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Algebraic templates of ω-trees, similarity and templates
generated by semantic schemas

Nicolae Ţăndăreanu and Cristina Zamfir

Abstract. In this paper we introduce the concepts of algebraic template and similar tem-
plates. An algebraic template is the greatest equivalence class of ω-trees generated by the
same nonterminal label and the split noetherian mapping ω. We show that the similarity
relation is an equivalence one. Such templates can be generated by a semantic schema and we
exemplify this case.
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1. Introduction

We consider a nonempty set L and a decomposition L = LN ∪ LT into disjoint
sets. The elements of LN are called nonterminal labels and those of LT are called
terminal labels. The elements of L are called labels. A split mapping on L is a
function ω : LN −→ L × L. An ω-tree is a tuple t = (A,D, h), where (A, D) is an
ordered tree such that every element of D is of the form [(i, i1), (i, i2)]; h : A −→ L
is a mapping such that if [(i, i1), (i, i2)] ∈ D then h(i) ∈ LN , ω(h(i)) = (h(i1), h(i2)).
By OBT (ω) we denote the set of all ω-trees.

Let t1 = (A1, D1, h1) and t2 = (A2, D2, h2) be two elements of OBT (ω) and an
arbitrary mapping α : A1 −→ A2. For every u = [(i, i1), (i, i2)], where i, i1, i2 ∈ A1,
we denote α(u) = [(α(i), α(i1)), (α(i), α(i2))]. We define the relation t1 ¹ t2 if there
is a mapping α : A1 −→ A2 such that:

u ∈ D1 =⇒ α(u) ∈ D2

h1(root(t1)) = h2(α(root(t1)))
where root(t) denotes the root of t. Such a mapping α is an embedding mapping
of t1 into t2 ([3]. An embedding mapping is injective ([3]). The relation ¹ is reflexive
and transitive, but is not antisymmetric ([3]).

We define the binary relation ' on the set OBT (ω) as follows: t1 ' t2 if t1 ¹ t2
and t2 ¹ t1 ([4]). The binary relation ' is an equivalence relation on the set OBT (ω)
([4]). Suppose that t1 = (A1, D1, h1) ∈ OBT (ω), t2 = (A2, D2, h2) ∈ OBT (ω) and
t1 ' t2. There is one and only one embedding mapping α of t1 into t2, α is bijective
and α−1 is the unique embedding mapping of t2 into t1 ([4]).

We denote by OBT (ω)/ ' the factor set, the set of all equivalence classes. The
equivalence class of the element t ∈ OBT (ω) is denoted by [t]. Let us consider
[t1] ∈ OBT (ω)/' and [t2] ∈ OBT (ω)/'. We define the relation [t1] v [t2] if t1 ¹ t2.
The relation v does not depend on representatives. The pair (OBT (ω)/',v) is a
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partial ordered set ([4]). For every a ∈ LN we consider the set

OBTa(ω) = { t ∈ OBT (ω) | t = (A,D, h), h(root(t)) = a}

2. Algebraic templates and similarity

In this section we introduce the concept of ω-template and we study the algebraic
properties of this structure. The binary relation ρω generated by ω is the binary
relation ρω ⊆ L × L defined as follows: xρωy if and only if there is z ∈ L such that
ω(x) = (y, z) or ω(x) = (z, y). Throughout in this section we suppose that ρω is a
noetherian binary relation. There is the greatest element of the set (OBTa(ω)/ ',v)
and this element can be computed by means of an increasing operator defined in [6].

Definition 2.1. The ω-template generated by a ∈ LN , denoted by Ωa, is the
greatest element of the partial algebra (OBTa(ω)/',v).

It follows that if Ωa is an ω-template then Ωa = [t] for certain element t ∈ OBTa(ω).

Definition 2.2. Two ω-templates Ωa = [t1] and Ωb = [t2] are named similar tem-
plates if there is a bijective mapping γ : A1 −→ A2 such that

γ(D1) = D2 (1)

where t1 = (A1, D1, h1) and t2 = (A2, D2, h2). If this is the case then we write
Ωa ∼s Ωb. The relation ∼s is named similarity relation. The mapping γ is named
(t1, t2)-mapping of similarity.

Remark 2.1. If γ is a (t1, t2)-mapping of similarity then γ−1 is a (t2, t1)-mapping
of similarity.

Remark 2.2. In Definition 2.2 we supposed tacitly that a 6= b. This can be explained
by the fact that for a = b the definition gives a trivial case. Let us detail this case.
If [t1] ∈ OBTa(ω)/' and [t2] ∈ OBTa(ω)/' are ω-templates then [t1] = [t2] because
both [t1] and [t2] is the greatest element of (OBTa(ω)/',v). This means that t1 ' t2
and so there is a bijective mapping γ such that (1) is satisfied.

Proposition 2.1. The similarity relation does not depend on representatives.

Proof. Suppose that Ωa = [t1], Ωb = [t2] and Ωa ∼s Ωb. Denote by γ a (t1, t2)-
mapping of similarity. Consider t3 ∈ [t1] and t4 ∈ [t2]. Denote ti = (Ai, Di, hi) for
i = 1, 2, 3, 4. We have to prove that there is a (t3, t4)-mapping of similarity.
We know (Corollary 3.1, [4]) that there are the bijective mappings β1 : A3 −→ A1

and β2 : A2 −→ A4 such that
β1(D3) = D1 (2)

β2(D2) = D1 (3)

The mapping β1 ◦γ ◦β2 : A3 −→ A4 is a bijective mapping. By the similarity relation
we obtain (1). From (2) and (1) we obtain

β1 ◦ γ(D3) = D2 (4)

From (3) and (4) we obtain:

β1 ◦ γ ◦ β2(D3) = D4

from which we conclude that β1 ◦ γ ◦ β2 is a (t3, t4)-mapping of similarity. ¤
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Proposition 2.2. If Ωa = [t1], Ωb = [t2], Ωa ∼s Ωb and γ is a (t1, t2)-mapping of
similarity then

(p0, p1, . . . , pn) ∈ Path(t1) ⇔ (γ(p0), γ(p1), . . . , γ(pn)) ∈ Path(t2) (5)

where Path(t) denotes the set of all paths of t.

Proof. Denote t1 = (A1, D1, h1) and t2 = (A2, D2, h2). We prove (5) by induction on
n, where n ≥ 1. Let us verify this property for n = 1. The following sentences are
equivalent:
• (p0, p1) ∈ Path(t1)
• Either [(p0, p1), (p0, q1)] ∈ D1 or [(p0, q1), (p0, p1)] ∈ D1 for some q1 ∈ A1.
• Either [(γ(p0), γ(p1)), (γ(p0), γ(q1))] ∈ D2 or [(γ(p0), γ(q1)), (γ(p0), γ(p1))] ∈ D2

for some q1 ∈ A1.
• (γ(p0), γ(p1)) ∈ Path(t2).

So (5) is true for n = 1. Suppose that (5) is true for every n ∈ {1, . . . , m}. The
following sentences are equivalent:
• (p0, p1, . . . , pm, pm+1) ∈ Path(t1)
• (p0, p1, . . . , pm) ∈ Path(t1) and (pm, pm+1) ∈ Path(t1)
• (γ(p0), γ(p1), . . . , γ(pm)) ∈ Path(t2) and (γ(pm), γ(pm+1)) ∈ Path(t2)
• (γ(p0), γ(p1), . . . , γ(pm+1)) ∈ Path(t2)

Thus (5) is proved for n = m + 1. ¤

Proposition 2.3. If [t1] ∼s [t2] then γ(root(t1)) = root(t2), where γ is the (t1, t2)-
mapping of similarity.

Proof. According to Proposition 2.2 we have

(root(t1), p1, . . . , pn) ∈ Path(t1) ⇔ (γ(root(t1)), γ(p1), . . . , γ(pn)) ∈ Path(t2)

Suppose that γ(root(t1)) = j and j 6= root(t2). There is a path (root(t2), q1, . . . , qr, j)
∈ Path(t2). Applying again Proposition 2.2 we deduce that

(γ−1(root(t2)), γ−1(q1), . . . , γ−1(qr), γ−1(j)) ∈ Path(t1)

But γ−1(j) = root(t1). It follows that there is a sequence

(γ−1(root(t2)), γ−1(q1), . . . , γ−1(qr), root(t1)) ∈ Path(t1)

But this property is not possible, therefore our assumption is false. Thus γ(root(t1))
= root(t2). ¤

Proposition 2.4. If Ωa = [t1] and Ωb = [t2] are similar ω-templates then there is
only one (t1, t2)-mapping of similarity.

Proof. Take t1 = (A1, D1, h1) and t2 = (A2, D2, h2). We consider that γ1 and γ2 are
(t1, t2)-mappings of similarity. According to (1) we have γ1 : A1 −→ A2, γ2 : A1 −→
A2 and

γ1(D1) = D2 (6)
γ2(D1) = D2 (7)

Consider the tree Tk(t1) = (A(k)
1 , D

(k)
1 , h

(k)
1 ), where Tk is the slicing operator ([5]).

We verify by induction on k ≥ 1 that

i ∈ A
(k)
1 ⇒ γ1(i) = γ2(i) (8)

Let us verify first that for k = 1 the relation (8) is true. We have

T1(t1) = ({root(t1), i1, i2}, {[(root(t1), i1), (root(t1), i2)]}, h(1)
1 })
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where
h

(1)
1 (root(t1)) = h1(root(t1)), h

(1)
1 (i1) = h1(i1), h

(1)
1 (i2) = h1(i2)

By Proposition 2.3 we have

γ1(root(t1)) = root(t2) = γ2(root(t1)) (9)

According to (6) and (7) we obtain for γ1 and γ2

[(γ1(root(t1)), γ1(i1)), (γ1(root(t1)), γ1(i2))] ∈ D2

[(γ2(root(t1)), γ2(i1)), (γ2(root(t1)), γ2(i2))] ∈ D2

Taking into account (9) we obtain now γ1(i1) = γ2(i1) and γ1(i2) = γ2(i2). Thus (8)
is true for k = 1.
Suppose that (8) is true for k = r and we verify this property for k = r + 1. Take
i ∈ A

(r+1)
1 . We have A

(r+1)
1 = A

(r)
1 ∪ (A(r+1)

1 \A
(r)
1 ). If i ∈ A

(r)
1 then by the inductive

assumption we have γ1(i) = γ2(i). It remains to consider the case i ∈ A
(r+1)
1 \ A

(r)
1 .

There is a path (root(t1), p1, . . . , pr, i) ∈ Path(t1), therefore

(γ1(root(t1)), γ1(p1), . . . , γ1(pr), γ1(i)) ∈ Path(t2) (10)

(γ2(root(t1)), γ2(p1), . . . , γ2(pr), γ2(i)) ∈ Path(t2) (11)
From (10) we obtain that (γ1(root(t1)), γ1(p1), . . . , γ1(pr)) ∈ Path(t2), therefore
(root(t1), p1, . . . , pr) ∈ Path(t1). Thus pr ∈ A

(r)
1 . By the inductive assumption

we have γ1(pr) = γ2(pr). From (10) and (11) we deduce that

[(γ1(pr), γ1(i)), (γ1(pr), γ1(j))] ∈ D2 (12)

or
[(γ1(pr), γ1(j)), (γ1(pr), γ1(i))] ∈ D2 (13)

Suppose that we have (12). But γ1 is a mapping of similarity and so from (12) we
obtain

[(pr, i), (pr, j)] ∈ D1 (14)
Applying (7) we obtain

[(γ2(pr), γ2(i)), (γ2(pr), γ2(j))] ∈ D2 (15)

But γ1(pr) = γ2(pr), therefore from (12) and (15) we obtain γ1(i) = γ2(i). The same
conclusion is obtained if we suppose that (13) is true.

¤

Proposition 2.5. The relation ∼s is an equivalence relation.

Proof. Let us verify that Ωa ∼s Ωa. If t1, t2 ∈ Ωa then t1 ' t2. Suppose that t1 =
(A1, D1, h1) and t2 = (A2, D2, h2). There is a bijective mapping γ : A1 −→ A2 such
that γ(D1) = D2. From Definition 2.2 we have [t1] ∼s [t2] and therefore Ωa ∼s Ωa.
Thus we verified the reflexivity of ∼s.
Suppose that Ωa ∼s Ωb and Ωb ∼s Ωc. Consider t1 = (A1, D1, h1) ∈ Ωa, t2 =
(A2, D2, h2) ∈ Ωb and t3 = (A3, D3, h3) ∈ Ωc. There is a bijective mapping α1 :
A1 −→ A2 such that α1(D1) = D2. There is also a bijective mapping α2 : A2 −→ A3

such that α2(D2) = D3. It follows that α2(α1(D1)) = D3. So we verified that
Ωa ∼s Ωc and therefore ∼s is transitive.
The symmetry of ∼s is obtained immediately from the fact that we have γ(D1) = D2

if and only if γ−1(D2) = D1. ¤
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Suppose that t1 = (A1, D1, h1) ∈ Ωa, t2 = (A2, D2, h2) ∈ Ωb and [t1] ∼s [t2].
Denote by γ : A1 −→ A2 the (t1, t2)-mapping of similarity. We denote also Tk(t1) =
(A(k)

1 , D
(k)
1 , h

(k)
1 ), where Tk is the slicing operator.

Definition 2.3. The structure γ(Tk(t1)) = (γ(A(k)
1 ), γ(D(k)

1 )) is the image of Tk(t1)
by the mapping γ.

Proposition 2.6. Suppose that t1 = (A1, D1, h1) ∈ Ωa, t2 = (A2, D2, h2) ∈ Ωb and
Ωa ∼s Ωb. If γ : A1 −→ A2 is the (t1, t2)-mapping of similarity then γ(Tk(t1)) =
Tk(t2).

Proof. We note root(t1) = r1 and root(t2) = r2. By Proposition 2.3 we have γ(r1) =
r2. From (1) we obtain

γ(D1) = D2 (16)

For k ≥ 1 consider Tk(t1) = (A(k)
1 , D

(k)
1 , h

(k)
1 ) and Tk(t2) = (A(k)

2 , D
(k)
2 , h

(k)
2 ). We

prove the proposition by induction on k ≥ 1.
Consider T1(t1) = (A(1)

1 , D
(1)
1 , h

(1)
1 ) and T1(t2) = (A(1)

2 , D
(1)
2 , h

(1)
2 ), where

A
(1)
1 = {r1, i1, i2}, D(1)

1 = {[(r1, i1), (r1, i2)]}
A

(1)
2 = {r2, j1, j2}, D(1)

2 = {[(r2, j1), (r2, j2)]}
But [(r2, j1), (r2, j2)] ∈ D2 and r2 = γ(r1). From (16) we deduce γ(i1) = j1 and
γ(i2) = j2. So we have A

(1)
2 = {r2, j1, j2} = {γ(r1), γ(i1), γ(i2)} = γ(A(1)

1 ). We have
also D

(1)
2 = {[(r2, j1), (r2, j2)]} = {[(γ(r1), γ(i1)), (γ(r2), γ(i2))]} = γ(D(1)

1 ). Thus we
have γ(T1(t1)) = T1(t2) and the proposition is proved for k = 1.
Suppose that γ(Tk(t1)) = Tk(t2). Let us prove that γ(Tk+1(t1)) = Tk+1(t2). We
denote by

Pathn(r1) = {i ∈ A1 | ∃(r1, p1, . . . , pn−1, i) ∈ Path(t1)}
where n ≥ 1. Analogously we consider the set Pathn(r2) for t2. We remark that

A
(k+1)
1 \A

(k)
1 = Pathk+1(r1)

A
(k+1)
2 \A

(k)
2 = Pathk+1(r2)

The following sentences are equivalent:
• i ∈ A

(k+1)
1 \A

(k)
1 ;

• i ∈ Pathk+1(r1);
• There is (r1, p1, . . . , pk, i) ∈ Path(t1);
• There is (γ(r1), γ(p1), . . . , γ(pk), γ(i)) ∈ Path(t2);
• There is (r2, γ(p1), . . . , γ(pk), γ(i)) ∈ Path(t2);
• γ(i) ∈ Pathk+1(r2);
• γ(i) ∈ A

(k+1)
2 \A

(k)
2 .

From these relations we deduce that γ(A(k+1)
1 \A(k)

1 ) = A
(k+1)
2 \A(k)

2 . Thus γ(A(k+1)
1 ) =

γ(A(k)
1 ∪(A(k+1)

1 \A(k)
1 )) = γ(A(k)

1 )∪γ(A(k+1)
1 \A(k)

1 ) = A
(k)
2 ∪(A(k+1)

2 \A(k)
2 ) = A

(k+1)
2 .

We remark that

D
(k+1)
1 = {[(i, i1), (i, i2)] ∈ D1 | i ∈ Pathk(r1)}

and the following sentences are equivalent:
• [(i, i1), (i, i2)] ∈ D

(k+1)
1 ;

• [(i, i1), (i, i2)] ∈ D1 and i ∈ Pathk(r1);
• [(γ(i), γ(i1)), (γ(i), γ(i2))] ∈ D2 and γ(i) ∈ Pathk(r2);
• [(γ(i), γ(i1)), (γ(i), γ(i2))] ∈ D

(k+1)
2
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Figure 1. t1 ∈ Ωa
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Ω-template Ωb A representative t2 of Ωb

Figure 2. t2 ∈ Ωb

It follows that D
(k+1)
2 = γ(D(k+1)

1 ) and the proposition is proved. ¤
In order to exemplify these concepts we consider LN = {a, b, c1, c2, b1, b2} and

LT = {a1, a2, a3, a4}. Consider the mapping ω : LN −→ L× L defined as follows:
ω(a) = (a1, c1); ω(c1) = (c2, a3); ω(c2) = (a2, a2);
ω(b) = (a2, b1); ω(b1) = (b2, a3); ω(b2) = (a2, a3);

In Figure 1 we represented the template Ωa in the left side and a representative t1
of Ωa in the right side. Based on the same mapping ω we represented in Figure 2
another template Ωb and one of its representative denoted by t2. We defined two
equivalence relations: one relation for templates and another relation for ω-trees. We
remark that Ωa ∼s Ωb, but t1 6' t2.

3. Algebraic templates generated by semantic schemas

In this section we show that semantic schemas can generate algebraic templates.
First we recall the concept of semantic schema.

Definition 3.1. ([2]) A θ-semantic schema is a system S = (X,A0, A, R), where
• X is a finite nonempty set and its elements are named object symbols.
• A0 is a finite nonempty set, its elements are named label symbols and A0 ⊆ A ⊆

A0, where A0 is the Peano θ-algebra generated by A0
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Figure 3. A semantic schema

• R ⊆ X×A×X is a nonempty set and its elements satisfy the following conditions:

(x, θ(u, v), y) ∈ R, u ∈ A0, v ∈ A0 =⇒ ∃z ∈ X : (x, u, z) ∈ R, (z, v, y) ∈ R (17)

θ(u, v) ∈ A, (x, u, z) ∈ R, (z, v, y) ∈ R =⇒ (x, θ(u, v), y) ∈ R (18)

u ∈ A ⇐⇒ ∃(x, u, y) ∈ R (19)

where A0 the Peano θ-algebra generated by A0 ([1]). This means that A0 =⋃
n≥0 An, where An is defined recursively as follows ([1]):

An+1 = An ∪ { θ(u, v) | u, v ∈ An}, n ≥ 0

We shall use the notation R0 = R ∩ (X ×A0 ×X).

3.1. Algebraic templates over R. We consider L = R, LT = R0 and LN = R\R0.
The relation (17) allows us to define the concept of ωR mapping.

Definition 3.2. A split mapping of R is a mapping ωR : R \R0 −→ R×R such that
if ωR(x, θ(u, v), y) = ((x, u, z1), (z2, v, y)) then z1 = z2.

Remark 3.1. For a given semantic schema at least one split mapping can be built.
Really, based on (17) for every (x, θ(u, v), y) ∈ R \R0 we can choose z ∈ X such that
(x, u, z) ∈ R and (z, v, y) ∈ R.

We can exemplify this concept by considering the case of the semantic schema
represented in Figure 3. For this case we have:
• R0 = {(x1, a, x2), (x2, b, x3), (x3, a, x4), (x4, c, x5), (x1, a, y2), (y2, b, y3),

(y3, a, y4), (y4, c, x5)}
• R = R0 ∪ {(x2, θ(b, a), x4), (x2, θ(θ(b, a), c), x5), (x1, θ(a, θ(θ(b, a), c)), x5),

(y2, θ(b, a), y4), (y2, θ(θ(b, a), c), x5)}
Two ωR split mappings can be defined:
(1) ω1

R(x1, θ(a, θ(θ(b, a), c)), x5) = ((x1, a, x2), (x2, θ(θ(b, a), c), x5));
ω1

R(x2, θ(θ(b, a), c), x5) = ((x2, θ(b, a), x4), (x4, c, x5));
ω1

R(x2, θ(b, a), x4) = ((x2, b, x3), (x3, a, x4));
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R-template

(2) ω2
R(x1, θ(a, θ(θ(b, a), c)), x5) = ((x1, a, y2), (y2, θ(θ(b, a), c), x5));

ω2
R(y2, θ(θ(b, a), c), x5) = ((y2, θ(b, a), y4), (y4, c, x5));

ω2
R(y2, θ(b, a), y4) = ((y2, b, y3), (y3, a, y4));

Accordingly we can build ω1
R-trees and ω2

R-trees. Moreover, we can obtain ω1
R-

templates and ω2
R-templates. Such structures are represented in Figure 4 and Figure

5. As we see below the relation ρωR
is a noetherian relation (Proposition 3.2).

3.2. Algebraic templates over A. We consider L = A, LT = A0 and LN = A\A0.
We consider the split mapping defined as follows:

ωA : LN → L× L

ωA(θ(u, v)) = (u, v)
Consider the binary relation ρωA ⊆ A × A generated by ωA. From the properties
satisfied by a θ-Peano algebra, particularly A0, we know that if θ(u, v) ∈ A0, u ∈ A0

and v ∈ A0 then u and v are uniquely determined. It follows that if θ(u, v)ρωA
x then

x = u or x = v.
We define |u| = 1 if u ∈ A0 and |θ(u, v)| = |u|+ |v|.

Remark 3.2. If uρωA
v then |u| > |v|.

Proposition 3.1. ρωA
is a noetherian binary relation.
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Proof. If we consider an infinite sequence u1ρωAu2, u2ρωAu3, . . . then we obtain an
infinite decreasing sequence of natural numbers |u1| > |u2| > . . .. But this property
is not possible. ¤
Proposition 3.2. The relation ρωR

⊆ R×R generated by the split mapping ωR is a
noetherian relation.

Proof. We observe that if (x1, u1, y1)ρωR
(x2, u2, y2) then u1ρωA

u2. But ρωA
is a noe-

therian relation, so ρωR
is also a noetherian relation. ¤

4. Similar templates generated by distinct split mappings

In the previous sections we presented the case of similar templates generated by
the same split mapping. In this section we show that the case of similar templates
generated by distinct split mappings is possible.

We consider two split mappings

ω1 : L1
N −→ L1 × L1

ω2 : L2
N −→ L2 × L2

where L1 ∩ L2 = ∅, L1 = L1
N ∪ L1

T , L1
N ∩ L1

T = ∅ and L2 = L2
N ∪ L2

T , L2
N ∩ L2

T = ∅.
We consider LN = L1

N ∪ L2
N , LT = L1

T ∪ L2
T , L = LN ∪ LT and the mapping

ω : LN −→ L× L defined by

ω(x) =





ω1(x) if x ∈ L1
N

ω2(x) if x ∈ L2
N

The mapping ω is named the union mapping of ω1 and ω2.

Proposition 4.1. Suppose that ω is the union mapping of ω1 and ω2. If xρωy and
x ∈ Lj

N , where j ∈ {1, 2}, then y ∈ Lj and xρωj y.

Proof. If x ∈ Lj
N and xρωy then there is z ∈ L such that ω(x) = (y, z) or ω(x) = (z, y).

But if x ∈ Lj
N then ω(x) = ωj(x) ∈ Lj × Lj . It follows that y ∈ Lj and xρωj y. ¤

Proposition 4.2. If ρω1 and ρω2 are noetherian relations and ω is the union mapping
of ω1 and ω2 then ρω is a noetherian relation.

Proof. Suppose by contrary that ρω is not a noetherian relation. There is an infinite
sequence x1ρωx2, x2ρωx3, . . . of elements from L. Because L = L1 ∪ L2 we have two
cases. If x1 ∈ Lj then by Proposition 4.1 we obtain x2, x3, . . . ∈ Lj and x1ρωj x2,
x2ρωj x3, . . .. This shows that ρωj is not a noetherian relation, which is not true. ¤
Proposition 4.3. The following properties are satisfied:
(1) OBT (ω1) ∩OBT (ω2) = ∅
(2) OBT (ω) = OBT (ω1) ∪OBT (ω2)

Proof. Suppose that OBT (ω1)∩OBT (ω2) 6= ∅ and take t ∈ OBT (ω1)∩OBT (ω2). It
follows that label(root(t)) ∈ L1

N ∩ L2
N , which is not possible because L1

N ∩ L2
N = ∅.

Obviously we have OBT (ω1) ⊆ OBT (ω) and OBT (ω2) ⊆ OBT (ω). Suppose that
t = (A,D, h) ∈ OBT (ω). It follows that label(root(t)) ∈ L1

N ∪L2
N . If [(i, i1), (i, i2)] ∈

D then the following two properties are satisfied:
• h(i) ∈ LN

• ω(h(i)) = (h(i1), h(i2))
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Figure 6. ω1
R-template

We use this property for r0 = root(t). If h(r0) ∈ Lj
N , where j ∈ {1, 2}, and

[(r0, i1), (r0, i2)] ∈ D then ω(h(r0)) = (h(i1), h(i2)). But ω(h(r0)) = ωj(h(r0)) and
ωj(h(r0)) ∈ Lj × Lj . It follows that h(i1) ∈ Lj and h(i2) ∈ Lj . We reiterate this
reasoning and we deduce that all labels of t belong to Lj . Thus t ∈ OBT (ωj). ¤

Proposition 4.4. Suppose that ω is the union mapping of ω1 and ω2. For j ∈ {1, 2},
if t1 ∈ OBT (ωj), t2 ∈ OBT (ω) and t2 ' t1 then t2 ∈ OBT (ωj).

Proof. Suppose that t1 = (A1, D1, h1) and t2 = (A2, D2, h2). There is a bijective
mapping γ : A1 −→ A2 such that

γ(root(t1)) = root(t2)
γ(D1) = D2

h1(root(t1) = h2(root(t2))
If t1 ∈ OBT (ωj) then h1(root(t1)) ∈ Lj , therefore h2(root(t2)) ∈ Lj . From Proposi-
tion 4.3 we deduce that either t2 ∈ OBT (ωj) or t2 ∈ OBT (ω3−j). If t2 ∈ OBT (ω3−j)
then h2(root(t2)) ∈ L3−j and this is not possible because h2(root(t2)) ∈ Lj and
Lj ∩ L3−j = ∅. ¤

Proposition 4.5. Suppose that ω is the union mapping of ω1 and ω2. Every ω-
template is either an ω1-template or an ω2-template.

Proof. An ω-template is an equivalence class of elements from OBT (ω). Let be Ω
an ω-template. Take an element t0 ∈ Ω. If t0 ∈ OBT (ωj) and t ∈ Ω then t ' t0,
therefore t ∈ OBT (ωj) by Proposition 4.4. It follows that Ω is an ωj-template. ¤

In order to exemplify this case we consider the set A given by the semantic schema
depicted in Figure 3. We take:

A0 = {a, b, c}
A = A0 ∪ {θ(b, a), θ(θ(b, a), c), θ(a, θ(θ(b, a), c))}
L2

N = A \A0, L2
T = A0, ω2 : L2

N → L2 × L2, ω2(θ(u, v) = (u, v)
We denote by ω the union mapping of ω1

R and ω2. The templates depicted in Figure
4 and Figure 6 are similar templates.

5. Conclusions

In this paper we considered the equivalence classes generated by the same nonter-
minal label. The greatest equivalence class of this set is an algebraic template. We
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defined the concept of similar templates. We showed that the similarity relation is
an equivalence relation. We exemplified these concepts as templates generated by
semantic schemas. Finally we studied the case of two similar templates generated
by two distinct split mappings. In a shortcoming paper we study the use of these
concepts to characterize the formal computations in a semantic schema.
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[4] N. Ţăndăreanu and C. Zamfir, Algebraic properties of ω-trees (II), Annals of the University
of Craiova, Mathematics and Computer Science Series 37 (2010), no. 2, 7–17.
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