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On R-I-open sets and A∗
I-sets in ideal topological spaces
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Abstract. In this paper, properties of R-I-open sets and A∗
I -sets in ideal topological spaces

are discussed. The relationships between R-I-open sets, A∗
I -sets and the related sets in ideal

topological spaces are investigated. Moreover, decompositions of A∗
I -continuous functions are

established.
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1. Introduction

The notions of R-I-open sets and A∗
I -sets in ideal topological spaces are introduced

by [11] and [5], respectively. In [11], the notion of δ-I-open sets via R-I-open sets was
studied. In [5], decompositions of continuity via A∗

I -sets in ideal topological spaces
have been established. The aim of this paper is to investigate properties of R-I-open
sets and A∗

I -sets in ideal topological spaces. The relationships between R-I-open
sets, A∗

I -sets and the related sets in ideal topological spaces are discussed. Also,
decompositions of A∗

I -continuous functions are provided.
In this paper, (X, τ) or (Y, σ) denote a topological space with no separation prop-

erties assumed. Cl(K) and Int(K) denote the closure and interior of K in (X, τ),
respectively for a subset K of a topological space (X, τ). An ideal I on a topological
space (X, τ) is a nonempty collection of subsets of X which satisfies
(1) V ∈ I and U ⊂ V implies U ∈ I,
(2) V ∈ I and U ∈ I implies V ∪ U ∈ I [10].
Also, (X, τ, I) is called an ideal topological space or simply an ideal space if I is

an ideal on (X, τ). For a topological space (X, τ) with an ideal I on X and if P (X)
is the set of all subsets of X, a set operator (.)∗ : P (X) → P (X), said to be a local
function [10] of N ⊂ X with respect to τ and I is defined as follows:

N∗(I, τ) = {x ∈ X : K∩N /∈ I for everyK ∈ τ(x)} where τ(x) = {K ∈ τ : x ∈ K}.
A Kuratowski closure operator Cl∗(.) for a topology τ∗(I, τ), said to be the ⋆-

topology, finer than τ , is defined by Cl∗(N) = N ∪N∗(I, τ) [9]. We simply write N∗

for N∗(I, τ) and τ∗ for τ∗(I, τ).

Definition 1.1. A subset K of an ideal topological space (X, τ, I) is said to be
(1) ⋆-dense [2] if Cl∗(K) = X.
(2) R-I-open [11] if K = Int(Cl∗(K)).
(3) R-I-closed [11] if its complement is R-I-open.

Lemma 1.1. ([8]) Let K be a subset of an ideal topological space (X, τ, I). If N is
an open set, then N ∩ Cl∗(K) ⊂ Cl∗(N ∩K).
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Definition 1.2. ([3, 4]) A subset K of an ideal topological space (X, τ, I) is said to
be

(1) semi∗-I-open if K ⊂ Cl(Int∗(K)).
(2) semi∗-I-closed if its complement is semi∗-I-open.

2. Properties of R-I-open sets and A∗
I-sets

Theorem 2.1. For an ideal topological space (X, τ, I) and a subset K of X, the
following properties are equivalent:

(1) K is an R-I-closed set,
(2) K is semi∗-I-open and closed.

Proof. (1) ⇒ (2) : Let K be an R-I-closed set in X. Then we have K = Cl(Int∗(K)).
It follows that K is semi∗-I-open and closed.

(2) ⇒ (1) : Suppose that K is a semi∗-I-open set and a closed set in X. It follows
that K ⊂ Cl(Int∗(K)). Since K is closed, then we have

Cl(Int∗(K)) ⊂ Cl(K) = K ⊂ Cl(Int∗(K)).

Thus, K = Cl(Int∗(K)) and hence K is R-I-closed. �

Theorem 2.2. For an ideal topological space (X, τ, I) and a subset K of X, K is an
R-I-open set if and only if K is semi∗-I-closed and open.

Proof. It follows from Theorem 4. �

Theorem 2.3. ([4]) A subset K of an ideal topological space (X, τ, I) is semi∗-I-open
if and only if there exists N ∈ τ∗ such that N ⊂ K ⊂ Cl(N).

Theorem 2.4. For an ideal topological space (X, τ, I) and a subset K of X, the
following properties are equivalent:

(1) K is an R-I-closed set,
(2) There exists a ⋆-open set L such that K = Cl(L).

Proof. (2) ⇒ (1) : Suppose that there exists a ⋆-open set L such that K = Cl(L).
Since L = Int∗(L), then we have Cl(L) = Cl(Int∗(L)). It follows that

Cl(Int∗(Cl(L))) = Cl(Int∗(Cl(Int∗(L))))
= Cl(Int∗(L)) = Cl(L).

This implies

K = Cl(L) = Cl(Int∗(Cl(L)))
= Cl(Int∗(K)).

Thus, K = Cl(Int∗(K)) and hence K is an R-I-closed set in X.
(1) ⇒ (2) : Suppose that K is an R-I-closed set in X. We have K = Cl(Int∗(K)).

We take L = Int∗(K). It follows that L is a ⋆-open set and K = Cl(L). �

Theorem 2.5. For an ideal topological space (X, τ, I) and a subset K of X, K is
semi∗-I-open if K = L ∩ M where L is an R-I-closed set and Int(M) is a ⋆-dense
set.

Proof. Suppose that K = L ∩ M where L is an R-I-closed set and Int(M) is a ⋆-
dense set. By Teorem 7, there exists a ⋆-open set N such that L = Cl(N). We
take O = N ∩ Int(M). It follows that O is ⋆-open and O ⊂ K. Moreover, we have
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Cl(O) = Cl(N ∩ Int(M)) and Cl(N ∩ Int(M)) ⊂ Cl(N). Since Int(M) is ⋆-dense,
then we have

N = N ∩ Cl∗(Int(M)) ⊂ Cl∗(N ∩ Int(M))
⊂ Cl(N ∩ Int(M)).

It follows that Cl(N) ⊂ Cl(N ∩ Int(M)). Furthermore, we have

Cl(O) = Cl(N ∩ Int(M))
⊂ Cl(N) = L ⊂ Cl(N ∩ Int(M))
= Cl(O).

Thus, O ⊂ K ⊂ L = Cl(O). Hence, by Theorem 6, K is a semi∗-I-open set in X. �

Definition 2.1. ([4]) The semi∗-I-closure of a subset K of an ideal topological space
(X, τ, I), denoted by s∗ICl(K), is defined by the intersection of all semi∗-I-closed sets
of X containing K.

Theorem 2.6. ([4]) For a subset K of an ideal topological space (X, τ, I), s∗ICl(K) =
K ∪ Int(Cl∗(K)).

Definition 2.2. Let (X, τ, I) be an ideal topological space and K ⊂ X. K is called
(1) generalized semi∗-I-closed (gs∗I-closed) in (X, τ, I) if s∗ICl(K) ⊂ O whenever

K ⊂ O and O is an open set in (X, τ, I).
(2) generalized semi∗-I-open (gs∗I-open) in (X, τ, I) if X\K is a gs∗I-closed set in

(X, τ, I).

Theorem 2.7. For a subset M of an ideal topological space (X, τ, I), M is gs∗I-open
if and only if T ⊂ s∗IInt(M) whenever T ⊂ M and T is a closed set in (X, τ, I),
where s∗IInt(M) = M ∩ Cl(Int∗(M)).

Proof. (⇒) : Suppose that M is a gs∗I -open set in X. Let T ⊂ M and T be a
closed set in (X, τ, I). It follows that X\M is a gs∗I -closed set and X\M ⊂ X\T
where X\T is an open set. Since X\M is gs∗I -closed, then s∗ICl(X\M) ⊂ X\T ,
where s∗ICl(X\M) = (X\M) ∪ Int(Cl∗(X\M)). Since (X\M) ∪ Int(Cl∗(X\M)) =
(X\M)∪X\Cl(Int∗(M)) = X\(M∩Cl(Int∗(M))), then (X\M)∪Int(Cl∗(X\M)) =
X\(M ∩ Cl(Int∗(M))) = X\s∗IInt(M). It follows that s∗ICl(X\M) = X\s∗IInt(M).
Thus, T ⊂ X\s∗ICl(X\M) = s∗IInt(M) and hence T ⊂ s∗IInt(M).

(⇐) : The converse is similar. �

Theorem 2.8. Let (X, τ, I) be an ideal topological space and N ⊂ X. The following
properties are equivalent:

(1) N is an R-I-open set,
(2) N is open and gs∗I-closed.

Proof. (1) ⇒ (2) : Let N be an R-I-open set in X. Then we have N = Int(Cl∗(N)).
It follows that N is open and semi∗-I-closed in X. Thus, s∗ICl(N) ⊂ K whenever
N ⊂ K and K is an open set in (X, τ, I). Hence, N is a gs∗I -closed set in X.

(2) ⇒ (1) : Let N be open and gs∗I -closed in X. We have N ⊂ Int(Cl∗(N)).
Since N is gs∗I -closed and open, then we have s∗ICl(N) ⊂ N . Since s∗ICl(N) =
N ∪ Int(Cl∗(N)), then s∗ICl(N) = N ∪ Int(Cl∗(N)) ⊂ N . Thus, Int(Cl∗(N)) ⊂ N
and N ⊂ Int(Cl∗(N)). Hence, N = Int(Cl∗(N)) and N is an R-I-open set in X. �

Definition 2.3. A subset K of an ideal topological space (X, τ, I) is said to be
(1) an A∗

I-set [5] if K = L ∩M , where L is an open set and M = Cl(Int∗(M)).
(2) a locally closed set [1] if K = L ∩M where L is an open set and M is a closed

set in X.



ON R-I-OPEN SETS AND A∗
I -SETS IN IDEAL TOPOLOGICAL SPACES 29

Remark 2.1. Let (X, τ, I) be an ideal topological space. Any open set and any R-
I-closed set in X is an A∗

I-set in X. The reverse of this implication is not true in
general as shown in the following example.

Example 2.1. Let X = {a, b, c, d}, τ = {X,∅, {a}, {b, c}, {a, b, c}} and
I = {∅, {a}, {d}, {a, d}}. Then the set K = {b, c, d} is an A∗

I-set but it is not open.
The set L = {a, b, c} is an A∗

I-set but it is not R-I-closed.

Remark 2.2. Let (X, τ, I) be an ideal topological space. Any A∗
I-set is a locally closed

set in X. The reverse implication is not true in general as shown in the following
example.

Example 2.2. Let X = {a, b, c, d}, τ = {X,∅, {a}, {b, c}, {a, b, c}} and
I = {∅, {a}, {d}, {a, d}}. Then the set K = {d} is locally closed but it is not an
A∗

I-set.

Theorem 2.9. Let (X, τ, I) be an ideal topological space, N ⊂ X and K ⊂ X. If N
is a semi∗-I-open set and K is an open set, then N ∩K is semi∗-I-open.

Proof. Suppose that N is a semi∗-I-open set and K is an open set in X. It follows
that

N ∩K ⊂ Cl(Int∗(N)) ∩K
⊂ Cl(Int∗(N) ∩K) = Cl(Int∗(N ∩K)).

Thus, N ∩K ⊂ Cl(Int∗(N ∩K)) and hence, N ∩K is a semi∗-I-open set in X. �

Lemma 2.1. ([1]) For a subset A of a topological space (X, τ), A is locally closed if
and only if A = U ∩ Cl(A) for an open set U .

Definition 2.4. ([6]) A subset K of an ideal topological space (X, τ, I) is said to be
(1) β∗

I -open if K ⊂ Cl(Int∗(Cl(K))).
(2) β∗

I -closed if X\K is β∗
I -open.

Theorem 2.10. Let (X, τ, I) be an ideal topological space and K ⊂ X. The following
properties are equivalent:
(1) K is an A∗

I-set,
(2) K is semi∗-I-open and locally closed,
(3) K is a β∗

I -open set and a locally closed set.

Proof. (1) ⇒ (2) : Suppose that K is an A∗
I -set in X. It follows that K = L ∩ M

where L is an open set and M = Cl(Int∗(M)). Then K is locally closed. Since M is
a semi∗-I-open set, then by Theorem 19, K is a semi∗-I-open set in X.

(2) ⇒ (3) : It follows from the fact that any semi∗-I-open set is β∗
I -open.

(3) ⇒ (1) : Let K be a β∗
I -open set and a locally closed set in X. We have

K ⊂ Cl(Int∗(Cl(K))). Since K is a locally closed set in X, then there exists an open
set L such that K = L ∩ Cl(K). It follows that

K = L ∩ Cl(K)
⊂ L ∩ Cl(Int∗(Cl(K)))
⊂ L ∩ Cl(K) = K

and then K = L ∩ Cl(Int∗(Cl(K))). We take M = Cl(Int∗(Cl(K))).
Then Cl(Int∗(M)) = M . Thus, K is an A∗

I -set in X. �

Theorem 2.11. Let (X, τ, I) be an ideal topological space. If every subset of (X, τ, I)
is an A∗

I-set, then (X, τ, I) is a discrete ideal topological space with respect to τ∗.
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Proof. Suppose that every subset of (X, τ, I) is an A∗
I -set. It follows from Theorem

22 that {x} is semi∗-I-open and locally closed for any x ∈ X. We have {x} ⊂
Cl(Int∗({x})). Thus, we have Int∗({x}) = {x}. Hence, (X, τ, I) is a discrete ideal
topological space with respect to τ∗. �

3. Decompositions of A∗
I-continuous functions

Definition 3.1. A function f : (X, τ, I) → (Y, σ) is said to be
(1) A∗

I-continuous [5] if f−1(T ) is an A∗
I-set in X for each open set T in Y .

(2) LC-continuous [7] if f−1(T ) is a locally closed set in X for each open set T in
Y .

Remark 3.1. For a function f : (X, τ, I) → (Y, σ), the following diagram holds.
The reverses of these implications are not true in general as shown in the following
example.

LC-continuous
⇑

continuous ⇒ A∗
I-continuous

Example 3.1. Let X = {a, b, c, d}, τ = {X,∅, {a}, {b, c}, {a, b, c}} and
I = {∅, {a}, {d}, {a, d}}. The function f : (X, τ, I) → (X, τ), defined by f(a) = a,
f(b) = b, f(c) = b, f(d) = c is A∗

I-continous but it is not continuous. The function
g : (X, τ, I) → (X, τ), defined by g(a) = b, g(b) = c, g(c) = c, g(d) = a is LC-
continous but it is not A∗

I-continous.

Definition 3.2. A function f : (X, τ, I) → (Y, σ) is said to be
(1) semi∗-I-continuous [5] if f−1(T ) is a semi∗-I-open in X for each open set T

in Y .
(2) β∗

I -continuous if f−1(T ) is a β∗
I -open set in X for each open set T in Y .

Theorem 3.1. The following properties are equivalent for a function f : (X, τ, I) →
(Y, σ):
(1) f is A∗

I-continuous,
(2) f is semi∗-I-continuous and LC-continuous,
(3) f is β∗

I -continuous and LC-continuous.

Proof. It follows from Theorem 22. �
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