.
[10] V. Gupta and A. Ahmad, Simultaneous approximation by modified beta operators, Istanbul Univ. Fen. Fak. Mat. Der. 54 (1995), 11-22.
[11] M. Heilmann, Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl. 1 (1989), no. 5, 105-127.
[12] A. Lupa̧s, Die Folge der Betaoperatoren, Dissertation, Universität Stuttgart, (1972).
[13] S.M. Mazhar and V. Totik, Approximation by modified Szász operators, Acta Sci. Math. (Szeged) 49 (1985), 257-269.
[14] Q. Qi et al., Pointwise estimates for linear combinations of gamma operators, Southeast Asian Bull. Math. 26 (2002), 321-329.
[15] A. Sahai and G. Prasad, On simultaneous approximation by modified Lupas operators, J. Approx. Theory 45 (1985), no. 2, 122-128.
(Asha Ram Gairola, Girish Dobhal) Department of Computer Application, Graphic Era
University-Dehradun, Uttarakhand, 248001, INDIA
E-mail address: ashagairola@gmail.com, girish_dobhal@gmail.com

