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Maximal elements in the partial algebra of accepted
structured paths of a semantic schema
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Abstract. The concept of semantic schema was introduced in [2] as a structure for knowl-
edge representation. This structure is based on graph theory and universal algebras. New
computational aspects in such structures were discussed in [3]. The intuitive aspect of this
computation in a semantic schema S is given by the set of accepted structured paths ASP (S)
of S. For this reason in this paper we study this set. We organize the set ASP (S) as a partial
algebra. We discuss the maximal elements of this partial algebra.
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1. Introduction

Today there are two major implications of the mathematical results into the domain
of computer science given by the theory of universal algebras and the domain of graph
theory. The Peano algebras and graph theory were applied successfully in knowledge
representation and various applications.

The concept of semantic schema was introduced in [2] as a structure for knowledge
representation. This structure is based on graph theory and universal algebras. Two
kinds of computations can be performed in a semantic schema: syntactic computations
and semantic computations. The intuitive aspect of the syntactic computation in a
semantic schema S is given by the set of accepted structured paths ASP (S) of S. In
this paper we define the set ASP (S), we organize this set as a partial algebra and we
study the maximal elements of this algebra.

This paper is organized as follows: In Section 2 we recall the notion of a θ-semantic
schema. In Section 3 we define the set STR(S) of structured paths over S. We
decompose this set into disjoint layers and we study the minimal and the maximal
elements for each layer. We define the set ASP (S) of all accepted structured paths
of S. We show that ASP (S) is a finite set, but STR(S) can be an infinite one. In
Section 4 we identify a subsetHus of the Peano σ-algebra generated by the elementary
arcs of a semantic schema S, named useful elements for the inference process of S.
We study several properties connected by this set and finally we show that this is a
finite one. Section 5 contains the conclusions and future work.

2. Semantic schemas

We consider a symbol θ of arity 2 and a finite and nonempty set A0. We denote
by A0 the Peano θ-algebra generated by A0 ([1]). This means that A0 =

⋃
n≥0 An,
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where An is defined recursively as follows:

An+1 = An ∪ { θ(u, v) | u, v ∈ An}, n ≥ 0 (1)

We observe that A0 =
⋃

n≥0 Bn, where
{

B0 = A0

Bn+1 = An+1 \An, n ≥ 0 (2)

Definition 2.1. ([2]) A θ- schema (or a semantic schema) is a system S =
(X, A0, A,R), where
• X is a finite nonempty set and its elements are named object symbols.
• A0 is a finite nonempty set, its elements are named label symbols and A0 ⊆ A ⊆

A0, where A0 is the Peano θ-algebra generated by A0

• R ⊆ X×A×X is a nonempty set and its elements satisfy the following conditions:

(x, θ(u, v), y) ∈ R, u ∈ A0, v ∈ A0 =⇒ ∃z ∈ X : (x, u, z) ∈ R, (z, v, y) ∈ R (3)

θ(u, v) ∈ A, (x, u, z) ∈ R, (z, v, y) ∈ R =⇒ (x, θ(u, v), y) ∈ R (4)

u ∈ A ⇐⇒ ∃(x, u, y) ∈ R (5)

We denote R0 = R ∩ (X × A0 × X). If S = (X, A0, A, R) is a θ-schema then we
denote by Ln(X) the set of all lists of n elements of the set X. Consider also the
set L(X) =

⋃
n≥1 Ln(X) of all non empty lists obtained by means of X. On the set

L(X)×A0 we define a partial binary operation:
([x1, . . . , xp], u) ~ ([xp, . . . , xq], v) = ([x1, . . . , xq], θ(u, v))

This is a partial operation because two elements ([x1, . . . , xp], u) and ([y1, . . . , ys], v)
can be combined if and only if xp = y1. In this manner the pair (L(X) × A0, ~)
becomes a partial algebra.

3. Structured paths and accepted structured paths

Definition 3.1. Consider the set B0 = {([x, y], a) | (x, a, y) ∈ R0} and denote by
STR(S) the closure of B0 in (L(X) × A0, ~). An element of the set STR(S) is a
structured path over S.

This means that if we build the sequence{
B0 = {([x, y], a) | (x, a, y) ∈ R0}
Bn+1 = Bn ∪ {γ | ∃α, β ∈ Bn : γ = α ~ β} (6)

then
STR(S) =

⋃

n≥0

Bn (7)

x1 x2 x3 x4-a -c -b

Figure 1. R0 for finite case
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The set STR(S) can be a finite or an infinite set. In order to exemplify the finite
case we consider the set R0 described in Figure 1. Applying (6) we obtain the following
computations:

B0 = {([x1, x2], a), ([x2, x3], c), ([x3, x4], b)}
B1 = B0 ∪ {([x1, x2, x3], θ(a, c)), ([x2, x3, x4], θ(c, b))}
B2 = B1 ∪ {([x1, x2, x3, x4], θ(θ(a, c)), b), ([x1, x2, x3, x4], θ(a, θ(c, b)))}
B3 = B2

It follows that STR(S) = B2 and this is a finite set.
In order to exemplify the infinite case we consider the set R0 represented in Figure

2. The computations in this case can be described as follows:
B0 = {([x1, x2], a), ([x2, x3], c), ([x3, x4], b), ([x4, x2], a))}
B1 = B0 ∪ {([x1, x2, x3], θ(a, c)), ([x2, x3, x4], θ(c, b)), ([x3, x4, x2], θ(b, a)),

([x4, x2, x3], θ(a, c))}
B2 = B1 ∪ {([x1, x2, x3, x4], θ(a, θ(c, b))), ([x2, x3, x4, x2], θ(c, θ(b, a))),

([x3, x4, x2, x3], θ(b, θ(a, c))), ([x4, x2, x3, x4], θ(a, θ(c, b)))
([x1, x2, x3, x4], θ(θ(a, c), b)), ([x2, x3, x4, x2], θ(θ(c, b), a)),
([x3, x4, x2, x3], θ(θ(b, a), c)), ([x4, x2, x3, x4], θ(θ(a, c), b))}

. . .
We denote by [[x2, x3, x4]n, x2] the list obtained by taking n times the sequence of
nodes x2, x3, x4 and x2 is the last element: [x2, x3, x4, . . . , x2, x3, x4, x2]. It is not
difficult to observe that ([[x2, x3, x4]n, x2], θ(u3n−2, a)) ∈ STR(S), where u1 = θ(c, b)
and u3k+1 = θ(θ(θ(u3k−2, a), c), b) for every k ≥ 1. It follows that in this case the set
STR(S) is an infinite one.

x1 x2 x3 x4-a -c -b?

a

Figure 2. R0 for infinite case

We can write also
STR(S) =

⋃

n≥0

Cn (8)

where {
C0 = B0

Cn+1 = Bn+1 \Bn, n ≥ 0 (9)

From (9) we have Cj ∩ Cr = ∅ for j 6= r and therefore (8) gives a decomposition of
STR(S) into disjoint sets. For every p ≥ 0 we have also

Bp =
p⋃

j=0

Cj (10)

We observe that

Cn+1 = {α ~ β | α ∈ Cn, β ∈ Bn} ∪ {α ~ β | α ∈ Bn−1, β ∈ Cn} (11)

We define the mapping trace : A0 −→
⋃

n≥1 Ln(A0) as follows:
• If a ∈ A0 then trace(a) = [a];
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• If trace(u) = [a1, . . . , ap] and trace(v) = [b1, . . . , bq] then

trace(θ(u, v)) = [a1, . . . , ap, b1, . . . , bq]

Remark 3.1. If u ∈ A and trace(u) = [a1, . . . , ap] then we write |u| = p.

We define the following entities:
• Min(Ck) gives the least number n such that ([x1, . . . , xn], u) ∈ Ck;
• Max(Ck) denotes the greatest number n such that ([x1, . . . , xn], u) ∈ Ck;

By an abuse of language we shall say that an element ([x1, . . . , xn], u) ∈ Ck is a
minimal (maximal) element if n = Min(Ck) (n = Max(Ck)).

Proposition 3.1. The following valuations are true for Ck, where k ≥ 0:

Min(Ck) = k + 2 (12)

Max(Ck) = 2k + 1 (13)

Proof. A minimal element of Ck+1 is obtained as a product e1 ~ e2, where e1 is a
minimal element in Ck and e2 is from C0. It follows that Min(Ck+1) = 1+Min(Ck).
From this recursive relation we obtain Min(Ck+1) = 2 + Min(Ck−1) = . . . = k + 1 +
Min(C0) = k + 3 because Min(C0) = 2. Thus (12) is proved.
A maximal element of Ck+1 is obtained if we take e1 ~ e2, where e1 and e2 are
maximal elements in Ck. If e1 = ([y1, . . . , ys], u) ∈ Ck, e2 = ([z1, . . . , zs], v) ∈ Ck and
ys = z1, where s = Max(Ck)), then e1~e2 = ([y1, . . . , ys, z2, . . . , zs], θ(u, v)). The list
[y1, . . . , ys, z2, . . . , zs] contains 2s− 1 elements, therefore Max(Ck+1) = 2Max(Ck)−
1. Using this recursive relation we find Max(Ck+1) = 2(2Max(Ck−1) − 1) − 1 =
22Max(Ck−1)− 2− 1 = . . . = 2k+1Max(C0)− 2k − 2k−1 − . . .− 1 = 2k+2 − (1 + 2 +
. . . + 2k) = 2k+2 − 2k+1 + 1 = 2k+1 + 1. The relation (13) is proved. ¤

We recall the concept of path in a semantic schema. A pair ([x1, . . . , xn+1], [a1,
. . . , an]) ∈ L(X)×L(A0) is a path in S = (X, A0, A, R) if (xi, ai, xi+1) ∈ R0 for every
i ∈ {1, . . . , n}. We denote by Path(S) the set of all paths of S.

Proposition 3.2. If ([x1, . . . , xp], u) ∈ STR(S) then

([x1, . . . , xp], trace(u)) ∈ Path(S)

Proof. We prove by induction on k ≥ 0 the following property: if ([x1, . . . , xp], u) ∈ Ck

then ([x1, . . . , xp], trace(u)) ∈ Path(S). If k = 0 then from ([x1, x2], u) ∈ C0 we
deduce that (x1, u, x2) ∈ R0. Thus u ∈ A0 and trace(u) = [u]. But ([x1, x2], [u]) ∈
Path(S), therefore the sentence is true for k = 0.

Suppose the sentence is true for every k ≤ n. Let us consider an element γ =
([x1, . . . , xp], θ(u, v)) ∈ Cn+1. There are α, β ∈ ⋃

k≤n Ck such that

γ = α ~ β (14)

Suppose that α = ([y1, . . . , ys], u), β = ([z1, . . . , zr], v) and ys = z1. From (14) we
have [x1, . . . , xp] = [y1, . . . , ys, z2, . . . , zr], therefore

p = s + r − 1
xj = yj for j ∈ {1, . . . , s}
xj = zj−s+1 for j ∈ {s + 1, . . . , s + r − 1}

Because α, β ∈ ⋃
k≤n Ck, we can use the inductive assumption both for α and β. It

follows that
([y1, . . . , ys], trace(u)) ∈ Path(S) (15)

([z1, . . . , zr], trace(v)) ∈ Path(S) (16)



16 N. ŢĂNDĂREANU AND C. ZAMFIR

Let us denote trace(u) = [a1, . . . , as−1] and trace(v) = [b1, . . . , br−1]. It follows that
trace(θ(u, v)) = [a1, . . . , as−1, b1, . . . , br−1]. From (15) and (16) we obtain:

(yj , aj , yj+1) ∈ R0 for j ∈ {1, . . . , s− 1}
(ys, b1, z2) ∈ R0 because ys = z1 and (z1, b1, z2) ∈ R0

(zj , bj , zj+1) ∈ R0 for j ∈ {2, . . . , r − 1}
It follows that ([y1, . . . , ys, z2, . . . , zr], [a1, . . . , as−1, b1, . . . , br−1]) ∈ Path(S). Equiv-
alently we can write ([x1, . . . , xp], trace(θ(u, v))) ∈ Path(S). The proposition is
proved. ¤

Proposition 3.3. The following properties are satisfied by the elements of STR(S):
(1) Suppose that α1, α2, β1, β2 ∈ STR(S). If α1 ~ β1 = α2 ~ β2 then α1 = α2 and

β1 = β2.
(2) If γ = ([x1, . . . , xp+1], θ(u1, u2)) ∈ STR(S), where u1, u2 ∈ A0, then there is a

number s ∈ {2, . . . , p} and only one, such that α = ([x1, . . . , xs], u1) ∈ STR(S),
β = ([xs, . . . , xp+1], u2) ∈ STR(S) and γ = α ~ β.

Proof. We can suppose that

α1 = ([x1, . . . , xq], u1), u1 ∈ A0 (17)

α2 = ([y1, . . . , yr], u2), u2 ∈ A0 (18)

β1 = ([xq, . . . , xq+s], v1), v1 ∈ A0 (19)

β2 = ([yr, . . . , yr+k], v2), v2 ∈ A0 (20)
From α1 ~ β1 = α2 ~ β2 we obtain

([x1, . . . , xq+s], θ(u1, v1)) = ([y1, . . . , yr+k], θ(u2, v2))

therefore
([x1, . . . , xq+s] = [y1, . . . , yr+k] (21)

and θ(u1, v1) = θ(u2, v2). Based on the properties of a Peano algebra we deduce that
u1 = u2 and v1 = v2. By Proposition 3.2 we have

([x1, . . . , xq], trace(u1)) ∈ Path(S) (22)

([y1, . . . , yr], trace(u2)) ∈ Path(S) (23)
If trace(u1) = [a1, . . . , am] then from (22) we have q = m− 1. From u1 = u2 we have
trace(u2) = [a1, . . . , am] and from (23) we obtain r = m − 1. It follows that q = r.
From (21) we have q + s = r + k, therefore s = k. From the same relation we obtain
xj = yj for j ∈ {1, . . . , q + s}. Now, from (17) and (18) we obtain α1 = α2 and from
(19) and (20) we obtain β1 = β2.
We prove now the second part of this proposition. Suppose that γ = ([x1, . . . , xp+1],
θ(u1, u2)) ∈ STR(S) and u1 ∈ A0, u2 ∈ A0. We can suppose that there is α =
([y1, . . . , yr+1], v1) ∈ Cn and β = ([z1, . . . , zq+1], v2) ∈

⋃n
j=0 Cj such that γ = α ~ β.

Using these notations we can write α~β = ([y1, . . . , yr+1, z2, . . . , zq+1], θ(v1, v2)) and
because there exists the product α~β we have yr+1 = z1. From γ = α~β we obtain

θ(u1, u2) = θ(v1, v2) (24)

r + q + 1 = p + 1 & [x1, . . . , xp+1] = [y1, . . . , yr+1, z2, . . . , zq+1] (25)
Take s = r + 1 and we show that this number satisfies the second part of the propo-
sition. From (24) we obtain u1 = v1 and u2 = v2. From (25) we have y1 = x1,
. . ., yr+1 = xr+1. But r + 1 = s, therefore y1 = x1, . . ., ys = xs. This property
allows to write α = ([x1, . . . , xs], u1). The same relation (25) gives also xr+2 = z2,
. . ., xp+1 = zq+1, therefore β = ([xr+1, . . . , xp+1], u2) = ([xs, . . . , xp+1], u2).
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It remains to show that s ∈ {2, . . . , p}. We have q ≥ 1 and p = r + q, therefore
p ≥ r + 1. But r + 1 = s and thus s ≤ p. On the other hand, from s = r + 1 and
r ≥ 1 we obtain s ≥ 2. The uniqueness of s is obtained from the first sentence of the
proposition. The proposition is proved. ¤

As we stated before a structured path is a pair ([x1, . . . , xn+1], u) such that u ∈ A0

and ([x1, . . . , xn+1], trace(u)) is a path in S. From this set we retain only some subset
of useful paths as we specify in the next definition.

Definition 3.2. An element ([x1, . . . , xn], u) ∈ STR(S) such that u ∈ A is an ac-
cepted structured path of S. We denote by ASP (S) the set of all accepted structured
paths of S.

Proposition 3.4. If γ = ([x1, . . . , xp+1], θ(u1, u2)) ∈ ASP (S), where u1, u2 ∈ A0,
then there is a number s ∈ {2, . . . , p} and only one, such that α = ([x1, . . . , xs], u1) ∈
ASP (S), β = ([xs, . . . , xp+1], u2) ∈ ASP (S) and γ = α ~ β.

Proof. We apply Proposition 3.3. If θ(u1, u2) ∈ A and u1, u2 ∈ A0 then u1, u2 ∈ A.
It follows that α ∈ ASP (S) and β ∈ ASP (S). ¤
Proposition 3.5. If u ∈ A and |u| = n then there is an element ([x1, . . . , xn+1], u)
∈ ASP (S).

Proof. Consider the sets (2) and denote Rn = R ∩ (X × Bn ×X), where n ≥ 0. We
prove by induction on n the following property P (n): if (x, u, z) ∈ Rn then there is an
element ([x, . . . , z], u) ∈ ASP (S). The property P (0) is true because if (x, u, z) ∈ R0

then u ∈ A0, ([x, z], u) ∈ STR(S), therefore ([x, z], u) ∈ ASP (S). Suppose that P (k)
is true for every k ∈ {0, . . . , n}. Consider an element (x, u, z) ∈ Rn+1. There is
u1, v1 ∈

⋃n
p=0 Bp such that n = θ(u1, v1). From (x, u, z) ∈ Rn+1 and (3) we deduce

that there is y ∈ X such that (x, u1, y) ∈ ⋃n
p=0 Rp and (y, u2, z) ∈ ⋃n

p=0 Rp. Applying
the inductive assumption we deduce that there are the elements d1 = ([x, . . . , y], u1) ∈
ASP (S) and d2 = ([y, . . . , z], v1) ∈ ASP (S). But d1 ~ d2 satisfies P (n + 1) and
therefore P (n) is true for every n ≥ 0. But A = pr2R and R =

⋃
j≥0 Rn. It follows

that if u ∈ A then there is an element (x, u, y) ∈ Rj for some j ≥ 0. Applying
property P (j) we deduce that there is an element ([x, . . . , y], u) ∈ ASP (S). But
ASP (S) ⊆ STR(S), therefore ([x, . . . , y], trace(u)) ∈ Path(S). Thus, if |u| = n then
the list of nodes [x, . . . , y] has n + 1 elements. ¤
Proposition 3.6. If m = max{|u| | u ∈ A} then
(1) ASP (S) ⊆ ⋃m−1

k=0 Ck.
(2) Ck ∩ASP (S) = ∅ for every k ≥ m.

Proof. Take d = ([x1, . . . , xp], v) ∈ ASP (S). We have ASP (S) ⊆ STR(S) =⋃
k≥0 Ck. There is k ≥ 0 such that d ∈ Ck. By Proposition 3.1 we obtain k + 2 ≤ p.

But p − 1 = length(d) = |v| and |v| ≤ m. It follows that p − 1 ≤ m, therefore
k + 1 ≤ m. In conclusion d ∈ Ck and k ≤ m− 1.
In order to prove the second sentence we suppose by contrary, Ck0 ∩ASP (S) 6= ∅ for
some k0 ≥ m. Take p ∈ Ck0 ∩ ASP (S). But p ∈ ASP (S) and ASP (S) ⊆ ⋃m−1

k=0 Ck.
There is k1 ≤ m − 1 such that p ∈ Ck1 . It follows that Ck0 ∩ Ck1 6= ∅, which is not
true because k0 6= k1. ¤
Corollary 3.1. ASP (S) is a finite set.

Proof.
⋃m−1

k=0 Ck is a finite set because Ck is finite for every k ≥ 0. ¤
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4. Maximal elements in ASP (S)

We consider a symbol h of arity 3, a symbol σ of arity 2 and denote M = {h(x, a, y) |
(x, a, y) ∈ R0}. Consider the Peano σ-algebra H generated by M . This is an infinite
set. We define the mapping fst : H −→ X and lst : H −→ X as follows:{

fst(h(x, a, y)) = x if (x, a, y) ∈ R0

fst(σ(m1,m2)) = fst(m1) if m1 ∈ H,m2 ∈ H{
lst(h(x, a, y)) = y if (x, a, y) ∈ R0

lst(σ(m1, m2)) = lst(m2) if m1 ∈ H,m2 ∈ H
We consider a path d = ([x1, . . . , xn+1], [a1, . . . , an]) ∈ Path(S). This means that

(xj , aj , xj+1) ∈ R0 for each j ∈ {1, . . . , n}. We define the sequence {(Hd
k , Ud

k )}k≥0,
where Hd

k ⊆ H and Ud
k : Hd

k → A0, as follows:{
Hd

0 = {h(xj , aj , xj+1) | j = 1, . . . , n}
Ud

0 : Hd
0 −→ A0, Ud

0 (h(xj , aj , xj+1)) = aj



Hd
k+1 = Hd

k ∪ {σ(w1, w2) | w1, w2 ∈ Hd
k , lst(w1) = fst(w2),

θ(Ud
k (w1), Ud

k (w2)) ∈ A}
Ud

k+1(w) = Ud
k (w) for w ∈ Hd

k

Ud
k+1(σ(w1, w2)) = θ(Ud

k (w1), Ud
k (w2)) if σ(w1, w2) ∈ Hd

k+1 \Hd
k

We consider the set Hus =
⋃

d∈Path(S)H(d) and the elements of this set are named
useful elements for the inference process of S.

If d ∈ Path(S) then we can write

H(d) =
⋃

k≥0

Ed
k

where Ed
0 = Hd

0 and Ed
k+1 = Hd

k+1 \ Hd
k for k ≥ 0. Moreover, we can relieve the

following property

Ed
k+1 = {σ(w1, w2) | w1 ∈ Ed

k , w2 ∈ Hd
k , Qk(w1, w2)} ∪

{σ(w1, w2) | w2 ∈ Ed
k , w1 ∈ Hd

k , Qk(w1, w2)} (26)

where Qk(w1, w2) represents the condition

lst(w1) = fst(w2), θ(Ud
k (w1), Ud

k (w2)) ∈ A

Proposition 4.1. Let be m = max{|u| | u ∈ A}. If d ∈ Path(S) then Ed
k = ∅ for

every k ≥ m.

Proof. We prove first that Ed
m = ∅. Suppose by contrary, that Ed

m 6= ∅. Take an
element w ∈ Ed

m. We use the extractive mappings f of S ([3]). From Proposition 3.4
proved in [3] we have f(w) = ([x1, . . . , xn], u) ∈ Cm ∩ASP (S). From Proposition 3.1
we obtain m + 2 ≤ n. But |u| = n− 1, therefore |u| ≥ m + 1. From f(w) ∈ ASP (S)
we have u ∈ A. This fact is not possible because m = max{|u| | u ∈ A}. Now from
(26) we obtain Ed

m+1 = Ed
m+2 = . . . = ∅. ¤

Consider a path d = ([x1, . . . , xn+1], [a1, . . . , an]) ∈ Path(S). For 1 ≤ i < j ≤ n+1
the path d1 = ([xi, . . . , xj ], [ai . . . , aj−1]) is a subpath of d. We write in this case
d1 E d. We denote by SPath(d) the set of all subpaths of the path d. This relation
satisfies the following properties:
• d E d for every d ∈ Path(S)
• If d1 E d2 and d2 E d1 then d1 = d2.
• If d1 E d2 and d2 E d3 then d1 E d3.

It follows that (Path(S), E) is a partial ordered set.
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Proposition 4.2. If p E d then for every k ≥ 0:
Ep

k ⊆ Ed
k

Up
k (w) = Ud

k (w) for every w ∈ Ep
k

Proof. Obviously Ep
0 ⊆ Ed

0 and Up
0 (w) = Ud

0 (w) for every w ∈ Ep
0 . Suppose that for

every k ∈ {0, . . . , n} we have Ep
k ⊆ Ed

k and Up
k (w) = Ud

k (w) for every w ∈ Ep
k . Take

w ∈ Ep
n+1. There are w1 ∈ Ep

n and w2 ∈
⋃n

j=0 Ep
j such that w = σ(w1, w2), lst(w1) =

fst(w2) and θ(Up
n(w1), Up

n(w2)) ∈ A. By the inductive assumption we have w1 ∈ Ed
n,

w2 ∈ Ed
n, Up

n(w1) = Ud
n(w1) and Up

n(w2) = Ud
n(w2). Thus θ(Ud

n(w1), Ud
n(w2)) ∈ A,

therefore w = σ(w1, w2) ∈ Ed
n+1. Similarly we proceed for the case w2 ∈ Ep

n and
w1 ∈

⋃n
j=0 Ep

j . We have also Up
n+1(w) = θ(Up

n(w1), Up
n(w2)) = θ(Up

n(w1), Up
n(w2)) =

Ud
n+1(w). ¤

Definition 4.1. For p = ([x1, . . . , xn+1], u) ∈ ASP (S) we denote pt = ([x1, . . . ,
xn+1], trace(u)). Consider d ∈ Path(S). We denote

ASP (d) = {p ∈ ASP (S) | pt E d}
ACC(d) = {pt | p ∈ ASP (d)}

The set of all maximal elements of the partial algebra (ACC(d),E) is denoted by
MAXa(d).

x1

x2 x3 x4 y1 y2 y3

6a

-a -b -c -a -b?

θ(a, b)

6
θ(a, b)

6

θ(c, θ(a, b))

Figure 3. A part of a θ-schema

In order to exemplify these concepts we consider the path d = ([x1, x2, x3, x4, y1,
y2, y3], [a, a, b, c, a, b]) represented in Figure 3. For this case we have

MAXa(d) = {([x1, x2], [a]), ([x2, x3, x4], [a, b]), ([x4, y1, y2, y3], [c, a, b])}
If we denote by d1, d2 and d3 the elements of MAXa(d) we observe the following
properties:
(1) Ed1

0 = {h(x1, a, x2)}; Ed1
k = ∅ for k ≥ 1;

(2) Ed2
0 = {h(x2, a, x3), h(x3, b, x4)}; Ed2

1 = {σ(h(x2, a, x3), h(x3, b, x4))}; Ed2
k = ∅

for k ≥ 2;
(3) Ed3

0 = {h(x4, c, y1), h(y1, a, y2), h(y2, b, y3)}; Ed3
1 = {σ(h(y1, a, y2), h(y2, b, y3))};

Ed3
2 = {σ(h(x4, c, y1), σ(h(y1, a, y2), h(y2, b, y3)))}; Ed3

k = ∅ for k ≥ 3;
(4) Ed

k = Ed1
k ∪ Ed2

k ∪ Ed3
k for k ≥ 0.

The last property is not a particular one. This is stated in the next proposition.

Proposition 4.3. If d ∈ Path(S) then for every k ≥ 0 we have

Ed
k =

⋃

p∈MAXa(d)

Ep
k (27)
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Proof. If p ∈ MAXa(d) then p E d. Applying Proposition 4.2 we obtain Ep
k ⊆ Ed

k for
every k ≥ 0. It follows that ⋃

p∈MAXa(d)

Ep
k ⊆ Ed

k (28)

We prove now the following property P (k): if w ∈ Ed
k then there is p ∈ MAXa(d)

such that w ∈ Ep
k .

If w = h(x, a, y) ∈ Ed
0 then we have two cases:

• ([x, y], [a]) ∈ MAXa(d)
In this case we take p = ([x, y], [a]). We obtain w ∈ Ep

0 .
• ([x, y], [a]) /∈ MAXa(d)

In this case there is d1 = ([x1, . . . , xn+1], u) ∈ ASP (S) such that ([x, y], [a]) / p1,
where p1 = ([x1, . . . , xn+1], trace(u)). We can suppose that p1 ∈ MAXa(d)
because otherwise we reiterate this procedure. This situation can not be iterated
infinitely times because the set SPath(d) is a finite set. We have w ∈ Ep1

0 .
It follows that P (0) is true. Consider an element w ∈ Ed

k for some k ≥ 1. There are
w1 ∈ Ed

k−1 and w2 ∈
⋃k−1

j=0 Ed
j such that w = σ(w1, w2) or w = σ(w2, w1). Suppose

we have the first case, the second case is discussed in a similar manner. We apply the
inductive assumption. There is p1 ∈ MAXa(d) such that w1 ∈ Ep1

k−1. There is also
p2 ∈ MAXa(d) such that w2 ∈ Ep2

j , where j ∈ {0, . . . , k − 1}. It follows that p1 = p2

and w ∈ Ep1
k . Thus the property P (k) is true and from this property we deduce that

Ed
k ⊆

⋃

p∈MAXa(d)

Ep
k (29)

Now, from (28) and (29) we deduce (27). ¤

Proposition 4.4. Let be m = max{|u| | u ∈ A}. If p ∈ ASP (S) then Hpt

k = Hpt

m−1

for every k ≥ m. Moreover, Hus is a finite set:

Hus =
m−1⋃

k=0

⋃

p∈ASP (S)

Ept

k (30)

Proof. By Proposition 4.1 we have Ept

k = ∅ for every k ≥ m. It follows that for k ≥ m

we can write Hpt

k =
⋃k

j=0 Ept

j =
⋃m−1

j=0 Ept

j = Hpt

m−1.
We prove by double inclusion the following equality:

⋃

p∈ASP (S)

Ept

k =
⋃

d∈Path(S)

k⋃

j=0

Ed
j (31)

Take w ∈ ⋃
p∈ASP (S) Ept

k . There is p ∈ ASP (S) such that w ∈ Ept

k . But pt ∈ Path(S)

therefore w ∈ ⋃
d∈Path(S)

⋃k
j=0 Ed

j . So we proved the inclusion

⋃

p∈ASP (S)

Ept

k ⊆
⋃

d∈Path(S)

k⋃

j=0

Ed
j (32)

We prove now the converse inclusion. Take w ∈ ⋃
d∈Path(S)

⋃k
j=0 Ed

j . There is d ∈
Path(S) such that w ∈ ⋃k

j=0 Ed
j . It follows that there is j ∈ {0, . . . , k} such that

w ∈ Ed
j . By Proposition 4.3 we have Ed

j =
⋃

p∈MAXa(d) Ep
j , therefore there is p ∈
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MAXa(d) such that w ∈ Ep
j . From Definition 4.1 we deduce that there is q ∈ ASP (S)

such that p = qt, therefore w ∈ ⋃
p∈ASP (S) Ept

k . Thus we have the inclusion

⋃

p∈ASP (S)

Ept

k ⊇
⋃

d∈Path(S)

k⋃

j=0

Ed
j (33)

Now, from (32) and (33) we obtain (31). From Proposition 4.1 we have Ed
k = ∅

for every k ≥ m. It follows that
⋃m−1

k=0

⋃
p∈ASP (S) Ept

k =
⋃m−1

k=0

⋃
d∈Path(S)

⋃k
j=0 Ed

j

= Hus. Based on (30) and Corollary 3.1 we deduce that Hus is a finite set. ¤

5. Conclusions

In this paper we discussed the set ASP (S) of all accepted structured paths of S, we
organize this set as a partial ordered set and we discussed the maximal elements of this
algebra. The results presented in this paper can be considered as closely related by
the results presented in [3], where a revised formal computation in a semantic schema
based on the elements of Hus is considered. The main results can be summarized as
follows: the set ASP (S) is a finite one even if the set STR(S) is an infinite set; the
maximal elements of ASP (S) are fully implied to compute the elements of the set
Hus; the new formal computation, as was described in [3], is based on the elements
of Hus, which is a finite one. In a future paper we will discuss the new computational
aspects and we will apply it to a master-slave systems of semantic schemas.
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