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On the second derivative of the sums of trigonometric series

Xhevat Z. Krasniqi

Abstract. Some representations for the second derivatives of the sums of the cosine or sine
trigonometric series are found in terms of the second differences of their coefficients. If for the
cosine series we denote its sum by f(x), then it is proved that under certain conditions the
function f ′(x)−(a1−2a2)x is concave or convex on (0, π], which demonstrates an adherence of
those representations. Also, we have obtained some estimates of the integrals of the absolute
values of those derivatives in terms of the coefficients of such series.
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1. Introduction

Let us consider the trigonometric series

a0

2
+

∞∑

k=1

ak cos kx (1)

and ∞∑

k=1

ak sin kx, (2)

whose coefficients tend to zero, in other words

lim
k→∞

ak = 0. (3)

A numerical sequence {ak} is said to be quasi-convex, if
∞∑

k=1

k|42ak| < ∞, (4)

where 4ak = ak − ak+1, 42ak = 4 (4ak).
It is a well-known fact that conditions (3) and (4) are satisfied if and only if the

sequence {ak} can be expressed as a difference of two convex sequences (42ak ≥ 0)
that tend to zero (see [6], paragraph 5.7.1). Moreover, it is known that the series
(1) and (2) with convex coefficients that tend to zero, converge uniformly on each
interval [ε, π], ε > 0, and their sums are continuously differentiable on (0, π] (see [6],
paragraph 5.7.6). So, under conditions (3) and (4), the series (1) and (2) possess
these characteristics too. We shall denote by f(x) and g(x) the sums of the series (1)
and (2), respectively.

S. A. Telyakovskĭı [4] has investigated the estimates of integrals of |f ′(x)| and
|g′(x)| on intervals that are inside the interval (0, π]. Firstly, he studied the aspects
of how the integrals of |f ′(x)| and |g′(x)| increase on intervals [ε, π] when ε → +0, if
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these functions are integrable over their period, and secondly he studied the aspects
of how these integrals decrease on intervals [0, ε] when ε → +0, if these functions are
integrable over their period. In fact, he studied these integrals over the intervals of
the form [π/(m + 1), π/`], where 1 ≤ ` ≤ m, and `,m ∈ N. Then putting ` = 1 and
letting m →∞ respectively, he obtained the estimates mentioned above.

So far, the results of Telyakovskĭı are extended in two main directions: by Gem-
barskaya has been extended for functions of two variables defined by trigonometric
cosine series obtaining some estimates for their variations in the Hardy–Vitali sense
(see [2]), and also by present author has been extended those results using the concept
of the quasi-convex sequences of higher order (see [3]).

We say that {ak} is a quasi-convex sequence of order r, r = 1, 2, . . . , if it tends to
zero and satisfies condition ∞∑

k=1

kr|4r+1ak| < ∞, (5)

where 4rak = 4 (4r−1ak

)
.

Note that for r = 1 the concept of quasi-convexity of order r reduces to the standard
concept of quasi-convexity of a sequence.

In this paper we are concerned regarding to the following question: Under what
conditions the second derivatives of the sums f(x) and g(x) can be represented in a
similar form as those of Telyakovskĭı ? In order to give an answer for this question,
which is the main aim of this paper, we have deduced that conditions (3) and

∞∑

k=1

k3|42ak| < ∞, (6)

are sufficient conditions so that the second derivatives of the sums f(x) and g(x) are
continuous functions on the interval (0, π]. It should be noted here that (5) does not
imply (6), but the converse obviously is true (r = 1).

Throughout this paper O−symbol contain positive constants, generally speaking,
different in different estimates.

The rest of the paper is organized as follows. Section 2, contains some helpful
lemmas that are needed to prove main results. In section 3 we have proved the main
results, until we finalize with Section 4, where we have verified a few corollaries.

2. Auxiliary Lemmas

Till to the end of the paper we denote

wk := k2ak, (k = 1, 2, . . . ) .

Lemma 2.1. Let ak be real numbers such that

4ak → 0 as k →∞. (7)

If the condition
∞∑

k=1

k3|42ak| < ∞ (8)

holds, then the condition
∞∑

k=1

|42wk| < ∞ (9)

holds as well.
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Proof. We have

4wk = wk − wk+1

= k2ak − (k + 1)2ak+1

= k24ak − (2k + 1)ak+1, (10)

and

42wk = k24ak − (2k + 1)ak+1 −
[
(k + 1)24ak+1 − (2k + 3)ak+2

]

= k242ak − 2(2k + 1)4ak+1 + 2ak+2

= k242ak − 4k4ak+1 − 24ak+1 + 2ak+2.

Consequently, since 4ak → 0 then

∞∑

k=1

∣∣42wk

∣∣ ≤
∞∑

k=1

k2
∣∣42ak

∣∣ + 4
∞∑

k=1

k |4ak+1|

+2
∞∑

k=1

|4ak+1|+ 2
∞∑

k=1

|ak+2|

≤
∞∑

k=1

k2
∣∣42ak

∣∣ + 4
∞∑

k=1

k

∞∑

i=k+1

∣∣42ai

∣∣

+2
∞∑

k=1

k

∞∑

i=k+1

∣∣42ai

∣∣ + 2
∞∑

k=1

∞∑

i=k+2

|4ai|

≤ 19
∞∑

k=1

k2
∣∣42ak

∣∣ + 6
∞∑

k=1

k2 |4ak|

≤ 19
∞∑

k=1

k2
∣∣42ak

∣∣ + 6
∞∑

k=1

k2
∞∑

i=k

∣∣42ai

∣∣

= 19
∞∑

k=1

k2
∣∣42ak

∣∣ +
∞∑

k=1

k(k + 1)(2k + 1)
∣∣42ak

∣∣

≤ 19
∞∑

k=1

k3
∣∣42ak

∣∣ + 6
∞∑

k=1

k3
∣∣42ak

∣∣

≤ 25
∞∑

k=1

k3
∣∣42ak

∣∣ .

So (9) clearly implies (8). ¤

Lemma 2.2. Let ak be real numbers that satisfy conditions (3) and (6). Then

4wk = 4 (
k2ak

) → 0 as k →∞. (11)

Proof. We note that

∣∣k24ak

∣∣ =
∣∣∣∣k2

∞∑

i=k

(42ai

) ∣∣∣∣ ≤
∞∑

i=k

i3
∣∣42ai

∣∣ → 0 as k →∞, (12)
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and

|kak+1| =
∣∣∣∣k

∞∑

i=k+1

(4ai)
∣∣∣∣

≤
∞∑

i=k+1

(i− 1) |4ai|

=
∞∑

i=k+1

(i− 1)

∣∣∣∣∣∣

∞∑

j=i

(42aj

)
∣∣∣∣∣∣

≤
∞∑

i=k+1

(i− 1)
∞∑

j=i

∣∣42aj

∣∣

=
∞∑

j=k+1

∣∣42aj

∣∣
j∑

i=k+1

(i− 1)

≤
∞∑

j=k+1

(j − 1)(j − k)
∣∣42aj

∣∣

≤
∞∑

j=k+1

j3
∣∣42aj

∣∣ → 0 as k →∞.

Therefore, using (10) and the above estimates we immediately obtain (11). ¤

We pass now to the main results of the paper.

3. Main Results

We establish the following statement.

Theorem 3.1. If the coefficients of the series (1) satisfy conditions (3) and (6), then
for the second derivative of its sum the following equality holds

f ′′(x) = −
∞∑

k=0

42
(
k2ak

)
Fk(x), 0 < x ≤ π. (13)

Proof. Since the condition
∞∑

k=1

k3|42ak| < ∞ implies
∞∑

k=1

k|42ak| < ∞, then the

series (1) converges uniformly on [ε, π], ε > 0, therefore its Cesàro means

σn(f ; x) :=
a0

2
+

n∑

k=1

(
1− k

n + 1

)
ak cos kx

converge uniformly as well, on [ε, π].
Let us prove that σ′′n(f ; x) converges uniformly at f ′′(x) on [ε, π]. Indeed, we denote

βk :=
(

1− k

n + 1

)
wk, k = 0, 1, . . . , n + 1,

then

σ′′n(f ; x) = −β0

2
−

n∑

k=1

βk cos kx, (β0 = βn+1 = 0).
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Applying successively two times the summation by parts we obtain

σ′′n(f ; x) = −
n∑

k=0

4βkDk(x)

= −
n−1∑

k=0

42βkFk(x)−4βnFn(x)

= −
n−1∑

k=0

42βkFk(x)− n2

n + 1
anFn(x).

It is easily shown that

42βk =
(

1− k

n + 1

)
42wk +

2
n + 1

4wk+1, (k + 1 ≤ n),

therefore

σ′′n(f ; x) = −
n−1∑

k=0

42wkFk(x) + qn(x),

where

qn(x) =
1

n + 1

n−1∑

k=1

k42wkFk(x)

− 2
n + 1

n−1∑

k=0

4wk+1Fk(x)− n2

n + 1
anFn(x).

Since, by Lemma 2.1, the series
∞∑

k=0

|42wk| converges and Fk(x) ≤ C
x2 , where C is a

constant independent of k and x, then the series
∞∑

k=0

42wkFk(x)

converges uniformly on each interval [ε, π], ε > 0. So, our theorem will be proved if
we show that qn(x) uniformly tends to zero on [ε, π].

For x ∈ [ε, π], we have

|qn(x)| ≤ C

ε2

{
1

n + 1

n−1∑

k=1

k|42wk|+ 2
n + 1

n−1∑

k=0

|4wk+1|+ n|an|
}

.

Since
∞∑

k=0

|42wk| < ∞, then

1
n + 1

n−1∑

k=1

k|42wk| → 0, as n →∞.

This follows by standard arguments. For an arbitrary fixed N one has:

1
n + 1

n−1∑

k=1

k|42wk| ≤ 1
n + 1

N∑

k=1

k|42wk|+
∞∑

k=N+1

|42wk|.
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We choose, for a given ε > 0, a number N = N(ε) so that

∞∑

k=N+1

|42wk| < ε

2
.

So, for all sufficiently large n we obtain

1
n + 1

n−1∑

k=1

k|42wk| < ε.

Also, with help of Lemma 2.2 we obtain

2
n + 1

n−1∑

k=0

|4wk+1| → 0,

and as in the proof of the Lemma 2.2 we obtain

n|an| → 0, as n →∞,

which finished the proof of (13). ¤

Now we shall prove briefly a similar result regarding to the sine series. For x ∈ (0, π]
and k = 0, 1, 2, . . . , we denote

ϕk(x) := −1
2

cot
x

2
+

k∑

i=1

sin ix,

ψk(x) :=
k∑

i=0

ϕi(x) = − sin(k + 1)x
4 sin2 x

2

.

Theorem 3.2. If the coefficients of the series (2) satisfy conditions (3) and (6), then
for the second derivative of its sum the following equality holds

g′′(x) = −
∞∑

k=0

42
(
k2ak

)
ψk(x), 0 < x ≤ π.

Proof. Similarly, as in the proof of the Theorem 3.1, the series (2) converges uniformly
on [ε, π], ε > 0, therefore its Cesàro means

σn(g; x) :=
n∑

k=1

(
1− k

n + 1

)
ak sin kx

converge uniformly, as well, on (0, π].
Keeping same notations as in theorem 3.1, and applying two times the summation

by parts to the equality

σ′′n(g; x) = −
n∑

k=1

βk sin kx
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we obtain

σ′′n(g;x) = −
n−1∑

k=1

4βk

(
ϕk(x) +

1
2

cot
x

2

)
− βn

(
ϕn(x) +

1
2

cot
x

2

)

= β1ϕ0(x)−
n−1∑

k=1

4βkϕk(x)− βnϕn(x)

= −β0ϕ0(x) + β1ϕ0(x)−
n−1∑

k=1

4βkϕk(x)− βnϕn(x) + βn+1ϕn(x),

= −
n∑

k=0

4βkϕk(x), (β0 = βn+1 = 0),

= −
n−1∑

k=0

42βkψk(x)−4βnψn(x)

= −
n−1∑

k=0

[(
1− k

n + 1

)
42wk +

2
n + 1

4wk+1

]
ψk(x)− n2

n + 1
anψn(x)

= −
n−1∑

k=0

42wkψk(x) + pn(x),

where

pn(x) :=
1

n + 1

n−1∑

k=0

k42wkψk(x)− 2
n + 1

n−1∑

k=0

4wk+1ψk(x)− n2

n + 1
anψn(x).

Since ψk(x) ≤ C
x2 , (C is a constant independent of k and x), then repeating the

same reasoning as in the proof of Theorem 3.1 we can show that pn(x) → 0 as n →∞
(we omit the details). With this we have finished the proof of the theorem. ¤

We note that

42w0F0(x) = (−2a1 + 4a2) · 1
2

= −a1 + 2a2,

therefore (13) can be written as

f ′′(x)− a1 + 2a2 = −
∞∑

k=1

42
(
k2ak

)
Fk(x).

Since the functions Fk(x) are nonnegative for x ∈ (0, π], then the following corollary
is a direct result of theorem 3.1.

Corollary 3.1. Let the sequence {ak} satisfies conditions (3) and (6). Then
(1) If for all k = 1, 2, . . . ,

42
(
k2ak

) ≥ 0,

then the function
f ′(x)− (a1 − 2a2)x

is concave on (0, π].
(2) If for all k = 1, 2, . . . ,

42
(
k2ak

) ≤ 0,

then the function
f ′(x)− (a1 − 2a2)x
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is convex on (0, π].

From the above corollary we conclude that the results of this paper essentially
extend the results of Telyakovskĭı in the sense that until his results provide the mono-
tonicity condition of a function that involves the sum function of the cosine series,
our results provide the convexity or concavity condition of a function that involves
the first derivative of the sum function of the such series.

4. Local integrability

The next theorem gives an estimate of the integral of |f ′′(x)| on the intervals
[π/(m + 1), π/`], 1 ≤ ` ≤ m.

Theorem 4.1. Let the sequence {ak} satisfies conditions (3) and (6). Then
∫ π/`

π/(m+1)

|f ′′(x)|dx = O

(
m + 1− `

m

`−1∑

k=0

k + 1
`

|4 (
k2ak

) |
)

+ (14)

+O

( ∞∑

k=`

min(k + 1− `, m + 1− `)|42
(
k2ak

) |
)

.

Proof. By Theorem 3.1 and Lemma 2.2, we have

f ′′(x) = −
i−1∑

k=0

42
(
k2ak

)
Fk(x)−

∞∑

k=i

42
(
k2ak

)
Fk(x)

= −
i−1∑

k=0

4 (
k2ak

)
Dk(x)−

∞∑

k=i

42
(
k2ak

)
[Fk(x)− Fi−1(x)] .

The integral (20) can be written as
∫ π/`

π/(m+1)

|f ′′(x)|dx =
m∑

i=`

∫ π/i

π/(i+1)

|f ′′(x)|dx. (15)

Therefore
∫ π/i

π/(i+1)

|f ′′(x)|dx ≤
∫ π/i

π/(i+1)

i−1∑

k=0

|4 (
k2ak

) ||Dk(x)|dx +

+
∫ π/i

π/(i+1)

∞∑

k=i

|42
(
k2ak

) ||Fk(x)− Fi−1(x)|dx.

Using the estimates |Dk(x)| ≤ C(k + 1) and 0 ≤ Fk(x) ≤ C/x2, (0 < x ≤ π), we
obtain

∫ π/i

π/(i+1)

|f ′′(x)|dx ≤ C

i−1∑

k=0

|4 (
k2ak

) | k + 1
i(i + 1)

+ C

∞∑

k=i

|42
(
k2ak

) |. (16)

Consequently, from (15) and (16) we get

∫ π/`

π/(m+1)

|f ′′(x)|dx ≤ C

m∑

i=`

i−1∑

k=0

|4 (
k2ak

) | k + 1
i(i + 1)

+ C

m∑

i=`

∞∑

k=i

|42
(
k2ak

) |. (17)

For the first term of the right-hand of (17) we have
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m∑

i=`

i−1∑

k=0

|4 (
k2ak

) | k + 1
i(i + 1)

=

=
m∑

i=`

`−1∑

k=0

|4 (
k2ak

) | k + 1
i(i + 1)

+
m∑

i=`+1

i−1∑

k=`

|4 (
k2ak

) | k + 1
i(i + 1)

=
`−1∑

k=0

(k + 1)|4 (
k2ak

) |
(

1
`
− 1

m + 1

)

+
m−1∑

k=`

(k + 1)|4 (
k2ak

) |
(

1
k + 1

− 1
m + 1

)

≤ m + 1− `

m

`−1∑

k=0

k + 1
`

|4 (
k2ak

) |+
m∑

k=`

∞∑

j=k

|4 (
k2ak

) |. (18)

The second term in (17) and (18) can then be written as follows

m∑

i=`

∞∑

k=i

|4 (
k2ak

) | =
m∑

i=`

m∑

k=i

|4 (
k2ak

) |+
m∑

i=`

∞∑

k=m+1

|4 (
k2ak

) | =

=
m∑

k=`

(k + 1− `)|4 (
k2ak

) |+ (m + 1− `)
∞∑

k=m+1

|4 (
k2ak

) |. (19)

Now the proof of theorem is an immediate result of (17), (18) and (19). ¤

We shall now verify briefly a result regarding to the sine series which distinguishes
from Theorem 4.1. For this we first denote

dk :=
1
2

∫ π/k

π/(k+1)

cot
x

2
dx = log

sin π
2k

sin π
2(k+1)

, (k = 1, 2, . . . ).

Theorem 4.2. Let the sequence {ak} satisfies conditions (3) and (6). Then
∫ π/`

π/(m+1)

|g′′(x)|dx =
m∑

k=`

k2|ak|dk (20)

+O

(
m + 1− `

m

`−1∑

k=0

k2

`2
|4 (

k2ak

) |
)

+O

( ∞∑

k=`

min(k + 1− `, m + 1− `)|42
(
k2ak

) |
)

.

Proof. According to the theorem 3.2 we can write
i−1∑

k=0

42
(
k2ak

)
ψk(x) =

i−1∑

k=0

4 (
k2ak

)
ϕk(x)−4 (

i2ai

)
ψi−1(x).

Since

ϕk(x) = −1
2

cot
x

2
+ D̃k(x),
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where D̃k(x) is the conjugate Dirichelt kernel, then for x ∈ (0, π] and an arbitrary
positive integer number i we have

g′′k (x) = − i2ai

2
cot

x

2
−

i−1∑

k=1

4 (
k2ak

)
D̃k(x)−

∞∑

k=i

42
(
k2ak

)
[ψk(x)− ψi−1(x)] .

Hence,
∫ π/`

π/(m+1)

|g′′(x)|dx =
m∑

i=`

∫ π/i

π/(i+1)

|g′′(x)|dx

≤
m∑

i=`

i2|ai|di

+
m∑

i=`

∫ π/i

π/(i+1)

i−1∑

k=1

|4 (
k2ak

) ||D̃k(x)|dx

+
m∑

i=`

∫ π/i

π/(i+1)

∞∑

k=i

|42
(
k2ak

) ||ψk(x)− ψi−1(x)|dx.

Quite similarly as in the proof of Theorem 2 of the paper of Telyakovskĭı (see [5],
page 268), one can finish the proof of the theorem without any difficulty. For this we
omit the details. ¤

Note that the estimates proved in theorems 4.1 and 4.2 can be written in a shorter
way i.e., only in terms of differences of second order of the sequence {k2ak}. In fact,
the following corollaries hold true.

Corollary 4.1. Let the sequence {ak} satisfies conditions (3) and (6). Then for
1 ≤ ` ≤ m the following estimates hold

∫ π/`

π/(m+1)

|f ′′(x)|dx = O

(
m + 1− `

m
×

×
∞∑

k=0

min
(

(k + 1)2

`
, k + 1, m

)
|42

(
k2ak

) |
)

,

∫ π/`

π/(m+1)

|g′′(x)|dx =
m∑

k=`

k2|ak|dk

+O

(
m + 1− `

m

∞∑

k=1

min
(

k3

`2
, k,m

)
|42

(
k2ak

) |
)

.

Moreover, since under the conditions of theorems 3.1 and 3.2 the second derivatives
of the functions f and g are continuous, then the above corollary can be formulated
in terms of total variations on intervals [π/(m + 1), π/`] of the first derivative of the
functions f and g.

Definition 4.1. The total variation of a real-valued function h, defined on an interval
[a, b] ⊂ R is the quantity

b∨
a

(
h
)

= sup
P

nP−1∑

i=0

|f(xi+1 − f(xi))|,
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where the supremum runs over the set of all partitions

P =
{
P = {x0, x1, . . . , xnP

}| P is a partition of [a, b]
}

of the given interval.

Corollary 4.2. Let the sequence {ak} satisfies conditions (3) and (6). Then for
1 ≤ ` ≤ m the following estimates hold

π∨̀
π

m+1

(
f ′

)
= O

(
m + 1− `

m
×

∞∑

k=0

min
(

(k + 1)2

`
, k + 1,m

)
|42

(
k2ak

) |
)

,

π∨̀
π

m+1

(
g′

)
=

m∑

k=`

k2|ak|dk + O

(
m + 1− `

m

∞∑

k=1

min
(

k3

`2
, k, m

)
|42

(
k2ak

) |
)

.
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