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ABSTRACT. The concept of semantic schema was introduced in [2] as a structure for knowl-
edge representation. This structure is based on graph theory and universal algebras. New
computational aspects in such structures were discussed in [3]. The intuitive aspect of this
computation in a semantic schema S is given by the set of accepted structured paths ASP(S)
of S. For this reason in this paper we study this set. We organize the set ASP(S) as a partial
algebra. We discuss the maximal elements of this partial algebra.
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1. Introduction

Today there are two major implications of the mathematical results into the domain
of computer science given by the theory of universal algebras and the domain of graph
theory. The Peano algebras and graph theory were applied successfully in knowledge
representation and various applications.

The concept of semantic schema was introduced in [2] as a structure for knowledge
representation. This structure is based on graph theory and universal algebras. Two
kinds of computations can be performed in a semantic schema: syntactic computations
and semantic computations. The intuitive aspect of the syntactic computation in a
semantic schema S is given by the set of accepted structured paths ASP(S) of S. In
this paper we define the set ASP(S), we organize this set as a partial algebra and we
study the maximal elements of this algebra.

This paper is organized as follows: In Section 2 we recall the notion of a #-semantic
schema. In Section 3 we define the set STR(S) of structured paths over S. We
decompose this set into disjoint layers and we study the minimal and the maximal
elements for each layer. We define the set ASP(S) of all accepted structured paths
of S. We show that ASP(S) is a finite set, but STR(S) can be an infinite one. In
Section 4 we identify a subset H"* of the Peano o-algebra generated by the elementary
arcs of a semantic schema S, named useful elements for the inference process of S.
We study several properties connected by this set and finally we show that this is a
finite one. Section 5 contains the conclusions and future work.

2. Semantic schemas

We consider a symbol 6 of arity 2 and a finite and nonempty set Ag. We denote
by Ao the Peano 6-algebra generated by Ao ([1]). This means that Ay = (U5 An,
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MAXIMAL ELEMENTS 13

where A, is defined recursively as follows:
Aps1 = A, U{0(u,v) | v,veA,}, n>0 (1)
We observe that Ay = Un>o Bn, where

{ o @
Bn+1 == An+1 \Ana n 2 0
Definition 2.1. ([2]) A 6- schema (or a semantic schema) is a system S =
(X, Ao, A, R), where

e X is a finite nonempty set and its elements are named object symbols.

o Ay is a finite nonempty set, its elements are named label symbols and Ay C A C

Ao, where Ay is the Peano 8-algebra generated by Ay
e RC XxAxX is a nonempty set and its elements satisfy the following conditions:

(2,0(u,v),y) € Ryu € Ag,v € Ag = 2 € X : (z,u,2) € R,(2,v,9) € R (3)
O(u,v) € A, (z,u,2) € R, (2,v,y) € R= (z,0(u,v),y) € R (4)

u€ A<= J(r,u,y) €R (5)

We denote Rg = RN (X x Ag x X). If S = (X, Ay, A, R) is a -schema then we
denote by L, (X) the set of all lists of n elements of the set X. Consider also the
set L(X) = U,>; £n(X) of all non empty lists obtained by means of X. On the set

L(X) x Ag we define a partial binary operation:

([xla s 7xp]7u) ® ([xp’ s 7:Cq]7v) = ([xlv s 7xq]7 G(U,U))
This is a partial operation because two elements ([x1,...,zp],u) and ([y1,...,ys],v)
can be combined if and only if z, = y;. In this manner the pair (£(X) x Ag, ®)
becomes a partial algebra.

3. Structured paths and accepted structured paths

Definition 3.1. Consider the set By = {([z,yl,a) | (v,a,y) € Ro} and denote by
STR(S) the closure of By in (L(X) X Ag,®). An element of the set STR(S) is a
structured path over S.

This means that if we build the sequence

{ By = {([z,y],a) | (z,a,y) € Ro} (6)
B,y1=B,U{vy|3a,8E€ B, :vy=a®f}

then
STR(S) = | J Bn (7)

n>0

a c b
(o b » ——o = |

FIGURE 1. Ry for finite case
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The set STR(S) can be a finite or an infinite set. In order to exemplify the finite
case we consider the set R described in Figure 1. Applying (6) we obtain the following
computations:

By = {([z1,22], a), ([22, %3], ¢), ([x3, 24], b)}
By = Bo U{([z1,%2,25],0(a,¢)), ([x2, z3,24],0(c, b))}
By = By U {([z1, 22, 73, 24],0(6(a, )),b), ([21, w2, x5, 74, 0(a, 0(c, b)) }
Bs = By
It follows that ST R(S) = Bs and this is a finite set.
In order to exemplify the infinite case we consider the set Ry represented in Figure
2. The computations in this case can be described as follows:
By = {([zla xQ]a a)v ([IQ, ‘7‘13}7 C)v ([:C37 1‘4], b)v ([‘T47 562]’ a))}
By =By U {([mla T2, xB]? 0(0" C))a ([x% L3, :E4]v 9(C7 b))’ ([x37 L4, xQ]a a(ba a))v
([x4, 2, 23],0(a, )}
By = By U{([x1, x2, w3, 24],6(a, 0(c, b)), ([x2, x3, 24, 2], 0(c, 0(D, a))),
([x3, x4, 22, 23],0(b,0(a,c))), ([x4, T2, T3, 24], 0(a, O(c,
([171, T2,T3, 1‘4] ( ( )7 b))’ ([I27 L3, T4, x2]7 9(0(67 b ’
a),c)), (

a
([$3,$4,LL‘2,$3] ( ( a),c)), [x4,x2,xg,x4],9(0(a,c),b

We denote by [[x2,z3,24]™, x2] the list obtained by taking n times the sequence of
nodes x9,x3, x4 and xo is the last element: [r2,x3,24,...,%2, 23, T4, x2]. It is not
difficult to observe that ([[x2, x5, x4]™, 2], 0(usn—2,a)) € STR(S), where u; = 6(c,b)
and ugk+1 = 0(0(0(usk—2,a),c),b) for every k > 1. It follows that in this case the set
STR(S) is an infinite one.

a
a c b

FIGURE 2. Ry for infinite case

We can write also

STR(S) = | J C (®)
n>0
where
Co
{ Cn+l == Bn+1 \Bna n Z 0 (9)

From (9) we have C; N C, = 0 for j # r and therefore (8) gives a decomposition of
STR(S) into disjoint sets. For every p > 0 we have also

P
By = U Cj (10)
3=0

We observe that
Copi={a®f|laecC,,feB}U{a®f|acB,_1,3€Cp} (11)

We define the mapping trace : Ay — U,,51 £ (Ao) as follows:
o If a € Ag then trace(a) = [al;
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o If trace(u) = [a1, ..., ap] and trace(v) = [b1,...,by] then
trace(0(u,v)) = [a1,...,ap,b1,...,bg]
Remark 3.1. If u € A and trace(u) = [a1,...,ap] then we write |u| = p.

We define the following entities:

o Min(Cy) gives the least number n such that ([x1,...,z,],u) € Ck;

o Maxz(Cy) denotes the greatest number n such that ([x1,...,z,],u) € Ck;
By an abuse of language we shall say that an element ([z1,...,2,],u) € Cj is a
minimal (maximal) element if n = Min(Cy) (n = Max(Cy)).

Proposition 3.1. The following valuations are true for Cy, where k > 0:
Min(Cg) =k +2 (12)
Maz(Cy) =2F +1 (13)
Proof. A minimal element of Cy1 is obtained as a product e; ® ez, where e is a
minimal element in C and es is from Cy. It follows that Min(Cyy1) = 14+ Min(Cy).
From this recursive relation we obtain Min(Cy41) =2+ Min(Cyr_1) =...=k+1+

Min(Cy) = k + 3 because Min(Cp) = 2. Thus (12) is proved.
A maximal element of Cj,q is obtained if we take e; ® ey, where e; and es are

maximal elements in Ci. If e; = ([y1,...,ys],u) € Ck, ea = ([21,...,25],v) € Ck and
ys = z1, where s = Maxz(Cy)), then ey ®es = ([y1,- .-, Ys, 22, - - -, 2s], 0(u,v)). The list
[Y1,-.-,Ys, 22,...,2s| contains 2s — 1 elements, therefore Maxz(Cyy1) = 2Maz(Cy) —
1. Using this recursive relation we find Max(Ciy1) = 2(2Max(Cyr—1) — 1) — 1 =
22Maz(Cr_1) —2—1=... =21 Max(Cy) —2F —2k=1 — . 1 =22 _(14+2+
co 4 2k) = 2k+2 k4l 1 — 9k+1 1 1. The relation (13) is proved. O

We recall the concept of path in a semantic schema. A pair ([z1,...,Znt1], [a1,

Sap]) € LX) X L(Ap) isapathin S = (X, Ag, A, R) if (x4, a;,x;41) € Ro for every
i€{1,...,n}. We denote by Path(S) the set of all paths of S.

Proposition 3.2. If ([z1,...,2p],u) € STR(S) then
([z1,. .., zp), trace(u)) € Path(S)

Proof. We prove by induction on k > 0 the following property: if ([z1,...,zp],u) € Cg
then ([x1,...,xzp), trace(u)) € Path(S). If k = 0 then from ([z1,x2],u) € Cy we
deduce that (z1,u,z2) € Ry. Thus u € Ag and trace(u) = [u]. But ([x1,z2], [u]) €
Path(S), therefore the sentence is true for k = 0.

Suppose the sentence is true for every & < n. Let us consider an element v =
([x1,...,2p),0(u,v)) € Cyy1. There are a, 3 € |J,,,, Ci such that

v=a®p (14)
Suppose that « = ([y1,...,¥s],u), 8 = ([21,...,2:),v) and ys = 2z;. From (14) we
have [z1,...,2p] = [Y1,-- -, Yss 22, - - -, 2], therefore

p=s+r—1
zj =y, for je{l,... s}
xrj=zj_sy1 for je{s+1,...,s+r—1}
Because «, 3 € | J,,<,, Ck, we can use the inductive assumption both for a and 3. It
follows that
([y1s-- -, ys), trace(u)) € Path(S) (15)

([21,-- -, 2], trace(v)) € Path(S) (16)
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Let us denote trace(u) = [a1,...,as—1] and trace(v) = [b1,...,b._1]. It follows that
trace(6(u,v)) = [a1,...,as-1,b1,...,br-—1]. From (15) and (16) we obtain:
(yj,0a5,y;41) € Ry for j € {1,...,s — 1}
(ys, b1, 22) € Ro because y; = z1 and (z1,b1,22) € Ro
(Zj,bj,Zj.;,_l) € Ry for je {2, e, T = 1}
It follows that ([y1,...,Ys,22,---, 2], [@1,---,a5—1,b1,...,b.-1]) € Path(S). Equiv-
alently we can write ([z1,...,zp], trace(0(u,v))) € Path(S). The proposition is
proved. (I

Proposition 3.3. The following properties are satisfied by the elements of STR(S):

(1) Suppose that oy, a2, P1,02 € STR(S). If a1 ® f1 = aa ® [ then an = as and
B = Ba.

(2) If v = (w1, ., Tpt1], O(ur,uz)) € STR(S), where uy,us € Ay, then there is a
number s € {2,...,p} and only one, such that o« = ([x1,...,xs],u1) € STR(S),
/6 = ([Is, s 793p+1}7 UQ) € STR(S) and T=a <>B/B

Proof. We can suppose that

ar = ([z1,...,2q],u1), w1 €Ay (17)
az = ([y1,- - Yr] uz), ua € Ay (18)
ﬁl :([xqwnaqurs]avl)fUl Gz‘To (19)
Bo = (Yr,-- - Yrsk), v2),02 € Ay (20)
From a1 ® 1 = as ® B> we obtain
([1’1, e axq-l-s]a 9(“’17’01)) = ([y17 e ayr+k}79(u27 UQ))
therefore
([1, o Tgps]) = (Y15 oy Yrp] (21)

and 6(uy,v1) = 0(ug,vs). Based on the properties of a Peano algebra we deduce that
u1 = us and vy = ve. By Proposition 3.2 we have

([z1, ..., 24, trace(ur)) € Path(S) (22)
([y1,-- -, yr], trace(us)) € Path(S) (23)
If trace(ui) = [a1, ..., am] then from (22) we have ¢ = m — 1. From u; = uy we have
trace(uz) = [a1,...,an,] and from (23) we obtain 7 = m — 1. It follows that ¢ = r.

From (21) we have g + s = r + k, therefore s = k. From the same relation we obtain
xzj =y, for j € {1,...,q+ s}. Now, from (17) and (18) we obtain o; = o and from
(19) and (20) we obtain 5 = f.

We prove now the second part of this proposition. Suppose that v = ([z1,...,Zp+1],
O(u1,uz)) € STR(S) and u; € Ag, uz € Ag. We can suppose that there is a =
(155 yralsv1) € Oy and B = ([21,..., 2g11],v2) € Uj—, Cj such that v = a ® .

Using these notations we can write a ® 8 = ([y1, ..., Yr+1, 22, . - ., Zg+1), 0(v1,v2)) and
because there exists the product o ® 3 we have y,,1 = z;. From v = a ® 3 we obtain
0(11,1,’&2) = 9(1)171)2) (24)
r+q+l=p+1&z1,....Tpt1) = [Y1,- s Yrt1, 22, -, Zg+1] (25)

Take s = r 4+ 1 and we show that this number satisfies the second part of the propo-
sition. From (24) we obtain u; = v; and us = vs. From (25) we have y; = 1,
ciey Yrtl = Tpp1. But r 4+ 1 = s, therefore y; = z1, ..., ys = zs. This property
allows to write a = ([z1,...,2s],u1). The same relation (25) gives also z,42 = 22,
ooy Tpp1 = Zg41, therefore B = ([zry1, ..., Zpy1],u2) = ([@s, ..., Tpy1], u2).



MAXIMAL ELEMENTS 17

It remains to show that s € {2,...,p}. We have ¢ > 1 and p = r + ¢, therefore
p>7r+1. But r+1 = s and thus s < p. On the other hand, from s = r + 1 and
r > 1 we obtain s > 2. The uniqueness of s is obtained from the first sentence of the

proposition. The proposition is proved. (I
As we stated before a structured path is a pair ([21,. .., Zn11],u) such that u € Ag
and ([z1,...,Znt1], trace(u)) is a path in S. From this set we retain only some subset

of useful paths as we specify in the next definition.

Definition 3.2. An element ([x1,...,2zn],u) € STR(S) such that u € A is an ac-
cepted structured path of S. We denote by ASP(S) the set of all accepted structured
paths of S.

Proposition 3.4. If v = ([z1,...,7p11],0(u1,u)) € ASP(S), where ui,us € Ao,
then there is a number s € {2,...,p} and only one, such that o« = ([x1,...,2s],u1) €
ASP(S), 8= ([zs,...,Tpt1], u2) € ASP(S) and y = a ® (.

Proof. We apply Proposition 3.3. If 0(u1,us) € A and uy,us € A then uy,us € A.

It follows that o € ASP(S) and g € ASP(S). O
Proposition 3.5. If u € A and |u| = n then there is an element ([x1,...,Tpt1],u)
€ ASP(S).

Proof. Consider the sets (2) and denote R, = RN (X x B, x X), where n > 0. We
prove by induction on n the following property P(n): if (z,u, z) € R,, then there is an
element ([z,...,z],u) € ASP(S). The property P(0) is true because if (z,u,z) € Ry
then u € Ao, ([z,z],u) € STR(S), therefore ([z, z],u) € ASP(S). Suppose that P(k)
is true for every k € {0,...,n}. Counsider an element (z,u,z) € R,+1. There is
uy,v1 € Up_o Bp such that n = 0(ui,v1). From (z,u,2) € Ryt and (3) we deduce
that there is y € X such that (z,u1,y) € Uy—o Rp and (y,uz, 2) € U,—y Rp. Applying
the inductive assumption we deduce that there are the elements dq = ([z,...,y],u1) €
ASP(S) and dy = ([y,...,z]),v1) € ASP(S). But d; ® do satisfies P(n + 1) and
therefore P(n) is true for every n > 0. But A = proR and R = (J;5 Rs. It follows
that if w € A then there is an element (z,u,y) € R; for some j > 0. Applying
property P(j) we deduce that there is an element ([z,...,y],u) € ASP(S). But
ASP(S) C STR(S), therefore ([z,...,y],trace(u)) € Path(S). Thus, if |u| = n then
the list of nodes [x,...,y] has n + 1 elements. O

Proposition 3.6. If m = mazx{|u| | u € A} then
(1) ASP(S) C Uy Ch.
(2) C,NASP(S) =10 for every k > m.

Proof. Take d = ([z1,...,2p],v) € ASP(S). We have ASP(S) C STR(S) =
Ug>o Ck- There is k > 0 such that d € C. By Proposition 3.1 we obtain k + 2 < p.
But p — 1 = length(d) = |v| and |[v] < m. Tt follows that p — 1 < m, therefore
k41 <m. In conclusion d € Cy, and kK < m — 1.

In order to prove the second sentence we suppose by contrary, Cx, N ASP(S) # § for
some ko > m. Take p € Cy,, N ASP(S). But p € ASP(S) and ASP(S) C ;'S Ch.
There is k1 < m — 1 such that p € Cy,. It follows that Cy, N Ck, # 0, which is not
true because kg # k. O

Corollary 3.1. ASP(S) is a finite set.

Proof. U;n:_ol Cl is a finite set because CY is finite for every k > 0. O
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4. Maximal elements in ASP(S)

We consider a symbol h of arity 3, a symbol o of arity 2 and denote M = {h(z, a,y) |
(x,a,y) € Ro}. Consider the Peano o-algebra H generated by M. This is an infinite
set. We define the mapping fst : H — X and Ist : H — X as follows:

fst(h(z,a,y)) = if (z,a,y) € Ry

{ fst(o(mi,mg)) = fst(mq) if my € H,mg € H
Ist(h(z,a,y)) =y if (z,a,y) € Ry

{ Ist(o(mi1,m2)) = lst(mg) if mqy € H,ma € H

We consider a path d = ([z1,...,Zns1],[a1,. .., a,]) € Path(S). This means that
(zj,a;,7;41) € Ro for each j € {1,...,n}. We define the sequence {(HZ,U?)} x>0,
where Hg C H and U,‘j : Hg — Ay, as follows:

{ H = {h(zj,a5,2541) [ =1,...,n}
U§ : Hf — Ao, Ug(h(x;, a5, x41)) = a;
HI?H = H,f U {o(wy,ws) | wi,ws € Hg,lst( 1

Ul (w) = Ul(w) for we Hf
Uiy (o(wr, ws)) = 0(U(wr), Ui (ws)) if o(wi,wa) € HYfy, \ H
We consider the set H"* = (J;c pasn(s) H(d) and the elements of this set are named
useful elements for the inference process of S.
If d € Path(S) then we can write

) = | B
k>0
where E§ = Hf and Eff, | = Hi', | \ H{ for k > 0. Moreover, we can relieve the
following property

El = {o(wi,w2) | wi € BY,wy € HY, Qp(wy, w2)} U
{o(w1,ws) | wo € B, w1 € HE, Qp(wy,ws)} (26)
where Qp (w1, ws) represents the condition
Ist(wy) = fst(wa), (U (w1), Ud(wy)) € A

Proposition 4.1. Let be m = max{|u| | u € A}. If d € Path(S) then E{ =0 for
every k > m.

Proof. We prove first that E¢ = (). Suppose by contrary, that E¢ # (). Take an
element w € EY. We use the extractive mappings f of S ([3]). From Proposition 3.4
proved in [3] we have f(w) = ([z1,...,zs],u) € Cp N ASP(S). From Proposition 3.1
we obtain m + 2 < n. But |u| = n — 1, therefore |u| > m + 1. From f(w) € ASP(S)
we have u € A. This fact is not possible because m = maz{|u| | v € A}. Now from

(26) we obtain E¢ | = E4 ,=...=0. O

Consider a path d = ([z1,...,Zn+1), [@1, ..., an]) € Path(S). For 1 <i<j<n+1
the path di = ([zi,...,2;],[a;...,a;-1]) is a subpath of d. We write in this case
di, < d. We denote by SPath(d) the set of all subpaths of the path d. This relation
satisfies the following properties:

e d < d for every d € Path(S)

o If d1 S] d2 and d2 S] d1 then dl = d2.

o If dl Sl d2 and d2 S] dg then dl S] d3.

It follows that (Path(S), <) is a partial ordered set.
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Proposition 4.2. If p < d then for every k > 0:

EY CEY

Ul (w) = UH(w) for every w € EY
Proof. Obviously Ef C E¢ and U§(w) = U (w) for every w € Ef. Suppose that for
every k € {0,...,n} we have EY C E¢ and Ul (w) = U (w) for every w € EY}. Take
w € B}, There are wi € Ef and wy € |Jj_y EY such that w = o(wi,ws), Ist(w1) =
fst(wz) and O(UP(wy), UP(w3)) € A. By the inductive assumption we have w; € E¢,
we € B4, UP(wy) = Ud(wy) and UP(wq) = Ul(wy). Thus O(Ul(w), Ul(ws)) € A,
therefore w = o(wi,w2) € EZ, ;. Similarly we proceed for the case we € EE and
wy € U?:o E¥. We have also U}, (w) = 0(U}(w1), Uk (w2)) = (UL (w1), Uk (w2)) =
Uffﬂ(w). O
Definition 4.1. For p = ([z1,...,2Zn11],u) € ASP(S) we denote py = ([z1,...,
Tn1], trace(u)). Consider d € Path(S). We denote

ASP(d) = {p € ASP(S) | pi < d}
ACC(d) = {p | p € ASP(d)}

The set of all mazimal elements of the partial algebra (ACC(d), <) is denoted by
MAX,(d).

0(a,b)
R iy : N
¢ 0(a,b
EN o
0(c,0(a,b))

FI1GURE 3. A part of a #-schema

In order to exemplify these concepts we consider the path d = ([x1, 22, 23, 24, Y1,
Y2, 93], [a, a,b, ¢, a, b)) represented in Figure 3. For this case we have

MAXa(d) = {([1'17.7;2], [CLD7 ([$27x3,$4], [CL, b])7 ([3347y1a92ay3]7 [Ca a, bD}

If we denote by di, ds and ds the elements of M AX,(d) we observe the following

properties:

(1) B = {h(z1,a,22)}; B =0 for k > 1;

(2) Eg2 = {h(xo,a,x3), h(x3,b,24)}; Efz = {o(h(za,a,x3), h(x3,b,24)) }; E,Zb =0
for k > 2;

(3) Egs = {h(l‘4, ¢, yl)a h(ylv a, ZJ2), h’(yQa bv y3)}; Etli3 = {U(h(ylv a, yZ)v h’(yQa bv yS))};
ESS = {o(h(z4,c,11),0(h(y1,a,y2), h(y2,b,y3))) }; E,’f’ = for k > 3;

(4) Bl = El* UE UE® for k > 0.

The last property is not a particular one. This is stated in the next proposition.

Proposition 4.3. If d € Path(S) then for every k > 0 we have

El= |J E! (27)
pEMAX,(d)
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Proof. 1f p € M AX,(d) then p < d. Applying Proposition 4.2 we obtain EY C E{ for
every k > 0. It follows that
U ELcE (28)
pEMAX ,(d)
We prove now the following property P(k): if w € E{ then there is p € M AX,(d)

such that w € E}.
If w = h(z,a,y) € EY then we have two cases:
o ([,].[a]) € MAX,(d)
In this case we take p = ([z,y],[a]). We obtain w € E}.
o ([2,y], [a]) ¢ MAX,(d)
In this case there is d; = ([x1, ..., Tnt1],u) € ASP(S) such that ([z,y], [a]) <p1,
where p1 = ([z1,...,%ny1], trace(u)). We can suppose that p1 € MAX,(d)
because otherwise we reiterate this procedure. This situation can not be iterated
infinitely times because the set SPath(d) is a finite set. We have w € Ef*.
It follows that P(0) is true. Consider an element w € E¢ for some k > 1. There are
wy € E,‘j_l and wy € Uf;é E]‘-l such that w = (w1, ws) or w = o(we,w;1). Suppose
we have the first case, the second case is discussed in a similar manner. We apply the
inductive assumption. There is p; € M AX,(d) such that w, € E,’;l_l. There is also
p2 € MAX,(d) such that ws € E;”, where j € {0,...,k —1}. It follows that p; = ps
and w € EY'. Thus the property P(k) is true and from this property we deduce that

Bc | B (29)
PEMAX,(d)
Now, from (28) and (29) we deduce (27). O

Proposition 4.4. Let be m = maxz{|u| | u € A}. If p € ASP(S) then H* = H'_,
for every k > m. Moreover, H"® is a finite set:

H" = O U Ep (30)

k=0 pec ASP(S)
Proof. By Proposition 4.1 we have E}* = () for every k > m. It follows that for k > m

: P _ | [k Pt _ | m—1 ppe _ pype
we can write Hy' = U;_, E}' = Uj— E}' = Hy,_;.

We prove by double inclusion the following equality:

U m- U Us )

pEASP(S) dePath(S) j=0

Take w € U,casp(s) Ei'- Thereisp € ASP(S) such that w € E}*. But p; € Path(S)

therefore w € Uye patn(s) U?:o E?. So we proved the inclusion

k
U e U Us (32)
pEASP(S) dePath(S) j=0

We prove now the converse inclusion. Take w € Uz parn(s) U?:o E?. There is d €

Path(S) such that w € U?:o E;-i. It follows that there is j € {0,...,k} such that
w € E;-i. By Proposition 4.3 we have E;-i = UpGMAXa(d) Ef, therefore there is p €
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MAX,(d) such that w € EY. From Definition 4.1 we deduce that there is ¢ € ASP(S)
such that p = ¢, therefore w € UpEASP(S) E?*. Thus we have the inclusion

k
U =2 U UE (33)

pEASP(S) dePath(S) j=0
Now, from (32) and (33) we obtain (31). From Proposition 4.1 we have E{ = ()
m—1 ¢ m—1 k
for every k > m. It follows that ULy Upeasrs) Bb' = Uico Uaeparnisy Uj=o B
= H"s. Based on (30) and Corollary 3.1 we deduce that H"“ is a finite set. O

5. Conclusions

In this paper we discussed the set ASP(S) of all accepted structured paths of S, we
organize this set as a partial ordered set and we discussed the maximal elements of this
algebra. The results presented in this paper can be considered as closely related by
the results presented in [3], where a revised formal computation in a semantic schema
based on the elements of H"* is considered. The main results can be summarized as
follows: the set ASP(S) is a finite one even if the set STR(S) is an infinite set; the
maximal elements of ASP(S) are fully implied to compute the elements of the set
H“$; the new formal computation, as was described in [3], is based on the elements
of H"*#, which is a finite one. In a future paper we will discuss the new computational
aspects and we will apply it to a master-slave systems of semantic schemas.
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