
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 38(4), 2011, Pages 67–75
ISSN: 1223-6934, Online 2246-9958

On a general sequence of Durrmeyer operators

Asha Ram Gairola and Girish Dobhal

Abstract. In this paper we establish direct and inverse theorems in simultaneous approx-
imation using weighted Ditzian-Totik modulus of smoothness for a generalized sequence of
Bernstein-Durrmeyer polynomials. The particular case are Szász Durrmeyer and Baskakov
Durrmeyer operators.
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1. Introduction

With the aim of approximating Lebesgue integrable functions on [0, 1], Durrmeyer
[5] introduced an integral modification of the well known Bernstein polynomials and
were extensively studied by Derrienic [2]. Later in the year 1989 Heilmann [11] con-
sidered a general sequence of Durrmeyer operators defined on [0,∞) for n > c and
x ∈ [0,∞) as

Vn,r(f, x) =

∞∫

0

Kn,r(x, t)f(t)dt,

where the kernel Kn,r is given by

Kn,r(x, t) =





(n− c)
∞∑

k=0

pn,k(x) pn,k(t), r = 0,

(n− c)β(n, r, c)
∞∑

k=0

pn+cr,k(x) pn−cr,k+r(t), r > 0.

where r, n ∈ R. pn,k(x) = (−x)k

k! φ
(k)
n (x) and β(n, r, c) =

r−1∏
l=0

n+cl
n−c(l+1) .

The family of operators Vn,r(f, x) is linear and positive. The special case c = 1, and
r = 0 was considered very recently by Deo [3] wherein he studied the local asymp-
totic formula and an error estimation in simultaneous approximation for generalized
Durrmeyer operators, which were introduced by [11]. There was several misprints in
[3]. The authors in [7] corrected them and obtained local error estimates in simul-
taneous approximation by the operators Vn(f)(x). In this paper we extend the work
in [7] and obtain direct and inverse theorems in simultaneous approximation using
weighted Ditzian-Totik modulus of smoothness. In the end we mention some of the
particular cases of the main theorem.
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2. Definitions and Notations

The K−functional K2,ϕλ(f (s), t) and the corresponding Ditzian-Totik modulus of
smoothness ω2

ϕλ(f (s), t)(cf. [4]) we shall use in our study are defined as:
Let f (s) ∈ CB [0,∞), the class of bounded and continuous functions on [0,∞), 0 6

λ 6 1 ϕ(x) =
√

x(1 + cx), then the Ditzian-Totik weighted modulus of smoothness
of second order is given by

ω2
ϕλ(f (s), t) = sup

0<h6t
sup

x+2hϕλ(x)>0

∥∥−→∆2
hϕλ(x)f

(s)(t)
∥∥,

where the second order forward difference of the function f (s) at a point x is given by

−→
∆2

hϕλ(x)f
(s)(x) =





2∑
j=0

(−1)2−j
(
2
j

)
f (s)

(
x + jhϕλ(x)

)

if x, x + 2hϕλ(x) ∈ [0,∞)

0, otherwise

and
K2,ϕλ(f (s), t2) = inf

g∈W2,λ

{‖f (s) − g‖+ t2‖ϕ2λg′′‖+ t4‖g′′‖}

where the class W2,λ is given by
{
g : ‖ϕ2λg′′‖ < ∞, g′ ∈ ACloc(0,∞)

}
and ϕ(x) =√

x(1 + cx) is an admissible weight function of Ditzian-Totik modulus of smoothness.
It is easy to see that ϕλ(x) satisfies properties (I)-(III) p.8 [4]. Moreover, the following
equivalence is well known (p. 11, [4])

ω2
ϕλ(f (s), t) ∼ K2,ϕλ(f (s), t2).

By N0 we mean the set of non-negative integers and the constant M is not the same
at each occurrence. In the present chapter, we study the rate of convergence in simul-
taneous approximation for the operators Vn,r(f, x) for functions in class LB [0,∞).

3. Some Lemmas

The contents of this section are some auxiliary results and lemmas which will be
used in our main theorems.

Lemma 3.1. For the functions Wm,n(x) given by

Wm,n(x) ≡
∞∑

k=0

(
k

n + cr
− x

)m

pn+cr,k(x),

we have :
(a) W0,n(x) = 1, W1,n(x) = x(n + cr − 1);
(b) (n + cr)Wm+1,n(x) = ϕ2(x)

{
W ′

m,n(x) + mWm−1,n(x)
}
, where m > 1, x ∈ [0,∞)

and ϕ2(x) = x(1 + cx);
(c) W2m,n(x) 6 Cm n−m+1

(
δ2m
n (x) + n−1

)
, for all m ∈ N0, where Cm is a constant

that depends on m and δn(x) = ϕ(x) + 1√
n
.

Proof. (a) and (b) follow from direct calculations and (c) follows in view of the relation
ϕ2(x)p′n+cr,k(x) =

(
k

n+cr − x
)
pn+cr,k(x), the recurrence relation (b) together the
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equivalencies:

δn(x) ∼





1√
n

forx ∈
[
0, 1

n

]
= En

ϕ(x) forx ∈
(

1
n ,∞

)
= Ec

n

¤

Following is a Lorentz type lemma :

Lemma 3.2. [10] There exist polynomials qi,j,r(x) independent of n and k such that

ϕ2r(x)
dr

dxr
pn+cr,k(x) =

∑
2i+j6r
i,j>0

(n + cr)i[k − (n + cr)x]jqi,j,r(x) pn+cr,k(x).

Lemma 3.3. [1] Let Ω be monotone increasing on [0, c]. Then Ω(t) = O(tα), t → 0+,
if for some 0 < α < r and all h, t ∈ [0, c]

Ω(h) < M [tα + (h/t)rΩ(t)] .

Lemma 3.4. Suppose f is s times differentiable on [0,∞) such that f (s−1)(t) =
O(tα), for some α > 0 as t →∞. Then for any r, s ∈ R and n > α + cs, we have

DsVn,r(f, x) = Vn,r+s(Dsf, x).

We make use of the Lemma 3.4 to define the operators Vn,r,s(f, x) as follows

Vn,r,s(f, x) = Vn,r+s(f, x) =

∞∫

0

Kn,r+s(t)f(t) dt.

Obviously, V
(s)
n;r (f, x) = Vn,r,s(f (s), x) and Vn,r,s are linear positive operators.

Lemma 3.5. For m ∈ N0, if we define the m−th order moment for the operators
Vn,r,s by Tn,m(x) = Vn,r,s ((t− x)m, x)
then
Tn,0(x) = (n−c)β(n,r+s,c)

{n−c(r+s+1)} ; Tn,1(x) = (n−c)β(n,r+s,c)(r+s+1)(1+2cx)
{n−c(r+s+1)}{n−c(r+s+2)} ; and there holds the

recurrence relation(
n− (m + r + s + 2)c

)
Tn,m+1(x) + n(1− x)Tn,m(x)

=
(
(m + r + s + 1)(1 + 2cx)

)
Tn,m(x) + 2mφ2(x)Tn,m−1(x) + ϕ2(x)T ′n,m(x).

Proof. The values of Tn,0(x) and Tn,1(x) follow from straight forward calculations.
Writing αn,r+s = (n−c)β(n, r+s, c) and using the relation ϕ2(x)p′n+cr,k(x) =

(
k

n+cr−
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x
)
pn+cr,k(x), we obtain

ϕ2(x)
(
Tn,m(x) + mTn,m−1(x)

)

= αn,r+s

∞∑

k=0

ϕ2(x)p′n+cr,k(x)

∞∫

0

pn−c(r+s),k+r+s(t)(t− x)m, dt

= αn,r+s

∞∑

k=0

pn+cr,k(x)

∞∫

0

ϕ2(t) pn−c(r+s),k+r+s(t)(t− x)m, dt

+
(
n− (r + s)c

)
Tn,m+1(x) +

(
n− r − s− (n + 2c(r + s))x

)
Tn,m(x)

= αn,r+s

∞∑

k=0

pn+cr,k(x)

∞∫

0

{
ϕ2 + (1 + 2cx)(t− x) + c(t− x)2

}×

×pn−c(r+s),k+r+s(t)(t− x)m, dt

+
(
n− (r + s)c

)
Tn,m+1(x) +

(
n− r − s− (n + 2c(r + s))x

)
Tn,m(x)

Now, integration by parts and rearrangements of the terms gives the recurrence rela-
tion. ¤

Corollary 3.1. From Lemma 3.5, and in view of αn,r+s = O(1), it follows that

Tn,2(x) =
αn,r+s

n− c(r + s + 1)
2(n− c)ϕ2(x) + (r + s + 1)(r + s + 2)(1 + 2cx)2

{n− c(r + s + 1)}{n− c(r + s + 1)} .

This gives Tn,2(x) 6 Cδ2
n(x), where δn(x) = ϕ(x) + 1√

n
.

Our next result is a Bernstein type lemma which we shall use in inverse theorem.

Lemma 3.6. If f ∈ LB [0,∞), f (l−1) ∈ ACloc(0,∞) and l ∈ N then, there hold the
inequality:

∣∣V (l)
n,r,s(f, x)

∣∣ 6 Mϕ−λl(x)
∥∥ϕλlf (l)

∥∥,

where M = M(l) is a constant that depends on r but is independent of f and n.

Proof. By the assumption we can write f(t) =
l−1∑
ν=0

f(ν)(x)(t−x)ν

ν! + Rl(f, t; x), where

Rl(f, t;x) = 1
(ν−1)!

t∫
x

(t − u)l−1f (s)(u) du. Since, from Lemma 3.5 it follows that

Vn,r,s

(
(t − x)ν , x

)
are polynomials in x of degree ν so that V

(r)
n,r,s

(
(t − x)ν , x

)
= 0

for ν < r, it is sufficient to consider V
(l)
n,r,s

(
Rl(f, t; x), x

)
.
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Making use of
∣∣∣∣

t∫
x

(t−u)l−1f (l)(u) du

∣∣∣∣ 6 |t−x|l‖ϕλlf(s)‖
xλl/2

(
1

(1+cx)λl/2 + 1
(1+ct)λl/2

)
we get,

|V (l)
n,r,s(f, x)|

6 ‖ϕλlf (s)‖
(l − 1)!

αn,r+s

∑
2i+j6l
i,j>0

∞∑

k=0

(n + cr)i|k − (n + cr)x|j ×

× |qi,j,l(x)|
ϕ2l(x)

pn+c(r+s),k(x)

[ ∞∫

0

pn−c(r+s),k+r+s(t)
|t− x|l
ϕλl(x)

dt +

+

∞∫

0

pn−c(r+s),k+r+s(t)
|t− x|l
xλl/2

1
(1 + ct)λl/2

dt

]

= I1 + I2 say.

We write M = sup
2i+j6l
i,j>0

‖qi,j,l(x)‖ and make use of Hölder’s inequalities for integration

and summation, the value
∞∫
0

pn−c(r+s),k+r+s(t) = 1
n+c(k−1) and Lemma 3.1, Lemma

3.5 to obtain following estimates

I1 6
M

∥∥ϕλlf (l)
∥∥

(l − 1)!ϕ2l+2λ(x)
√

αn,r+s

∑
2i+j6l
i,j>0

( ∞∑

k=0

( k

n + cr
− x

)2j

pn+c(r+s),k(x)

) 1
2

×

× (n + cr)i+j

√
n + c(k − 1)

(
αn,r+s

∞∑

k=0

pn+c(r+s),k(x)

∞∫

0

(t− x)2lpn−c(r+s),k+r+s(t) dt

) 1
2

6 M

∥∥ϕλlf (l)
∥∥

(l − 1)!ϕ2l+2λ(x)
1√

n + c(k − 1)

∑
2i+j6l
i,j>0

(n + cr)i
(
n−j+1δ2j

n (x)
) 1

2
n−l/2δl

n(x)

6 Mϕ−λl(x)
∥∥ϕλlf (l)

∥∥,

where we have used the equivalence δn(x) ∼ 1√
n

for x ∈ En and for x ∈ Ec
n, δn(x) ∼

ϕ(x). Now it follows by direct calculations that
∞∫
0

pn−c(r+s),k+r+s(t)(1 + ct)−lλ dt 6

M(1 + cx)−lλ. Therefore, we get

I2 6 ϕλl ‖ϕλlf‖
xlλ/2

αn,r+s

∑
2i+j6l
i,j>0

∞∑

k=0

(n + cr)i|k − (n + cr)x|j |qi,j,l(x)|
ϕ2l(x)

×

× pn+c(r+s),k(x)

∞∫

0

pn−c(r+s),k+r+s(t)|t− x|l(1 + ct)−lλ/2 dt
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6 M
‖ϕλlf (l)

∥∥
ϕ2l(x)xlλ/2

αn,r+s

∑
2i+j6l
i,j>0

∞∑

k=0

(n + cr)i|k − (n + cr)x|jpn+c(r+s),k(x)×

×
( ∞∫

0

pn−c(r+s),k+r+s(t)(t− x)2l dt

) 1
2
( ∞∫

0

pn−c(r+s),k+r+s(t)(1 + ct)−lλ dt

) 1
2

6 M
‖ϕλlf (l)

∥∥
ϕ(2+λ)l(x)

√
αn,r+s

∑
2i+j6l
i,j>0

(n + cr)i+j

( ∞∑

k=0

( k

n + cr
− x

)2j

pn+c(r+s),k(x)

) 1
2

×
(

αn,r+s

∞∑

k=0

pn+c(r+s),k(x)

∞∫

0

(t− x)2lpn−c(r+s),k+r+s(t) dt

) 1
2

6 M
∥∥ϕλlf (l)

∥∥.

Lemma 3.7. If f ∈ LB [0,∞) and r ∈ N then, there hold the inequalities :
∣∣V (r)

n,r,s(f, x)
∣∣ 6 Mnr/2δr

n(x)ϕ−2r(x)
∥∥f

∥∥,

where M = M(r) is a constant that depends on r but is independent of f and n.

The proof of is similar to Lemma 3.6. ¤

4. Main Results

In this section we establish the direct and inverse theorems in simultaneous ap-
proximation by the operators Vn,r(f, x).

Theorem 4.1. If f ∈ LB [0,∞), f (s−1) ∈ ACloc(0,∞), 0 6 λ 6 1, 0 < α < 2 and
ϕ(x) =

√
x(1 + cx) then, we have

∣∣V (s)
n,r

(
f, x

)− f (s)(x)
∣∣ 6 Mω2

ϕλ

(
f (s), n−

1
2 δ1−λ

n (x)
)

+ ω
(
f (s),

(n− c)β(n, r + s, c)(r + s + 1)(1 + 2cx)
{n− c(r + s + 1)}{n− c(r + s + 2)}

)
.

Proof. Let us take gn,x,λ = g ∈ W2,λ such that

‖f (s) − g‖+
(
n−

1
2 δ1−λ

n (x)
)2

‖ϕ2λg′′‖ 6 2K2,ϕλ

(
f (s),

(
n−

1
2 δ1−λ

n (x)
)2

)
. (1)

We introduce the auxiliary operators V̂n,r,s defined by

V̂n,r,s(f, x) =
1

Cn,r

[
Vn,r,s(f, x)− f (s)(x + z) + f (s)(x)

]
, (2)

where z = Vn,r,s(t − x, x) = (n−c)β(n,r+s,c)(r+s+1)(1+2cx)
{n−c(r+s+1)}{n−c(r+s+2)} , Cn,r = Vn,r,s(1, x) = (n −

c)β(n, r + s, c)/{n− c(r + s + 1)} and x ∈ [0,∞). The operators V̂n,r,s are linear and
preserve the linear functions. Further, V̂n,r,s(1, x) = 1, V̂n,r,s(t − x, x) = 0 and from
2 it follows that |V̂n,r,s(fs − g, x)| 6 M‖fs − g‖. Therefore,

V (s)
n,r (f, x)− f (s)(x)

= Cn,r

[
V̂n,r,s(fs − g, x) + {g(x)− fs(x)}

+ V̂n,r,s(g, x)− g(x)
]

+ (Cn,r − 1)f (s)(x) + f (s)(x + z)− f (s)(x)
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Hence, in view of the limit Cn,r → 1 as n →∞, we get

|V (s)
n (f, x)− f(x)| 6 M

(
4‖f (s) − g‖+ |V̂n,r,s(g, x)− g(x)|+ ω

(
f (s), z

))
.

Using the smoothness of g, and in view of V̂n,r,s(t− x, x) = 0, we get

|V̂n,r,s(g, x)− g(x)| 6 M

∣∣∣∣Vn,r,s

(
R2(g, t, x)

∣∣∣∣ +
∣∣∣∣

x+z∫

x

(x + z − u)g′′(u)du

∣∣∣∣.

where R2(g, t, x) =
t∫

x

(t− u)g′′(u)du. Now following holds (see [4] p. 141.)

|R2(g, t, x)| 6 |t− x|
xλ

(
1

(1 + cx)λ
+

1
(1 + ct)λ

) ∣∣∣∣∣

t∫

x

ϕ2λ(u)
∣∣g′′(u)

∣∣du

∣∣∣∣∣

6 ‖ϕ2λg′′‖(t− x)2
(

1
xλ(1 + cx)λ

+
1

xλ(1 + ct)λ

)
.

Also it can be verified (cf. [6])that Vn,r+s

(
(1+ct)−m, x

)
6 C(1+cx)−m and Vn,r,s

(
(t−

x)4, x
)

6 C
(
n−

1
2 δ1−λ

n (x)
)2

. Therefore, we get

|Vn,r,s

(
R2(g, t, x)

)| 6 ‖ϕ2λg′′‖
ϕ2λ(x)

Vn,r,s

(
(t− x)2, x

)
+
‖ϕ2λg′′‖

xλ
Vn,r,s

( (t− x)2

(1 + ct)λ
, x

)

6 ‖ϕ2λg′′‖
ϕ2λ(x)

Vn,r,s

(
(t− x)2, x

)

+
‖ϕ2λg′′‖

xλ

(
Vn,r,s

(
(t− x)4, x

))1/2(
Vn,r,s

(
(1 + ct)−2λ, x

)1/2

6 M‖ϕ2λg′′‖(n− 1
2 δ1−λ

n (x)
)2

.

Since, z 6 C
(
n−

1
2 δ1−λ

n (x)
)2 for all values of x, therefore we obtain

∣∣∣∣
x+z∫

x

(x + z − u)g′′(u)du

∣∣∣∣ 6
(
n−

1
2 δ1−λ

n (x)
)4‖g′′‖.

Collecting these estimates, we get

|V̂n,r,s(g; x)− g(x)| 6 M‖ϕ2λg′′‖(n− 1
2 δ1−λ

n (x)
)2 +

(
n−

1
2 δ1−λ

n (x)
)4‖g′′‖.

Therefore, we have

|V (s)
n,r (f, x)− f (s)(x)|
6 M

(
‖f (s) − g‖+ ‖ϕ2λg′′‖(n− 1

2 δ1−λ
n (x)

)2 +
(
n−

1
2 δ1−λ

n (x)
)4‖g′′‖

)

+ ω
(
f (s), z

)
.

This in view of equivalence of K2,ϕλ(f, t2) and ω2
ϕλ(f, t) gives

|V (s)
n,r (f, x)− f (s)(x)| 6 MK2,ϕλ

(
f,

(
n−

1
2 δ1−λ

n (x)
)2) + ω(f (s), z)

6 Mω2
ϕλ

(
f,

(
n−

1
2 δ1−λ

n (x)
)

+ ω
(
f (s), z

)
.

This completes the proof of the theorem. ¤
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Corollary 4.1. Now, using Lemma 2.3 [14], it follows that ω2
ϕλ

(
f, t

)
= O(tα), 0 < α2

implies that ω
(
f (s), t

)
= O

(
tα(1−λ)

)
for 0 < 1− λ < 2

α . Therefore, ω2
ϕλ

(
f, t

)
= O(tα)

implies |V (s)
n,r (f, x)− f (s)(x)| = O

(
tα

)
.

Theorem 4.2 (Inverse). Let f ∈ LB [0,∞), 0 6 λ 6 1, 0 < α < 2 and ϕ(x) =√
x(1 + cx). Then, there holds the implication:

∣∣V (s)
n,r

(
f, x

)− f (s)(x)
∣∣ = O

(
n−

1
2 δ1−λ

n (x)
)α

⇒ ω2
ϕλ(f, x) = O (t)α

.

Proof. We have∣∣∣−→∆2
hϕλ(x)f

(s)(x)
∣∣∣

6
∣∣∣−→∆2

hϕλ(x)

(
f (s)(x)− V (s)

n,r (f, x)
) ∣∣∣ +

∣∣∣−→∆2
hϕλ(x)Vn,r,s(f (s), x)

∣∣∣

6 M
(
n−

1
2 δ1−λ

n (x)
)α

+

∣∣∣∣∣

hϕλ(x)
2∫

−hϕλ(x)
2

hϕλ(x)
2∫

−hϕλ(x)
2

V ′′
n,r(f

(s) − g, x + u + v)du dv

∣∣∣∣∣

+

∣∣∣∣∣

hϕλ(x)
2∫

−hϕλ(x)
2

hϕλ(x)
2∫

−hϕλ(x)
2

V ′′
n,r(g, x + u + v)du dv

∣∣∣∣∣.

Using Lemma 3.6, and Lemma 3.7, we obtain

ω2
ϕλ(f, h) 6 M

(
n−

1
2 δ1−λ

n (x)
)α

+ (hϕλ(x))2 ×

×
(
ϕ−2λ

(
n1/2 δ−(1−λ)

n (x)
)2‖f (s) − g‖+ ϕ−2λ‖ϕ2λg′′‖

)

6 M
(
n−

1
2 δ1−λ

n (x)
)+

(
h

n−
1
2 δ1−λ

n (x)

)2

×

×
(
‖f (s) − g‖+

(
n−

1
2 δ1−λ

n (x)
)2

‖ϕ2λg′′‖
)

6 M
(
n−

1
2 δ1−λ

n (x)
)α

+

(
h

n−
1
2 δ1−λ

n (x)

)2

ω2
ϕλ

(
f, n−

1
2 δ1−λ

n (x)
)
.

Using Lemma 3.3 this implies ω2
ϕλ(f, t) = O(tα). ¤

Remark 4.1. Analogous to Theorem 1, [6] we can obtain the corresponding theorem
for the range 0 < α < 1 while for s = 0 from Theorem 4.1 and Theorem 4.2 we obtain
following theorem for the range 0 < α < 2:

Theorem 4.3. Let f ∈ LB [0,∞), ϕ(x) =
√

x(1 + cx), 0 < λ 6 1 and 0 < α < 2.
Then, there holds the implication (i) ⇔ (ii) in the following statements:
(i)

∣∣Vn,r(f, t)− f(x)
∣∣ = O

(
n−1/2δ1−λ

n (x)
)α

(ii) ω2
ϕλ(f, t) = O(tα).

Remark 4.2. We obtain following operators as the special cases of these operators:
For c = 0, r = 0 and φn(x) = e−nx, we get the Szász-Mirakyan-Durrmeyer operators
(see [8], [9], [13]).
For c = 1, r = 0 and φn(x) = e−nx, we obtain the Baskakov-Durrmeyer operators
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(see [15]).
For c = 0, and φn(x) = e−nx, we get the Szász-Durrmeyer operators (see [13]).
For c > 1, r = 0 and φn(x) = (1 + cx)−n/c, we obtain general Baskakov-Durrmeyer
operators (see [11]).
For c = −1, r = 0 and φn(x) = (1− x)−n, we obtain Bernstein-Durrmeyer operators
(see [5], [12]).
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