
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 38(4), 2011, Pages 50–62
ISSN: 1223-6934, Online 2246-9958

Rough Sets and Gaussian Mixture Model in Medical Image
Diagnosis

Anca Loredana Ion

Abstract. This paper proposes methods for modeling the content of medical images to help
physicians in diagnosing. The Gaussian mixture model is used for medical image segmentation,
while the rough set theory is a powerful approach that permits the searching for patterns in
medical images using the minimal length principles. Searching for models with small size is
performed by means of many different kinds of reducts that generate the decision rules capable
for identifying the medical diagnosis.
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1. Introduction

In the medical domain, the physicians have to make feasible judgments on the diag-
noses of patients by analyzing images offered by different technologies like endoscopy,
radiology, magnetic resonance, etc. Therefore, strong methods are needed to sup-
port the physicians in making diagnosis decisions by dividing patients into different
categories of risk.

Medical image content representation and retrieval are playing an increasing role in
a large sphere of applications within the clinical process [1]. For the clinical decision-
making process it can be beneficial and important to find other images of the same
modality, the same anatomic region or the same disease [2]. Thus, a lot of researches
were developed to investigate automated techniques for extracting the low-level fea-
tures that could generate semantic descriptions of the medical image content. Among
these techniques are the methods based on machine learning that manually anno-
tate the test image datasets. Algorithms that recognize specific organs with different
structures of the medical images are studied in [5]. FIRE application [4] and IRMA
[7] use the sub-symbolic processing of images with good results. Also, in the med-
ical domain, taxonomies, thesaurus and ontology were developed, varying from the
general target, like UMLS [3], SNOMED CT [10], to the specific ones, like FMA [8]
for anatomy, RadLex [6] for radiology, and AIM [9] a project developed at Stanford
University.

In this paper, we exploit the opportunities of the medical domain, rich in formal
representation of knowledge, the rough sets and the statistical framework for devel-
oping methods with automatic diagnosis capacity. So, the objective of this work is to
improve the performance of existing approaches in the diagnosing of medical images.
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The first step of this complex study is the representation of medical images as a
collection of homogenous non-overlapping regions. To resolve this task, the Gaussian
mixture model is used in the unsupervised pixels classification of an image, due to its
capability of resolving the uncertainty of the mixed pixels [2]. The success of methods
for medical image analysis depends on the quality of segmentation process.

The second step is the discovering of patterns from medical images for establish-
ing their diagnosis, adapting the rough set approach to our need. Among methods
proposed for modeling the imperfect knowledge [17], the rough set theory is an in-
teresting attempt to solve this problem. This theory is based on an assumption that
objects are recognized by partial information about them and some objects can be
indiscernible. From this fact, it follows that some sets cannot be exactly described by
the available information about objects [16], [18]. The methods based on rough set
theory have an important utilization in many real life applications. Among the rough
set based software systems are ROSETTA [19], RSES [20], and LERS [21], which have
been applied to knowledge discover problems.

2. Image Segmentation and Feature Computation

The diagnosis of medical images is directly related to the visual features (colour,
texture, shape, position, dimension, etc.), because these attributes capture the infor-
mation about the semantic meaning. The computation of the low-level features of
sick regions involve two steps:
• image segmentation, which takes into account the color feature and produces

homogeneous color regions,
• the computation of mathematical descriptor as texture, shape, dimension, posi-

tion of each detected region.

2.1. Image segmentation. To resolve the problem of image segmentation, each
region is represented as a parameterized Gauss distribution. A Gaussian mixture
model is a powerful framework that estimates the probability density function of a
variable and was widely used in statistic, image and signal processing, physic, biology,
finance, web information extraction, etc.

The image is modeled as a mixture of Gaussian distribution, where an individual
distribution is used to specify a region of pixels. Thus, the image is modeled as a
”random field” [12], being composed from two collections of two random variables Y
and X. The values of the first variable correspond to the classes/regions, while the
values of the second variables correspond to ”measurements” or ”observations” of the
pixels. The problem of segmentation consists in determining Y, knowing X.

In our case, the image is represented in the RGB color space. Then an image pixel,
xn, is represented as a colour vector of dimension m, where m = 3. If we want to
attach the pixel, xn, to one of the clusters/components z1, .., zk, we have to determine
the conditional probability p(zk|xn).

In conformity with Bayes theorem [14], the conditional probability is defined as in
equation 1:

p(zk|xn) =
p(xn|zk)p(zk)

p(xn)
(1)

The pixel xn could be in one of clusters, having the initial probabilities: w1 =
p(z1), w2 = p(z2), .., wk = p(zk). The conditional probability of xn, for a given zk is
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modeled by a Gaussian distribution G parameterized by two parameters Vk and µk

as in equation 2:
p(xn|zk) = G(xn|µk, Vk) (2)

In conformity with the product rule [14], the joint probability is defined as in equation
3:

p(xn, zk) = p(zk|xn)p(xn) (3)

In conformity with the sum rule [14], the marginal probability is defined as in equation
4:

p(xn) =
∑
zk

p(xn, zk) =
∑
zk

p(zk|xn)p(xn) =
∑
zk

p(zk)p(xn|zk) (4)

Thus, from Equations 2 and 4, the mixture density function is defined as in equation
5:

p(xn) =
∑
zk

p(zk)p(xn|zk) =
K∑

k=1

wkG(xn|µk, Vk), (5)

where, µk is the mean of dimension m and Vk is the covariance matrix of dimension
m×m of the Gaussian component.

Suppose the image is a data set of pixels X = {x1.., xN}, then the likelihood
function is defined as in equation 6:

p(X|w, µ, V ) = ΠN
n=1

K∑

k=1

wkG(xn|µk, Vk) (6)

where

G(xn|µk, Vk) =
1

(2π)m/2

1
|Vk|1/2

· exp(−1
2
(xn − µk)T V −1

k (xn − µk)), xn ∈ X (7)

The function p(X|w, µ, V ) has to be maximized using the expectation-maximization
(EM) algorithm. An advantage of expectation-maximization method is its capability
for handling uncertainties due to mixed pixels [11], [14].

In the next steps, the EM algorithm for the Gaussian mixture model is described:
Step 1: Initialize the means µk, co-variances Vk and evaluate initial value of likeli-

hood function.
Step 2: E-step: Evaluate the conditional probability of zk, p(zk|xn), for a given

xn ∈ X, as in equation 8:

γ(znk) = p(znk|xn) =
wkG(xn|µk, Vk)∑K

k=1 wkG(xn|µk, Vk)
(8)

Step 3: M-step: Re-estimate parameters as in equations 9, 10, 11:

µnew
k =

1
Nk

N∑
n=1

γ(znk)xn (9)

V new
k =

1
Nk

N∑
n−1

γ(znk)(xn − µnew
k )(xn − µnew

k )T (10)

wnew
k =

Nk

N
; Nk =

N∑
n=1

γ(znk) (11)
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Step 4: Evaluate the log-likelihood from eqaution 12 and check for convergence of
either the parameters or the log likelihood. If the convergence criterion is not satisfied,
return to step 2:

ln(p(X|w, µ, V )) =
N∑

n=1

ln

K∑

k=1

wkG(xn|µk, Vk) (12)

2.2. Kullback-Leibler (KL) divergence. In the GMM-KL framework, the dis-
tance measure between two images is defined as a distance measure between the two
Gaussian mixture distributions GMMi and GMMj obtained from the images, as in
Equation(13) [11], [12]:

D(GMMi, GMMj) =
∫

GMMi(x)log
GMMi(x)
GMMj(x)

dx (13)

If GMMi and GMMj are two multivariate Gaussian distributions parameterized by
their means, µi and µj and by their covariance matrices, Vi and Vj , the equation leads
to a closed form expression of the KL distance as in (14) [2]:

D(GMMi, GMMj) =
1
2
log

|Vj |
|Vi| +

1
2
tr(V −1

j Vi) +
1
2
(µj −µj)T V −1

j (µj −µj)− n

2
(14)

2.3. Hierarchical clustering. Although Gaussian mixture models are used in many
research domains from image processing to machine learning, this statistical mixture
modeling is usually complex and need to be simplified [13], [14].

In this paper, we present a simplification method based on a hierarchical cluster-
ing algorithm. This algorithm provides a hierarchical representation of the initial
Gaussian mixture model and experiments on medical image processing are reported.
Given a set of k Gaussian distribution GMM1, .., GMMk to be reduced and a k × k
similarity matrix, the basic process of hierarchical cluster is this:

1. Start by assigning each Gaussian distribution to a cluster, so we now have
N clusters, each containing just one item. The distances (similarities) between the
clusters are the same as the distances (similarities) between the items they contain.

2. Find the closest (most similar) pair of clusters and merge them into a single
cluster, so that now you have one cluster less.

3. Compute distances (similarities) between the new cluster and each of the old
clusters D(GMMi, GMMj).

4. Repeat steps 2 and 3 until all items are clustered into k cluster.
Step 3 is done using single-linkage clustering, in which the distance between one

cluster and another cluster is equal to the shortest distance from any member of one
cluster to any member of the other cluster.

2.4. Segmentation results. The image collections used in our experiments were
taken from free repositories [27], [28]. The experiments were carried out on images di-
agnosed with: duodenal ulcer, gastric ulcer, gastric cancer, esophagitis, etc. Through
our experiments, we considered 4 components for the mixture model to observe the
results.

In this section, we present experiments realized on images diagnosed with duodenal
ulcer and colon cancer. The duodenal ulcers can come in different shapes, sizes, and
textures [28], increasing the complexity to diagnose them. For example, the image
from Figure 1(a) shows a single, white-based ulcer. The segmentation results on this
image can be observed in Figure 1(b).
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                                      (a)                                  (b) 

 
Figure 1. Results of segmentation on an image diagnosed with duo-
denal ulcer: (a) Original image; (b) Image segmented with 4 regions.

  

 Figure 2. Regions of interest extracted from the image segmented
with 4 components.

The interested regions of the duodenal ulcer image segmented into 4 components
are observed in Figure 2. There are only 2 extracted regions of interest in different
hues, because the mixture model was reduced to 4 components.

The image from Figure 3(a) shows an advanced cancer in the right colon [28] and
the sick region come in different yellow hues. The segmentation results on this image
can be observed in Figure 3(b).

The interested region of the colon cancer image segmented into 4 components are
observed in Figure 4.

By analyzing the results of medical images segmentation using the Gaussian mix-
ture model, a good delimitation of regions of interest can be observed.

2.5. Low-level features computation. After the detection of image regions, the
following visual features of each region are computed [23]:
• The colour, which is represented in the RGB colour space and it is the mean of

an image region/component(see Section 2).
• The spatial coherency, which measures the spatial compactness of the pixels of

the same colour.
• A seven-dimension vector (maximum probability, energy, entropy, contrast, clus-

ter shade, cluster prominence, correlation), which represents the texture charac-
teristics.
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                                                                                        (a)                              (b) 

 

 
Figure 3. Results of segmentation on an image diagnosed with colon
cancer: (a) Original image; (b) Image segmented with 4 regions.

 

Figure 4. Regions of interest extracted from the image segmented
with 4 components.

• The region dimension descriptor, which represents the number of pixels from
region.

• The spatial information which is represented by the centroid coordinates of the
region and by minimum bounded rectangle.

• A two-dimensional vector (eccentricity and compactness), which represents the
shape feature.

2.6. Low-Level Feature Discreteness. The visual features of sick regions were
computed over intervals, using the concept of semantic indicators, which are visual el-
ements: the colour (colour-light-red, etc.), spatial coherency (spatial coherency-weak,
spatial coherency-medium, spatial coherency-strong), texture (energy-small, energy-
medium, energy-big), dimension (dimension-small, dimension-medium, dimension-
big), position (vertical-upper, vertical-center, vertical-bottom, horizontal-upper, etc.),
shape (eccentricity- small, compactness-small, etc.). The values of each semantic
descriptor are mapped to a value domain, which corresponds to the mathematical
descriptor [22], [23].
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A medical image is represented by means of the terms figure(ListofRegions), where
ListofRegions is a list of images’ sick regions. The term region(ListofDescriptors) is
used for region representation, where the argument is a list of terms used to specify
the semantic indicators. The term used to specify the semantic indicators is of form
descriptor(DescriptorName, DescriptorValue).

The mapping between the values of low-level (mathematical) descriptors and the
values of semantic indicators is based on experiments effectuated on images from
different categories and the following facts are used: mappingDescriptor(Name, Se-
manticValue, ListValues). The argument Name is the semantic indicator name, Se-
manticValue is the value of the semantic indicator, ListValues represents a list of
mathematical values and closed intervals, described by the following terms: inter-
val(InferiorLimit, SuperiorLimit) [24].

3. Modeling Image Diagnosis using Rough Sets

3.1. Rough sets foundations. Rough sets theory is an intelligent mathematical
tool and it is based on the concept of approximation space [16], [17], [25]. In this
section, we recall some basic definitions from literature [16], [17], [25], [18].

Let U denote a finite non-empty set of objects (sick image regions) called the uni-
verse. Further, let A denote a finite non-empty set of attributes. For every attribute
a ∈ A , there is a function a : U → Va, where Va is the set of all possible values of
a, called the domain of a. A pair IS = (U,A) is an information system. Usually,
the specification of an information system can be presented in tabular form. Each
subset of attributes B ⊆ A determines a binary B-indiscernibility relation IND(B)
consisting of pairs of objects indiscernible with respect to attributes from B like in
equation 15:

IND(B) = {(x, y) ∈ U × U : ∀a ∈ B, a(x) = a(y)} (15)
IND(B) is an equivalence relation and determines a partition of U , which is de-

noted by U/IND(B). The set of objects indiscernible with an object x ∈ U with
respect to the attribute set, B, is denoted by IB(x) and is called B-indiscernibility
class:

IB = {y ∈ U : (x, y) ∈ IND(B)} (16)

U/IND(B) = {IB(x) : x ∈ U} (17)
It is said that a pair ASB = (U, IND(B)) is an approximation space for the

information system IS = (U,A), where B ⊆ A .
The information system from Table 1 represents the sick regions of images from

different diagnoses described in terms of semantic indicators values. For simplicity we
consider only two semantic indicators as attributes, namely the colour and texture-
entropy. So, our information systems is IS = (U,B), where U = {R1, R2, R3, R4, R5,
R6, R7, R8, R9, R10, R11} and B = {colour, texture − entropy}. Some examples of
partitions defined by indiscernibility relations for the information system in Table 1
are given in Table 2.

In rough sets theory, the approximations of sets are introduced to deal with incon-
sistency. A rough set approximates traditional sets using a pair of sets named the
lower and upper approximations of the set. Let W = {w1, .., wn} be the elements of
the approximation space ASB = (U, IND(B)). We want to represent X, a subset
of U , using attribute subset B. In general, X cannot be expressed exactly, because
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Table 1. Medical Information System.

U Colour Texture-entropy Diagnosis
R1 light-red Small gastric-ulcer
R2 light-red Small gastric-ulcer
R3 light-red Small gastric-ulcer
R4 light-red Big gastric-ulcer
R5 light-yellow Big gastric-ulcer
R6 light-yellow Medium duodenal-ulcer
R7 light-yellow Medium duodenal-ulcer
R8 medium-yellow Small duodenal-ulcer
R9 medium-yellow Small duodenal-ulcer
R10 dark-yellow Small duodenal-ulcer
R11 dark-yellow Small duodenal-ulcer

Table 2. Partitions Defined by Indiscernibility Relations.

IND(B) Partitions U/IND(B)
IND(Colour) R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11

IND(Colour,Texture-entropy) R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11

the set may include and exclude objects which are indistinguishable on the basis of
attributes B, so we could define X using the lower and upper approximation.

The B-lower approximation X, BX, is the union of all equivalence classes in
IND(B) which are contained by the target set X. The lower approximation of X is
called the positive region of X and is denoted POS(X).

BX =
⋃
{wi|wi ⊆ X} (18)

The B-upper approximation BXis the union of all equivalence classes in IND(B)
which have non-empty intersection with the target set X.

BX =
⋃
{wi|wi

⋂
X 6= ∅} (19)

Example: Let X = {R1, R2, R3, R4, R5, R6, R7, R8} be the subset of U that we
wish to be represented by the attributes set B = {colour, texture−entropy}. We can
approximate X, by computing its B-lower approximation and B-upper approximation.
So, BX = {{R1, R2, R3}, {R4}, {R5}, {R6, R7}} and BX = {{R1, R2, R3}, {R4}, {R5},
{R6, R7}, {R8, R9}}. The tuple (BX, BX) composed of the lower and upper approx-
imation is called a rough set; thus, a rough set is composed of two crisp sets, one
representing a lower boundary of the target set X, and the other representing an
upper boundary of the target set X. The accuracy of a rough set is defined as:
cardinality(BX)/cardinality(BX). If the accuracy is equal to 1, then the approxi-
mation is perfect.

3.2. Dispensable features, reducts and core. An important notion used in
rough set theory is the decision table. Pawlak [16], [17] gives also a formal definition
of a decision table: an information system with distinguished conditional attributes
and decision attribute is called a decision table. So, a tuple DT = (U,C,D) is a
decision table. The attributes C = {colour, texture − entropy} are called condi-
tional attributes, instead D = {diagnosis} is called decision attribute. The classes
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 Figure 5. The discernibility matrix.

U/IND(C) and U/IND(D) are called condition and decision classes, respectively.
The C-Positive region of D is given by (20):

POSC(D) =
⋃

X∈IND(D)

CX (20)

Let c ∈ C a feature. It is said that c is dispensable in the decision table DT, if
POSC−{c}(D) = POSC(D), otherwise the feature c is called indispensable in DT.
If c is an indispensable feature, deleting it from DT makes it to be inconsistent.
A set of features R in C is called a reduct, if DT’= (U, R, D) is independent and
POSR(D) = POSC(D). In other words, a reduct is the minimal feature subset
preserving the above condition. The set of all features indispensable in C or the set
of all reducts of C is denoted by CORE(C).

3.3. Producing rules by discernibility matrix. Decision rules are generated
from reducts. The rule generation algorithm has the flowing steps:

-construct the decision table and discernibility matrix,
-obtain the discernibility function and the prime implicants,
-apply the Boolean algebra rules,
-compute the reducts,
-produce the rules using the reducts.
Firstly, we transform the decision table into discernibility matrix to compute the

reducts. Let DT = (U,C, D) be the decision table, with U = {R1, R2, R3, R4, R5, R6,
R7, R8, R9, R10, R11}. By a discernibility matrix of DT, denoted DM(T), we will mean
n× n matrix defined as in (21):

m
a(Ri)
ij = {(a ∈ C : a(Ri) 6= a(Rj))and(d(Ri) 6= d(Rj))} (21)

where i, j = 1, 2..11 We construct the discernibility matrix, DM(DT) as in Figure 5,
where the colour and texture-entropy are denoted by C, respectively T. The items
within each cell are aggregated disjunctively, and the individual cells are then aggre-
gated conjunctively.
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To compute the reducts of the discernibility matrix we use the following theo-
rems that demonstrate equivalence between reducts and prime implicants of suitable
Boolean functions [18], [25]. For every object Ri ∈ U , the following Boolean function
is defined:

gRi
(Colour, Texture) =

∧

Rj∈U

∨
a∈mij

a (22)

The following conditions are equivalent [18]:
1. {ai1, .., ain} is a reduct for the object Ri, i = 1..n.
2. ai1

∧
ai2

∧
..

∧
ain is a prime implicant of the Boolean function gRi

.
Next, from each decision matrix we form a set of Boolean expressions, one expres-

sion for each row of the matrix.
For the gastric ulcer we obtain the following rules based on the table reducts:
1. (Clight−red

∨
T small)

∧
(Clight−red)

2. (Clight−red
∨

T big)
∧

(Clight−red)
3. (T big)

∧
(Clight−yellow

∨
T big)

For the duodenal ulcer we obtain the following rules based on the table reducts:
1. (Clight−yellow

∨
Tmedium)

∧
Tmedium

2. (Cmedium−yellow)
∧

(Cmedium−yellow
∨

T small)
3. (Cdark−yellow)

∧
(Cdark−yellow

∨
T small)

On Boolean expression the absorption Boolean algebra rule is applied. The absorp-
tion law is an identity linking a pair of binary operations. For example: a

∨
(a

∧
b) =

a
∧

(a
∨

b) = a.
By applying the absorption rule on the prime implicants, the following rules are

generated:
Rule 1: (Colour = light− red) → gastric ulcer;
Rule 2: (Texture− entropy = big) → gastric ulcer;
Rule 3: (Texture− entropy = medium) → duodenal ulcer;
Rule 4: (Colour = dark − yellow) → duodenal ulcer.

3.4. Evaluation of decision rules and classification of new images. Decision
rules can be evaluated along at least two dimensions: performance (prediction) and
explanatory features (description). The performance estimates how well the rules
classify new images. The explanatory feature estimates how interpretable the rules
are [18].

Let be our decision table DT = (U,C,D). We use the set-theoretical interpretation
of rules that relates a rule to data sets from which the rule is discovered. Also, using
the cardinalities of sets, we may define the support (s) and accuracy (a) of a decision
rule as in equations 23 and and 24:

s(rule) = cardinality(featureSet
⋂

diagnosisSet) (23)

a(rule) =
cardinality(featureSet

⋂
diagnosisSet)

cardinality(featureSet)
(24)

where the set featureSet
⋂

diagnosisSet is composed from image regions which have
a certain featureSet and a certain diagnosis. In term of set theory, the accuracy is
the degree in which the set of features rule is included in the set of diagnosis rule.

The coverage(c) of a rule is defined by:

c(rule) =
cardinality(featureSet

⋂
diagnosisSet)

cardinality(diagnosisSet)
(25)
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Table 3. Results recorded for different diagnoses

Diagnosis Accuracy(%) Specificity(%)
Duodenal Ulcer 96.4 95.2
Gastric Ulcer 96.7 95.4

Gastric Cancer 95.9 93
Rectocolitis 96.4 95.3

The coverage of a rule is the degree in which the set of diagnosis rule is included
in the features set of rule.

For the generated Rule 1, the support is 4, accuracy is 4/4 and coverage is 4/5.
Ryszard et al [26] suggests that high accuracy and coverage are requirements of deci-
sion rules.

After rule generation the process of image classification includes the following steps:
- collect all the decision rules in a classifier,
- compute for each rule the support, accuracy and coverage,
- eliminate the rules with the support less than the minimum defined support,
- order the rules by accuracy, than by coverage,
- if an image matches more rules select the first one: an image matches a rule, if

all the semantic indicators, which appear in the body of the rule, are included in the
characteristics of the image regions.

4. Experiments

The image collections used in our experiments were taken from free repositories
on the Internet [27],[28]. Two image databases are used for learning and diagnosing
process. The database used to learn the correlations between images and digestive
diagnoses, contains 200 images and is categorized into the following diagnoses: duo-
denal ulcer, gastric ulcer, gastric cancer, esophagitis, and rectocolitis. The system
learns each concept by submitting about 20 images per diagnosis. After classifica-
tion, we counted: the number of true positives (images correctly diagnosed with a
given diagnosis); the number of false positives (images incorrectly diagnosed with a
given diagnosis); the number of true negatives (images correctly diagnosed with a
different diagnosis); the number of false negatives (images incorrectly diagnosed with
a different diagnosis). Based on this information we compute:
• the accuracy of classification, which measures the proportion of true results,
• the specificity of classification, which measures the capability of diagnosis rules

not to miss the correct images, and not to diagnose images with a different
diagnosis.

For the database diagnoses, the counted results are presented in Table 3, where we
can observe that the sets of rules are very specific and with good accuracy.

5. Conclusion

Methods proposed and developed in this study could assist physicians by doing
automatic diagnosing based on visual content of medical images. An important im-
provement of this paper is in the generation of rules with very high specificity using
the Gaussian mixture model and rough set theory. We performed experiments on a
medical image database, which includes endoscopies of the digestive apparatus.
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