On *R*-*I*-open sets and \mathcal{A}_{I}^{*} -sets in ideal topological spaces

Erdal Ekici

ABSTRACT. In this paper, properties of R-I-open sets and \mathcal{A}_{I}^{*} -sets in ideal topological spaces are discussed. The relationships between R-I-open sets, \mathcal{A}_{I}^{*} -sets and the related sets in ideal topological spaces are investigated. Moreover, decompositions of \mathcal{A}_{I}^{*} -continuous functions are established.

2010 Mathematics Subject Classification. Primary 54A05; Secondary 54A10, 54C08, 54C10. Key words and phrases. R-I-open set, \mathcal{A}_{I}^{*} -set, ideal topological space, decomposition, semi*-I-open set, β_{I}^{*} -open set.

1. Introduction

The notions of R-I-open sets and \mathcal{A}_{I}^{*} -sets in ideal topological spaces are introduced by [11] and [5], respectively. In [11], the notion of δ -I-open sets via R-I-open sets was studied. In [5], decompositions of continuity via \mathcal{A}_{I}^{*} -sets in ideal topological spaces have been established. The aim of this paper is to investigate properties of R-I-open sets and \mathcal{A}_{I}^{*} -sets in ideal topological spaces. The relationships between R-I-open sets, \mathcal{A}_{I}^{*} -sets and the related sets in ideal topological spaces are discussed. Also, decompositions of \mathcal{A}_{I}^{*} -continuous functions are provided.

In this paper, (X, τ) or (Y, σ) denote a topological space with no separation properties assumed. Cl(K) and Int(K) denote the closure and interior of K in (X, τ) , respectively for a subset K of a topological space (X, τ) . An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

(1) $V \in I$ and $U \subset V$ implies $U \in I$,

(2) $V \in I$ and $U \in I$ implies $V \cup U \in I$ [10].

Also, (X, τ, I) is called an ideal topological space or simply an ideal space if I is an ideal on (X, τ) . For a topological space (X, τ) with an ideal I on X and if P(X)is the set of all subsets of X, a set operator $(.)^* : P(X) \to P(X)$, said to be a local function [10] of $N \subset X$ with respect to τ and I is defined as follows:

 $N^*(I,\tau) = \{x \in X : K \cap N \notin I \text{ for every } K \in \tau(x)\} \text{ where } \tau(x) = \{K \in \tau : x \in K\}.$

A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(I,\tau)$, said to be the \star -topology, finer than τ , is defined by $Cl^*(N) = N \cup N^*(I,\tau)$ [9]. We simply write N^* for $N^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$.

Definition 1.1. A subset K of an ideal topological space (X, τ, I) is said to be

(1) \star -dense [2] if $Cl^*(K) = X$.

(2) R-I-open [11] if $K = Int(Cl^*(K))$.

(3) R-I-closed [11] if its complement is R-I-open.

Lemma 1.1. ([8]) Let K be a subset of an ideal topological space (X, τ, I) . If N is an open set, then $N \cap Cl^*(K) \subset Cl^*(N \cap K)$.

Received December 15, 2010. Revision received March 29, 2011.

Definition 1.2. ([3, 4]) A subset K of an ideal topological space (X, τ, I) is said to be

(1) semi^{*}-I-open if $K \subset Cl(Int^*(K))$.

(2) semi*-I-closed if its complement is semi*-I-open.

2. Properties of *R*-*I*-open sets and \mathcal{A}_{I}^{*} -sets

Theorem 2.1. For an ideal topological space (X, τ, I) and a subset K of X, the following properties are equivalent:

(1) K is an R-I-closed set,

(2) K is semi^{*}-I-open and closed.

Proof. $(1) \Rightarrow (2)$: Let K be an R-I-closed set in X. Then we have $K = Cl(Int^*(K))$. It follows that K is semi^{*}-I-open and closed.

 $(2) \Rightarrow (1)$: Suppose that K is a semi^{*}-I-open set and a closed set in X. It follows that $K \subset Cl(Int^*(K))$. Since K is closed, then we have

$$Cl(Int^*(K)) \subset Cl(K) = K \subset Cl(Int^*(K)).$$

Thus, $K = Cl(Int^*(K))$ and hence K is R-I-closed.

Theorem 2.2. For an ideal topological space (X, τ, I) and a subset K of X, K is an R-I-open set if and only if K is semi^{*}-I-closed and open.

Proof. It follows from Theorem 4.

Theorem 2.3. ([4]) A subset K of an ideal topological space (X, τ, I) is semi^{*}-I-open if and only if there exists $N \in \tau^*$ such that $N \subset K \subset Cl(N)$.

Theorem 2.4. For an ideal topological space (X, τ, I) and a subset K of X, the following properties are equivalent:

(1) K is an R-I-closed set,

(2) There exists a \star -open set L such that K = Cl(L).

Proof. $(2) \Rightarrow (1)$: Suppose that there exists a *-open set L such that K = Cl(L). Since $L = Int^*(L)$, then we have $Cl(L) = Cl(Int^*(L))$. It follows that

$$Cl(Int^*(Cl(L))) = Cl(Int^*(Cl(Int^*(L))))$$

= Cl(Int^*(L)) = Cl(L).

This implies

$$K = Cl(L) = Cl(Int^*(Cl(L)))$$

= Cl(Int^*(K)).

Thus, $K = Cl(Int^*(K))$ and hence K is an R-I-closed set in X.

 $(1) \Rightarrow (2)$: Suppose that K is an R-I-closed set in X. We have $K = Cl(Int^*(K))$. We take $L = Int^*(K)$. It follows that L is a \star -open set and K = Cl(L). \Box

Theorem 2.5. For an ideal topological space (X, τ, I) and a subset K of X, K is semi^{*}-I-open if $K = L \cap M$ where L is an R-I-closed set and Int(M) is a \star -dense set.

Proof. Suppose that $K = L \cap M$ where L is an R-I-closed set and Int(M) is a \star -dense set. By Teorem 7, there exists a \star -open set N such that L = Cl(N). We take $O = N \cap Int(M)$. It follows that O is \star -open and $O \subset K$. Moreover, we have

 $Cl(O) = Cl(N \cap Int(M))$ and $Cl(N \cap Int(M)) \subset Cl(N)$. Since Int(M) is \star -dense, then we have

$$N = N \cap Cl^*(Int(M)) \subset Cl^*(N \cap Int(M))$$

$$\subset Cl(N \cap Int(M)).$$

It follows that $Cl(N) \subset Cl(N \cap Int(M))$. Furthermore, we have

$$Cl(O) = Cl(N \cap Int(M))$$

$$\subset Cl(N) = L \subset Cl(N \cap Int(M))$$

$$= Cl(O).$$

Thus, $O \subset K \subset L = Cl(O)$. Hence, by Theorem 6, K is a semi^{*}-I-open set in X. \Box

Definition 2.1. ([4]) The semi^{*}-I-closure of a subset K of an ideal topological space (X, τ, I) , denoted by $s_I^*Cl(K)$, is defined by the intersection of all semi^{*}-I-closed sets of X containing K.

Theorem 2.6. ([4]) For a subset K of an ideal topological space (X, τ, I) , $s_I^*Cl(K) = K \cup Int(Cl^*(K))$.

Definition 2.2. Let (X, τ, I) be an ideal topological space and $K \subset X$. K is called (1) generalized semi^{*}-I-closed (gs_I^* -closed) in (X, τ, I) if $s_I^*Cl(K) \subset O$ whenever

- $K \subset O$ and O is an open set in (X, τ, I) .
- (2) generalized semi^{*}-I-open (gs_I^* -open) in (X, τ, I) if $X \setminus K$ is a gs_I^* -closed set in (X, τ, I) .

Theorem 2.7. For a subset M of an ideal topological space (X, τ, I) , M is gs_I^* -open if and only if $T \subset s_I^*Int(M)$ whenever $T \subset M$ and T is a closed set in (X, τ, I) , where $s_I^*Int(M) = M \cap Cl(Int^*(M))$.

Proof. (⇒) : Suppose that *M* is a gs_I^* -open set in *X*. Let $T \subset M$ and *T* be a closed set in (X, τ, I) . It follows that $X \setminus M$ is a gs_I^* -closed set and $X \setminus M \subset X \setminus T$ where $X \setminus T$ is an open set. Since $X \setminus M$ is gs_I^* -closed, then $s_I^*Cl(X \setminus M) \subset X \setminus T$, where $s_I^*Cl(X \setminus M) = (X \setminus M) \cup Int(Cl^*(X \setminus M))$. Since $(X \setminus M) \cup Int(Cl^*(X \setminus M)) = (X \setminus M) \cup X \setminus Cl(Int^*(M)) = X \setminus (M \cap Cl(Int^*(M)))$, then $(X \setminus M) \cup Int(Cl^*(X \setminus M)) = X \setminus (M \cap Cl(Int^*(M))) = X \setminus s_I^*Int(M)$. It follows that $s_I^*Cl(X \setminus M) = X \setminus s_I^*Int(M)$. Thus, $T \subset X \setminus s_I^*Cl(X \setminus M) = s_I^*Int(M)$ and hence $T \subset s_I^*Int(M)$.

 (\Leftarrow) : The converse is similar.

Theorem 2.8. Let (X, τ, I) be an ideal topological space and $N \subset X$. The following properties are equivalent:

- (1) N is an R-I-open set,
- (2) N is open and gs_I^* -closed.

Proof. (1) \Rightarrow (2): Let N be an R-I-open set in X. Then we have $N = Int(Cl^*(N))$. It follows that N is open and semi^{*}-I-closed in X. Thus, $s_I^*Cl(N) \subset K$ whenever $N \subset K$ and K is an open set in (X, τ, I) . Hence, N is a gs_I^* -closed set in X.

 $(2) \Rightarrow (1)$: Let N be open and gs_I^* -closed in X. We have $N \subset Int(Cl^*(N))$. Since N is gs_I^* -closed and open, then we have $s_I^*Cl(N) \subset N$. Since $s_I^*Cl(N) = N \cup Int(Cl^*(N))$, then $s_I^*Cl(N) = N \cup Int(Cl^*(N)) \subset N$. Thus, $Int(Cl^*(N)) \subset N$ and $N \subset Int(Cl^*(N))$. Hence, $N = Int(Cl^*(N))$ and N is an R-I-open set in X. \Box

Definition 2.3. A subset K of an ideal topological space (X, τ, I) is said to be

- (1) an \mathcal{A}_{I}^{*} -set [5] if $K = L \cap M$, where L is an open set and $M = Cl(Int^{*}(M))$.
- (2) a locally closed set [1] if $K = L \cap M$ where L is an open set and M is a closed set in X.

28

Remark 2.1. Let (X, τ, I) be an ideal topological space. Any open set and any *R*-*I*-closed set in X is an \mathcal{A}_{I}^{*} -set in X. The reverse of this implication is not true in general as shown in the following example.

Example 2.1. Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $K = \{b, c, d\}$ is an \mathcal{A}_I^* -set but it is not open. The set $L = \{a, b, c\}$ is an \mathcal{A}_I^* -set but it is not R-I-closed.

Remark 2.2. Let (X, τ, I) be an ideal topological space. Any \mathcal{A}_I^* -set is a locally closed set in X. The reverse implication is not true in general as shown in the following example.

Example 2.2. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. Then the set $K = \{d\}$ is locally closed but it is not an \mathcal{A}_I^* -set.

Theorem 2.9. Let (X, τ, I) be an ideal topological space, $N \subset X$ and $K \subset X$. If N is a semi^{*}-I-open set and K is an open set, then $N \cap K$ is semi^{*}-I-open.

Proof. Suppose that N is a semi^{*}-I-open set and K is an open set in X. It follows that

$$N \cap K \subset Cl(Int^*(N)) \cap K$$

$$\subset Cl(Int^*(N) \cap K) = Cl(Int^*(N \cap K)).$$

Thus, $N \cap K \subset Cl(Int^*(N \cap K))$ and hence, $N \cap K$ is a semi*-*I*-open set in X. \Box

Lemma 2.1. ([1]) For a subset A of a topological space (X, τ) , A is locally closed if and only if $A = U \cap Cl(A)$ for an open set U.

Definition 2.4. ([6]) A subset K of an ideal topological space (X, τ, I) is said to be (1) β_I^* -open if $K \subset Cl(Int^*(Cl(K)))$.

(2) β_I^* -closed if $X \setminus K$ is β_I^* -open.

Theorem 2.10. Let (X, τ, I) be an ideal topological space and $K \subset X$. The following properties are equivalent:

(1) K is an \mathcal{A}_I^* -set,

(2) K is semi^{*}-I-open and locally closed,

(3) K is a β_I^* -open set and a locally closed set.

Proof. (1) \Rightarrow (2) : Suppose that K is an \mathcal{A}_I^* -set in X. It follows that $K = L \cap M$ where L is an open set and $M = Cl(Int^*(M))$. Then K is locally closed. Since M is a semi^{*}-I-open set, then by Theorem 19, K is a semi^{*}-I-open set in X.

 $(2) \Rightarrow (3)$: It follows from the fact that any semi^{*}-*I*-open set is β_I^* -open.

 $(3) \Rightarrow (1)$: Let K be a β_I^* -open set and a locally closed set in X. We have $K \subset Cl(Int^*(Cl(K)))$. Since K is a locally closed set in X, then there exists an open set L such that $K = L \cap Cl(K)$. It follows that

$$\begin{split} K &= L \cap Cl(K) \\ &\subset L \cap Cl(Int^*(Cl(K))) \\ &\subset L \cap Cl(K) = K \end{split}$$

and then $K = L \cap Cl(Int^*(Cl(K)))$. We take $M = Cl(Int^*(Cl(K)))$. Then $Cl(Int^*(M)) = M$. Thus, K is an \mathcal{A}_I^* -set in X.

Theorem 2.11. Let (X, τ, I) be an ideal topological space. If every subset of (X, τ, I) is an \mathcal{A}_{I}^{*} -set, then (X, τ, I) is a discrete ideal topological space with respect to τ^{*} .

 \square

Proof. Suppose that every subset of (X, τ, I) is an \mathcal{A}_I^* -set. It follows from Theorem 22 that $\{x\}$ is semi*-*I*-open and locally closed for any $x \in X$. We have $\{x\} \subset Cl(Int^*(\{x\}))$. Thus, we have $Int^*(\{x\}) = \{x\}$. Hence, (X, τ, I) is a discrete ideal topological space with respect to τ^* .

3. Decompositions of \mathcal{A}_{I}^{*} -continuous functions

Definition 3.1. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be

- (1) \mathcal{A}_{I}^{*} -continuous [5] if $f^{-1}(T)$ is an \mathcal{A}_{I}^{*} -set in X for each open set T in Y.
- (2) LC-continuous [7] if $f^{-1}(T)$ is a locally closed set in X for each open set T in Y.

Remark 3.1. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following diagram holds. The reverses of these implications are not true in general as shown in the following example.

$$LC\text{-continuous}$$

$$\uparrow$$
 $ntinuous \Rightarrow \mathcal{A}_{I}^{*}\text{-continuous}$

Example 3.1. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{d\}, \{a, d\}\}$. The function $f : (X, \tau, I) \to (X, \tau)$, defined by f(a) = a, f(b) = b, f(c) = b, f(d) = c is \mathcal{A}_I^* -continous but it is not continuous. The function $g : (X, \tau, I) \to (X, \tau)$, defined by g(a) = b, g(b) = c, g(c) = c, g(d) = a is LC-continous but it is not \mathcal{A}_I^* -continous.

Definition 3.2. A function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be

cor

(1) semi^{*}-I-continuous [5] if $f^{-1}(T)$ is a semi^{*}-I-open in X for each open set T in Y.

(2) β_I^* -continuous if $f^{-1}(T)$ is a β_I^* -open set in X for each open set T in Y.

Theorem 3.1. The following properties are equivalent for a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$:

- (1) f is \mathcal{A}_I^* -continuous,
- (2) f is semi^{*}-I-continuous and LC-continuous,
- (3) f is β_I^* -continuous and LC-continuous.

Proof. It follows from Theorem 22.

References

- [1] N. Bourbaki, General Topology, Part I, Addison Wesley, Reading, Mass 1966.
- [2] J. Dontchev, M. Ganster and D. Rose, Ideal resolvability, *Topology and its Appl.* 93 (1999), 1–16.
- [3] E. Ekici and T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar. 122 (2009), No. 1-2, 81–90.
- [4] E. Ekici and T. Noiri, *-hyperconnected ideal topological spaces, Analele Stiin. Ale Univ. A. I. Cuza Din Iasi-Serie Noua-Mat., in press.
- [5] E. Ekici, On \mathcal{A}_I^* -sets, \mathcal{C}_I -sets, \mathcal{C}_I^* -sets and decompositions of continuity in ideal topological spaces, (submitted).
- [6] E. Ekici, On \mathcal{AC}_I -sets, \mathcal{BC}_I -sets, β_I^* -open sets and decompositions of continuity in ideal topological spaces, (submitted).
- [7] M. Ganster and I.L. Reilly, Locally closed sets and LC-continuous functions, Internat. J. Math. Math. Sci. 12 (1989), No. 3, 417–424.

- [8] E. Hatir, A. Keskin, and T. Noiri, A note on strong β-I-sets and strongly β-I-continuous functions, Acta Math. Hungar. 108 (2005), 87–94.
- [9] D. Janković and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- [10] K. Kuratowski, Topology, Vol. I, Academic Press, NewYork, 1966.
- [11] S. Yuksel, A. Acikgoz and T. Noiri, On δ -*I*-continuous functions, *Turk J. Math.* **29** (2005), 39–51.

(Erdal Ekici) Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus,
17020 Canakkale/TURKEY

E-mail address: eekici@comu.edu.tr