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Entropy solution to an elliptic problem with nonlinear boundary
conditions

STANISLAS OUARO AND AROUNA OUEDRAOGO

ABSTRACT. In this paper, we consider the equation b(u) — div a(u, Du) = f in a bounded domain
with nonlinear boundary conditions of the form —a(u, Du).n € B(z,u). We introduce a notion of
entropy solution for this problem and prove existence and uniqueness of this solution for general
L' —data.
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1. Introduction

Let Q be a bounded domain in R with Lipschitz boundary 9Q and 1 < p < N. Consider
the nonlinear elliptic problem
b(u) — div a(u, Du) = f in
ED] Ko Doy € by on 02,
where 7 is the unit outward normal vector on 99, f € L'(f2), Du denotes the gradient
of u, b: R — R is continuous, nondecreasing and surjective with b(0) = 0 and, for a.e.
x € 0, B(x,r) = j(x,r) is the subdifferential of a function j : 9Q x R — [0, co] which
is convex, lower semicontinuous (l.s.c. for short) in r € R for c—a.e. x € 92, measurable
with respect to the (N — 1)— dimensional Hausdorff measure o on 92 and such that
4(.,0) = 0. The vector-valued function a : R x RN — R¥ is continuous and satisfying
the following classical Leray-Lions-type conditions:
(H;)— Monotonicity in & € RY:
(a(r,&) —a(r,n).(6 —n) >0 Vr € R, V&, n € RV,

(Hz)— Coerciveness: 3Ag > 0 such that

(a(r,&) — a(r,0)).£ = Xo[¢|? Vr € R, V€ € RY.
(H3)— Growth restriction: there exists a continuous function A : Rt — R™ such that

la(r, )] < A(J7])(1 + [¢[P71) Vr € R, V€ € RN,
(H4)— There exists C : R x R — R* continuous such that

la(r,€) — als,€)] < C(r,s)r —s[(L+ [€P7F) ¥r,s € R, VE € RY.

A typical example of a function a satisfying these hypotheses is a(r, &) = |£[P72€ + F(r),
where F : R — R¥ is a locally Lipschitz function.
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Many results are known as regards to elliptic problems in the variational setting for
Dirichlet or Dirichlet-Neumann problems (cf. [1, 3, 4, 5, 6, 15, 16, 20, 25, 26, 29, 31]). In
the L'—setting, for elliptic and parabolic equations in divergence form, new equivalent
notions of entropy and renormalized solutions have been introduced. (cf. [2, 7, 13, 17]).
In particular, in [7], a notion of entropy solution have been introduced for the following
nonlinear problem

u— div a(x,Du) = f in
{ —a(z, Du).n € B(u) on 09,
with a being independent of u and the graph (8 being independent of the space variable.
Under a regularity assumption on a and for particular graphs (, the authors proved
existence and uniqueness of this entropy solution for arbitrary L'—data.

In [27], the authors used and extended the methods introduced in [7] to study the

problem
u — div a(u, Du) = f in Q
{ —a(u, Du).n € B(x,u) on 09,
where «a is a divergentiel operator depending on v and § depending on w and also on the
space variable x.

In the present paper, we use and extend the methods introduced in [7, 27] to study

the problem

—a(u, Du).n € f(z,u) on 09,
where f € L(Q), with b not necessarily invertible. Clearly, b : R — R is a continuous
function, nondecreasing and surjective with b(0) = 0.

The paper is organized as follows. In the next section we make precise the notations
which will be used in the sequel and recall some facts on measures and capacities. In
section 3, we study the problem (E})(f) by variational methods. We introduce an accre-
tive operator As, related to problem (Fj)(f) and show that Asy is T-accretive in L(Q),
verify that D(As;) is dense in L'(Q) and R(I +adsp) D L(Q) for all a > 0. In section
4, we introduce the notion of entropy solution and prove the existence and uniqueness
(in the sense of b(u)) of this solution. In order to do this, we characterize Ay, the limit
of the operator Asp in L'(Q).

{ b(u) — div a(u, Du) = f in Q

2. Preliminary

In this section, we introduce some notations and definitions used in this paper. We
denote |.| and do respectively the N—dimensional Lebesgue measure in RY and the
(N — 1)—dimensional Hausdorff measure of 0€2.

The norm in LP(Q) is denoted by [|.|[,, 1 < p < co. WHP() denotes the classical
Sobolev space endowed with the usual norm denoted ||.||1,,. It is well-known (cf. [23, 24])
that if w € W1P(Q), it is possible to define the trace of u on 9, where the continuous

linear trace operator 7 : WhP(Q) — W_i’p(ﬁfl) is surjective.
For 0 < ¢ < 0o, M1?(Q) is the Marcinkiewicz space (cf. [12]) defined as the set of all
measurable functions f : 0 — R such that

Ho € Q:[f(x)] > k}| < ck™?, where 0 < ¢ < o0.
As usual, for k£ > 0, we denote by Tk, the truncation function at height k£ > 0 defined by
—kifu<—k
T (u) = min {k, max{u, —k}} = wif |u] <k
kif u > k.
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Let v be a maximal monotone operator defined on R. We recall the definition of the
main section g of :

the element of minimal absolute value of v(s) if y(s) # ¢
Yo(s) = { +ooif [s,+00) N D(7) = ¢
—o0 if (—o0, 8] N D(v) = ¢.

We denote by u the average of u, i.e. u = ﬁ Jo u(z) dx.

We define the set P = {S € C'(R)/S(0) = 0,0 < S’ < 1,supp(S’) is compact}.

Let A be a multi-valued operator in L({). Recall that A is said to be accretive in L (€2)
if [lu—al|; <||lu—a+ a(v—"2)||; for any (u,v), (@,0) € A,a > 0 i.e.; for any a > 0, the
resolvent of A, (I +a.A)~! is a single-valued operator and a contraction in L'—norm. A
is called T—accretive if ||[(u — @) T|[1 < ||(u — @+ a(v —0))F]|]; for any (u,v), (a,0) € A
and for any a > 0. Finally, A is called m—accretive (resp. m — T'—accretive) in L!(Q)
if A is accretive (T'—accretive) and moreover, R(I + aAd) = L1(Q) for any o > 0 (cf.
[9, 10, 14] for more details about accretive operators and nonlinear semigroups).

Now, let us introduce some notations and recall some facts about capacities and mea-
sures used throughout this paper (cf. [18, 19, 21, 22]). Let G be an arbitrary fixed
bounded open subset of RY with Q € G. Given a compact subset K C G, we define the
p—capacity of K by:

Crp(K) := inf{{[el1,p; € CZ(G), 0 = XK }-

The p—capacity of an open set O C G is then defined by
C1,(0) :=sup{Ci ,(K); K C O, K is compact}

which reveals to be equal to the quantity

inf{|¢ll1p; ¢ € Wy "(G), ¢ = xo ae. on G}.
Finally, the p—capacity of an arbitrary subset £ C G is defined by

C1p(E) :=1inf{C ,(0); O open, E C O}.
It is well-known that 4, is an outer measure on G. Recall also that any function
u € WHP(Q) admits a cap-quasi-continuous representative on G. In particular, as Q is
1
smooth, any function v € W»"*(99Q) is the trace of a function ¢ € Wol’p(G) such that
¥|pn = v, where G is an arbitrary fixed open subset of RY such that Q C G. A function
u defined on 2 is said to be cap-quasi-continuous if for every € > 0, there exists an open
set B C G with C; ,(B) < € such that the restriction of u to G\ B is continuous. It
is well-known that every function in VVO1 "P(@) has a cap-quasi-continuous representative,
i.e. a function @ : G — R such that « = @ a.e. on G and @ is cap-quasi-continuous. In
1

particular, by the remarks above, any function v € W#"*(9) has a cap-quasi-continuous
representative 9. Indeed, 30 € WP(G) such that © is a quasi-continuous representative
of o on G and ¥|pq = v a.e. on ON. As usual, a property will be said to hold cap-quasi
everywhere (qg.e. for short) if it holds everywhere except on a set of zero capacity.

Let Mp(09) be the space of all Radon measures on 02 with bounded total variation.
For p € My(99), denote by p*,u~ and || the positive part, negative part and the
total variation of the measure p, respectively, and denote by u = p,.do + ps the Radon-
Nikodym decomposition of p relatively to the (N — 1)—dimensional Hausdorff measure
do.

We denote by M%) (9Q) the set of Radon measures p which satisfy p(B) = 0 for every

Borel set B C 02 such that Ci ,(B) = 0, i.e. the Radon measures which do not charge
sets of 0-capacity.
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We denote Jo(082) = {j/j : 0 x R — [0; +00]}, such that j(.,r) is c— measurable
Vr € R and j(z,.) is convex, ls.c. satisfying j(z,0) = 0 for a.e. = € 9Q}. For a.e.
r € 09, we define

T W7 POQ) NL®0Q2) — [0,00]

U — (., u)do.
19)

Note that J naturally extends to a functional J on Wy P(G) N L®(G) as follows:

J(u) = / §(,7(u))do for any u € W, P(G). We recall that the closure of D(J)
a0

in VVO1 P(G) is a convex bilateral set, so according to [8], there exist unique (in the sense
g.e.) functions 74,y— which are cap-quasi-l.s.c. and cap-quasi-u.s.c. respectively, such

that D(J)H.Hi’p ={ue Wi’p((?Q);'y,(x) < a(z) < y4(x) q.e. on IN}.

Moreover, v_(x) = inf 4, (z) = lim1<iIk1£ ag(z) qe. x € 9N (respectively the corre-
n n 1<k<n
sponding analogue for v, ) for any |[.||2 ,—dense sequence (uy), in D(J).
P

We define the subdifferential operator:
OF C (WP (09) N L (0Q)) x (WP (99) 4+ (L>=(99Q))*) by

we W P00) NL=00),ne W7 P (99) + (L2 (0Q))*
we€ T (u) =
and J(w) > J(w) + (p,w —u) Yw € WP (9Q) N L= (9),

where, here as in the following, if not explicitly stated otherwise, (.,.) denotes the duality
between Wﬁ’p(aﬁ) N L>(09) and its dual.

3. Variational approach

Let 2 be a bounded domain in RY with Lipschitz boundary, 1 <p < N, a: QxRN —
R a mapping satisfying the assumptions (H;)—(H,) and 3 is such that 3(z,.) = 9j(z, .)
a.e. on 02, where j € Jo(09).

To apply the classical variational approach, we need an L°°—estimate on u (since
b is onto, it is equivalent to the L>°-estimate of b(u)), which is not evident to obtain
directly in our problem. The obstacle which we encounter is that we cannot get rid
of the term with a(u,0). To overcome this difficulty, following [27], we first redefine
and extend the function A which appears in hypothesis (H3), on an odd monotone
a(k,0)
¥ (k)
A(r) == sup {¥(|z]),|z||a(z,0)|} for 7 > 0. Secondly, we add a penalization term §t(u)

|z|<r
on the boundary for a fixed §. This allows us to compensate the term with a(u,0) by
a(k,O)‘ <5

¥(k) '

In the next section, we tend § to zero and the penalization term disappears. Conse-
quently we obtain the entropy solution of our initial problem (Ej)(f).

Now, we define the operator As; as follows:
(b(uw), f) € Asp if and only if u € WHP(Q)NL>®(Q); f € L' () and there exists a measure
p € My (09Q) with p,.(x) € 9j(x, u(x)) + 0l _(2),4 (2)) (u(x)) ae. z € OQ such that for

function ¥ on R such that ‘

— 0 as k — oo. This will be possible by setting

choosing k sufficiently large such that
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all g € WLP(Q) N L®(Q),

/Q au. Du).Du = 6)dz +6 | p(u)u = o)do < /Q f(u— @)z — /8 (@ d)d

=" puf —ae ondQ, 4=vy_ u; —ae. on Y,

(3.1)

where for given interval [a,b] C R, I}, 4 denotes the convex Ls.c. functional on R defined

by 0 on [a, b], +00 otherwise.

Remark 3.1. As the measure p € MY (0Q), |p| does not charge the sets of 0— capacity.

From |us| < |pl, it follows that |us| does not charge the sets of 0—capacity.

the condition (3.1) is meaningful.
We can now state the first main result.

Theorem 3.1. The operator Asy satisfies the following properties:
i) Asp is T—accretive in L*(Q),
ii) L*°(2) C R(I + aAsyp) for any a > 0,
iti) D(Asp) is dense in L'(€2).
Proof. 1) Let w, v such that
feblu)+ Aspu and g € b(v) + Aspv.
We must show that

[ ot —bwytas < [ (£t d.

Consequently,

(3.2)

(3.3)

1 1
Taking ¢; = u — ETk(u — )T and ¢ = v + ETk(u — )" as test functions in (3.2)

respectively, we get after adding inequalities

1 / [a(u, Du) — a(v, Dv)].D(u — v)"dx
k i)+ <i}

1
#30 [0(0) = w) Tl ) do
(f —b(u) — g+ b(v))Th(u —v) T dz

(/ (i — 0)* dpa — /aQTk(ﬂ—f;)*d,ug).

w\ H?r\ =

(3.4)

Denote by I respectively I the first, respectively the second integral in the left hand
side of (3.4). Using hypothesis (H;), (Hy) and the Lebesgue dominated convergence

theorem, we obtain

1
L = */ [a(u, Dv) — a(v, Dv)].D(u — v)"dx
F Jiw—o)<ny

> - O, v)(u — v)* (1 + [Do]P )| D(u — v)*|de

k
{ u—v)t <k}
_Cik

Tk Jioren
¢, / (1+ [ DoY) D — 0) X ((uvy+ <r

1+ |Dv|p*1)|D(u —v)T|dx

Y

—0as k — 0.

Note that the properties of the measures p; and po guarantee to us that the second term
in the brackets in the right hand side of (3.4) is nonnegative. Indeed, these integrals

can be written as / Ti (i — 0)(pr1 — pr2) + / Ti(ye —0)d(ps 1)t —
a0 Ele)

T(=v+ +
[219]
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@) d(pe2)" / T(r- — 9 d(uer)” — / Te(—v- + @) d(ps2)~ which are, clearly,
o0 a0
nonnegative by properties of 1, o and vy /_.

I> > 0 (thanks to the monotonicity of 1); we get after passing to the limit in (3.4) with
k — 0 and using Lebesgue dominated convergence theorem

lim 1 /Q(b(u) — b)) Tk (u —v)Tdr < klii>n0 % /Q(f —9) Ti(u—v)tde

u) — o\v X - xZ.
:>/(b() b(v))™d S/(f g)"d
Therefore, (33) holds.

ii) It will be no restriction to assume that o = 1. In order to prove that L (Q) C
R(I + Asy), we approximate the problem (Ej)(f) by problems of the form

b(Ty(un)) + ATy (ur) P2y (un) — div a(Ti(ur), Duy) = f in Q

—a(Ty(up), Duy).n = Ba(z, Ti(uy)) + 611 (¢ (uy)) on 09,

where k > (071)o (||f]loo + 1) satisfies “;’Z};)))

I > max{k,v(k)}. Here for every A\ € N, 8\(z,.) is the Yosida approximation of 3(z,.),
ie.

‘ < 8, with (b™')y the main section of b™*,

Ba(w,.) = ~ (I = (I +A3(x,.))) .

1
A
Consider the operator Az yp : WHP(Q) — [WHP(Q)]* defined by

s und) = [ b(Ti) oo + A [ [Tl *Tiun)ode+
/a(Tl(uA),DuA).qudz+/ ﬂA(.,Tl(uA))d)dJJr(S/ T, (¥(uy))odo,
Q o0 o

for all ¢ € WHP(Q).
Here, (.,.) denotes the duality pairing between W1 (Q2) and (WP(Q))*.
We have the following result:

Lemma 3.1. The operator Asxp is bounded, coercive and verifies the (M)—property.

Proof. e The operator A; ), is bounded.
Taking ¢ = uy as test function in the definition of As » 5, we obtain

(s i) = [ dTiG)usdz + 1 [ [Tiu)P *Ti(urJusda+
Q Q
/ a(Ty(uy), Duy).Duydz + Ba(, Ti(up))urdr + 6 T ((uy))urdz.
Q a0 a0
It follows that

(Asas wnsun)| < / BTy (s ) s |dz + A / Ty ()P~ fus|der+
Q Q

/\a(Tl(u,\),Du,\).Du)de—&—/ |B,\(.,Tl(u,\))u,\|da+6/ I3 (4 (1) iz | do.
Q o0 o0
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By Holder inequality, we have

[ bl < /wnmw /ww

< Chl|lunllp (since b is continuous and © bounded)
< Chlluallrp;

1
Iy

[ oseneml < ([ 186nw)r)”

(/@Q M'p) p (3.6)

< Collulli,ps

(since [y is nondecreasing and 3y(.,0) = 0);

/Qm(u,\)|l)—1|uA| < (/Q(l)p’(p—l));’</9|u/\|p)i

< Cslluxllp

< Cslluall1,p

o[ el <o [ ) ([ pmr)’

< Cyllurl]1,p-

and

By Hoélder inequality and the hypothesis (H3), we have

/mmwm&MDm\s/Awmmm+wWWmmm
Q Q

IA

/ (C + C|Dux )| Duy|
Q

IA

C‘DUA|+/C|DU,,\|Z)
Q Q

IA

Cs|[Duyllp + Cs|| Dux|[h

IN

Cs||ux|

1p + Crllually,

From (3.5)-(3.9), it follows that [(Asxp ux,un)| < C(|luallip + lluallf,) < +oo if
uy € WhHP(Q).

e The operator A; »; is coercive.
(As b ux, un)

We have to show that
Juxl[1,p

— +00 as [[ur||1,p — +oo.
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We have
(As b ux, ux) / b(T;(uy))urdz

—|—)\/ |77 (uy)| Tl(u,\)u,\dx—l—/a(Tl(uA),Du,\).DuAda: (3.10)
Q

ﬂA(.7ﬂ(u,\))u)\dﬂc + 1) Tl(’(/J(’LL)\))U)\dLL'
a0 a0
Since b, Ty, Bx(.,.) and ¢ are nondecreasing and as b(0) = £5(0) = ¥(0) = 0, then
b(Ti(ux))ux > 0,08.(., Tr(ux))ux > 0 and Tj(¢(upn))ux > 0. Using the assumptions
(H2), (Hs) and Holder inequality, we deduce that

/a(Tl(uA),Du,\).Du,\
Q

v

Dol Dul? + / a(Ti(1x), 0). Duxdz
Q

Xol[Dua [P — (/Q(A(l))p'dx)?l'(/Q|Du>\|13dx)zla

Aol [Dux|[h = Clluxl|1,p-

Y]

V

Therefore, we get from the relation (3.10)
(Asap ux,un) = Aul[h + Aol [ Durllh — Clluxl|1p

> C'|ually , = Clluall1p,

with C” = min (), \g).
Then

A Ux, U -
B aata) 5 anfy! - € — 400 18 sl — +o6.

e The operator A; ), verify the (M)-property.

For the proof, we need the following lemmas:

Lemma 3.2. (c¢f. [28]) Let A and B be two operators. If A is of type (M) and B is
monotone, weakly continuous, then A+ B is of type (M).

Lemma 3.3. (¢f. [30]) Let (fix)r>0 and (gr)r>0 be two sequences of functions. If fi, f :
Q — R are measurable, gr,g € LP(Q), 1 < p < +oo such that gy — g a.e. in
Q, fr — [ ae inQ, gp — g in LP(Q) and Vk > 0, |fi] < gr in Q, then f — [ in
LP(Q).

We have
<A57>\7b UA,UA> :/b(Tl(uA))quL)\/ |’U,)\|p+/CL(TZ(u>\),DUA).DU)\
Q Q Q

[ Bunus 4 / Ty (4 (un) s
oN o0

= (a(T;(up), Duy), un) + (Buyx, uy).

We now have to show that B is monotone and weakly continuous.
(Buy,uy) = / b(Ty(ux))ux + )\/ T3 (ux ) [P 2T (u )ux
Q Q

+ [ O Ti(un))un+6 [ Ti(w(un))un.
o9 o0
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For the monotonicity of B, we have to show that (Bu — Bv,u —v) > 0, for all v and v in
WP (Q). We have:

(Bu — Bv,u — v) = (Bu,u — v) — (Bv,u — v) :/Q [b(Tl(u)) fb(Tl(v))}(ufv)Jr
3 [ (1B6P= i - mEPTw) =0+ [ [B50) = BB =)
+5/aQ Tl () —Tl(w(v))}(u—v).

From the monotonicity of b, T}, 1, By and the map u +— |uP~?u, we conclude that
(Bu — Bv,u —v) > 0. (3.11)

We now show that the operator B is weakly continuous, i.e. for all sequence (uy,)nen C
Wl’p(Q) such that u, — u , we have Bu,, — Bu.
For all ¢ € W'P(Q), we have

Bunnd) = [ 0T [ )P Tiw)or [ Du)ors Qﬂ(w((un));b-
3.12
We also have that |b(Tl(un))¢| < max(|b( )|, [b(— )|)|¢| e LP(Q), |Tl(w(un))¢\ < g
€ LP(Q) and [Ty (un)[P~"[6] < 1P 1|o| € LP(
As B, is nondecreasing, then —I < Tj(uy) § | = ﬁ,\( 1) < Ba(,Ti(uy)) < Ba(,1)
—1 =

=B (, Ti(ux))| < max (|6x(-, 1), 1Bx(,
Therefore,

1Bx(, Ti(un)) 9| < Cilg] € LP(Q).

Passing to the limit when n goes to +o0o in (3.12), we obtain thanks to Lemma 3.3

lim (Buy, @) = (Bu, ¢),i.e. Bu, — Bu.

n—---+o00

The operator A : WP (Q) — R, u +—— {a(Ty(u), Du), Du) is of the type (M) and as B
is monotone and weakly continuous, thanks to Lemma 3.2, we conclude that the operator
As ap is of the type (M). That concludes the proof of Lemma 3.1. |

Lemma 3.4. (c¢f. [28]) Let X be a reflexive Banach space and A : X — X' an operator
such that
(1) A is bounded,
(i1) A is coercive,
(7i1) A is of the type (M),
then A is surjective.

By Lemma 3.4, the operator As, is surjective. So, for all f € (W1P(Q))*, there
exists uy € WP(2) such that for all ¢ € WHP(Q),

(Asap b(un) = f,uxn — ¢) <0. (3.13)

Taking ¢ = uy —pF (ux — k) as a test function in (3.13), where pf(.) is an approximation
of signd (.) defined as follow

lifr>e¢

+ L.

pa(r)=4¢ =rif0<r<e
€

0ifr<0
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and using hypothesis (Hz), we obtain

1

/ BTy (ur))p2 (ur — k) + A / fua P 2uspt (ux — k) + = / a(Ti(u»),0). Duy
Q Q € J{k<ux<k+e}

< / fof(un—k) =6 | Ti(p(ur))pd (un —k) = [ Ba(, Tilun))p (ux — k).
0 00

a0
(3.14)
Note that since | > k,
1 (u,>\—k)+ Al
‘f/ a(Ti(ux),0).Du| < | [ div (/ a(Ti(er + k), 0) dr)
€ Mk<ur<k+e} Q 0
(up—k)F

Al

‘ /3Q ( /O S a(Ty(er + k), 0) dr) .ndg‘

(Green formula)

— ‘ / signg (uy — k‘)a(k,O)dU‘ ase — 0
o0

IN

/ |signg (ux — k)||a(k,0)|do
o0

< / |la(k,0)|do.
aQN{uy>k}

N

Thus, we deduce that

liminf}/ a(Ti(ur),0).Duy > —la(k,0)] do
€0 & Jik<uy<kte} QN {ur>k}
Ti(Y(uy))
—la(k,0 —
2 ~lalk.0) 00N {ur>k} L11(Y(K)) 7
—la(k,0)]
_— T d
Z T0®) Joanpuer A
> -6 T, (Y(uy))do.

99N {ux>k}

Passing to the limit in (3.14) with ¢ — 0 and regarding that £y (., Ti(uy)) and [ux|P~2uy
are nonnegative in {uy > k}, we get

/ BT} (uy))dz < / fdo +5 Ty (0 () do—
{ur>k}

ux>k} oQN{ur>k}
5 Ti(t(u))do < / fdz.
{

aﬂﬂ{u,\>k} u>\>k:}

Then /{upk} (b(Tl(uA))—b(Tl(k:)))dxg/{ (1 = b(Tu(w)) ) e

As I > k then T;(k) = k. Thus, we have (f — b(Tg(k))) = / (f — b(k})) <0
{ux>k} {ux>k}

uA>k}
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since k > (b™")o(||f]|oo + 1). From inequality above, we get

/{upk} ([p(mieu) - b(Tz(k))D+ dr <0, V> k

and then b(Tj(uy)) < b(k) a.e. in {uy > k}.
We conclude that b(uy) < b(k) a.e. in .

Similarly, we prove that b(uy) > b(—k) a.e. in Q. Consequently |b(uy)| < b(k) = C.
We deduce that |uy| < C (since b is continuous and surjective) and then

|lurlloo < C, (3.15)

where C' is a constant depending only on ||f||s and b.
Taking ¢ = 0 as a test function in (3.13), we get, according to (Hs),

/b(Tl(uA))uAd:r—i—)\/ |u>\|pdx—|—)\o/ |Du,\|pdx+/a(Tl(uA),O).DuAdx
Q Q Q Q
(3.16)

+ [ B Ti(uy))urdo + 6 /
o0

[219]

Tl(i/)(u)\))u)\dag/gfu)\dx.

By Gauss-Green formula, according to the hypothesis (H3) and (3.15), we deduce that

)/ (Ty(us), Du,\ ‘/m / (r), )dr) nda’
</m(/0m A(\r|)dr>.nda

<C.

As b, 8y and T; o ¢ are nondecreasing then, according to Young inequality, we get from
(3.16):

)\0/ |Du>\|pdm—‘/a(Tl(uA),O).Du,\‘ S/fu,\dx:>/\o/ |Du)\|pdx—0§/fu>\da:.
Q Q Q Q Q

We deduce from inequality above that

)\0/ ‘Duﬂp
Q

From (3.15) and (3.17), it follows that (uy)y is uniformly bounded in W?(Q). Hence,
there exists a subsequence still denoted (uy), such that uy — u weakly in WP(Q) as
A — 0. By Rellich-Kondrachov theorem, uy — wu in LP(Q) and 7(uy) — 7(u) in
LP(09Q) as A — 0. Then T;(vp(uy)) — t(u) on 092. We may also assume that uy — u
a.e. in 2. Therefore, by (3.15), ||[u|lec < C(||f|lco,b)-

We have |Bx(., Ti(ux))| < Ba(.,1), so

IN

C+[If1hllualleo
< C.

(3.17)

/ 18a( Ti(un))| < C. (3.18)
oN

Thus, passing to a subsequence if necessary, we have Gy (., Tj(uy)) — p weakly in M, (99)
as A — 0.
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Note that for all v > A > 0, we have for a.e. = € 99, |Or(x,r)| > |Bu(z,7)| Vr € R.
Thus, from (3.18), / |8y (-, T1(ux))| < C. Passing to the limit as A — 0, we get
o0

| smwy<c.

As v — 0, we obtain / 13°(., Ty(u))| < C. Here $°(.,r) is the main section of 3(.,7).
Next, thanks to (3.15), (3.17) and hypothesis (H3), we have

’

/Q|a(u>\,Du,\)|p,d9: S/Q[A(|uk|)(1+|Du,\|p’1)}pdx

' op’ 1 1 P (3.19)
< [ (4ua)y' 2 (G + 5 IDun )i

<C.

From (3.19), it follows that (a(ux, Duy))s is uniformly bounded in (L* (Q))N. After
passing to a suitable subsequence, we can assume that a(uy,Duy) — x weakly in
(LP ()N as A — 0. The aim is to show, via a pseudo-monotonicity argument that
div a(u, Du) = div x. To this end, we must show that

hmsup/ a(uy, Duy).D(uy —u) = 0. (3.20)
r—0 Ja

Taking ¢ = uy — (uy —u)™"

/Qa(u)\,Du)\).D(uAfu)Jr §/f(u)\7u)+f/Qb(uA)(u)\fu)+
- /\/ P2 (ux —u)* —f Ba(,un) (uxn —u)* (3.21)
2 X9)
=0 [ Ty((ur))(ux —u)*.
o9

We have By(.,ux) = Ba(,ul) + Ba(,, —uy) and Br(.,u )(u,\ —u)t > 0. Then, from
inequality (3.21) we deduce that

/Qa(u)\,Du,\).D(u,\—u)+ S/Qf(u,\—u)+—/Qb(u>\)(u,\—u)‘L

) / P =0 = [ A =0T =8 [ D) - "
(3.22)

as a test function in (3.13), we get

Having in mind that (uy) is uniformly bounded in L*°(952), we have
(ur =) ¥l < C

and (uy —u)t — 0 a.e. as A — 0.
Next, observe that Gx(., —u, ) > Bx(.,, —u") > B2(., —u~) on {uy > u}.

As |8%(.,,—u")| € L'(09), by Lebesgue dominated convergence theorem, it follows
that Bale, —uy)(uy —u)™ — 0, as A — 0. Consequently, passing to the limit in

o9

(3.22) with A — 0, we get

limsup/ a(ux, Duy).D(uy —u)™ <0.
A—0 Q
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lim sup/ a(uy, Duy).D(—(uy —u)”) < 0 follows similarly.
A—0 JQ

Hence limsup [ a(ux, Duy).D(uy—u) < 0 and (3.20) follows from the monotonicity of a.
A—0 JQ

Now, let ¢ € C.(R") and a € R*. Using the hypothesis (H), the Lebesgue dominated
convergence theorem and relation (3.20), we get

A—0

a lim [a(uk, Duy) — a(u, D(u — oz(b))} .D¢dx
Q

> li)r\n_s’l(l)p/Q [a(ux, Duy) — a(u, D(u — oqu))} . [D(uA —u+ o@)} dx
+ li/r\ni%p/Q {a(u, D(u— o«b)} D(uy —u)dz
> lim sup/Q [a(u, D(u — ozd))} D(uy —u)dz

A—0
= 0.

Dividing the quantity o /\limo/ [a(uA, Duy) — a(u, D(u — a¢))} .Dédx by a > 0 and by
—0Ja

a < 0 successively, and passing to the limit with « — 0, we get
lim [ a(ux,Duy).Dédx = lim [ a(u, D(u — ag)).Dodx = / a(u, Du).Dédx,
A—0 Jo a—0 Jo Q
ie. a(uy, Duy) — a(u, Du) weakly in (Lp/ (Q))N
Hence div a(u, Du) = div x.

Up to now, we have shown that for all ¢ € C.(RY) ( after passing to the limit in (3.13)
with A — 0),

/a<u,Du>.D<u—¢>+a w(U)(ufcb)S/(f*b(U))(ufaﬁ)*/ (i~ 3) dn.
Q o0 Q o0

By density, inequality above remains true for all ¢ € WHP(Q) N L>(Q).
Then, we can conclude that

[ atwpw.po+5 [ o= [ 1r—sio- [ s (3.23)

for all ¢ € WHP(Q) N L>(Q).
Finally, we must characterize the measure p. First, according to equation (3.23), we can
say that p € Mp(02) N (Wﬁi’p (09) + (L>°(09))*) and |u| dees not charge the sets of
0—capacity. Let us show now that u € 9.J(u). For this, we proceed as in [27]. Note that
. . . . 1 .
By = 9jx, where jy € Jo(0Q), ja(z,r) = ;gﬂg{ﬁv —s]? —|—j(.13,8)}.
Recall that, for a.e. = € 0Q and for all » € R, jx(z,r) T j(z,r) as A | 0. Thus, by
definition of the subdifferential, for all v > A > 0 and a.e. x € 91,
j(x’ 7‘) > jA($7 T)
2 ja(x, ux(@)) + 0ja(w, ua(@)) (r — ua(z))
> ju(z,un(z)) + Oga(z, ur(x))(r — ur(x)), Vr € R.
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Therefore,

/j(-,s)z/ ju(wu/\)*—/ Dir(crun) (€ —ux) ¥ € € W P(99) 1 L=(99).
o0 oQ o0

Having in mind that uy — w a.e. in 2 as A — 0 then, according to Fatou’s lemma
and Lebesgue monotone convergence theorem, passing first to the limit with A — 0 and
after with v — 0, we get for all £ € C(9€)(the set of continuous functions on 052)

[ it = [ itwipig [ oG-

> / J(,u) + liminf Ba(,un) (€ — u) + liminf Ba(un)(u —uy)
50 A—0 90 A—0 20

2/an(.7u)+/m(£—u)du+hmmf mﬁ)\( ux)(u — uy).

(3.24)
Now using (3.20), the monotonicity of ¥, the uniform L*—estimate on uy and the a.e.
convergence of uy to u, we get from (3.13),

hmmf/ Oal, ux)(u — uy)

> i [ (7= b)) (=) +limsup | aus, Dun).Dus —

+4 lim (WY(uy) —¥(u))(uy —u) + 6 hm /w )(ux — u)

A—0 Jon
> 0.

Consequently, we conclude from (3.24) that

/69j(.7£) > /(S‘Qj(.,u)-s-/m(,g_u)du;

J(€) > J(u) + (1, € — u), VE € C(09). (3.25)

Since p € M7 (0€), one can say that inequality (3.25) holds for € Wi’p(aﬂ)ﬁL‘X’(aQ)
and thus we deduce that p € 0J(u).

To conclude the proof of i7), we prove, using the fact that € 9 (u) and same technics
as in the proof of Proposition 20 in [18], that the measure p satisfies

,ur(as) € a](lf,u(ili)) + 31[77(93)7’)%(90)] (’LL(CC)) a.e. x € 0N

ie.

U ="7_ p; —ae. ond, &=y, pul —a.e. on .

iii) We show that D(As ) is dense in L'(Q) i.e. D(As, b)“ I L' ().

We have D(Asp) C L*(Q) C L'(Q) (since © is bounded). Therefore D(As;)
L*(Q). Mutually, let’s show that L'(Q) C D(As, b)“ I
that L(Q2) € D(As5)"" (since L*°(€) is dense in L'(2)).

Let a > 0. Given f € L>(Q), if we set b(ua) := (I + adsp) "' f, then (b(ua), (f —
b(uq))) € Asp. So, taking ¢ = 0 as a test function in the definition of the operator As b,

Yok ”1

To this end, it suffices to prove
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we get

(f = blua))ua —/ G At (3.26)

[219]

vlua)(wa) < 3 [

/ a(Ue, D) Dt + 8
Q Q

o0

Using hypothesis (Hs), we have /[a(ua, Dug) = a(ua; 0)].Dug > Ao || Dua|;.
Q
Then, we deduce from inequality (3.26) that

Mol Dual |2 < é/ﬂ(f—b(ua))ua—é 8Q¢(ua)(ua)—/(mﬂadua—/ga(ua,O).Dua.

(3.27)
Using the hypothesis (H3), the monotonicity of 1, properties of u and the L —estimate
on u,, we get from (3.27)

1
Xo||Dug ||k < =C" + C. 3.28
ollDually < ~C' + (3.25)

Using the hypothesis (Hs), Holder inequality and (3.28), we get

o / (a(tia, Dug)| < a / Aual) (1 + [ Dua ™)

l L
< aCy +Oé</( |Uoz‘ p /|Duo¢‘p
Q

1
7/

<aCy +a02( c'+O)r

Cl

S +507)

< aly +a?»C3 + aCy
—0asa — 0.

< aCy +Oz2p Cg( (

On the other hand, if ¢ € D(Q), taking u, + ¢ and u, — ¢ as test functions in the
definition of the operator As;, we get after adding both inequalities

o [ o Duc).Do+ a6 | wuo= [ (1=bu)o—a [ Gdu..  (329)

Passing to the limit as @« — 0 in inequality (3.29), we get

tim, [ bua)o = /f¢, Yo € D(Q). (3.30)

a—

Since (uq)q is bounded in L2°(2), there exists a subsequence (uq,, )r such that u,, — u
weakly in LP(€); so b(uq,, ) — b(u). Therefore, using (3.30), we get b(u) = f.
As (uq)q is bounded in L*°(£2) and b is continuous, we have

(o) |l7, = / b(ua) P < / b(ua)|, < C

By Lebesgue dominated convergence theorem, b(u,) — f in LP(€). Consequently,
feDA, )ll 11 0
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4. Entropy solution

Before introducing the notion of entropy solutions for the problem (E3)(f), we define the
following spaces which are similar to that introduced in [7, 11]. We note

ThP(Q) == {u: Q — R measurable; Ty(u) € W"P(Q) for all k > 0}.

In [11], the author proved that for u € 7P (f2), there exists a unique measurable function
w : @ — R such that DTy (u) = WX {|w|<k}, Yk > 0. This function w will be denoted
by Du.

Denote by 7,17(€) the subset of 757(Q) consisting of the function that can be approx-
imated by functions of W'?(Q) in the following sense: a function v € 7"7(Q) belongs
to T,-7(Q) if there exists a sequence (us)s € WHP(Q) such that:

(1) us — u a.e. in Q;

(i) DTk (us) — DTy (u) weakly in L'(Q) for any k > 0;

(#4i) there exists a measurable function v : 9 — R such that (7(us))s converges a.e.
on 0f to v.

The function v is called the trace of u, denoted 7(u) or w.

The concept of entropy solution for a problem with boundary conditions was intro-

duced in [7] for the problem

—div a(x,Du) = f in Q (41)
—a(x, Du).n € B(u) on 0N ’
and adapted by Sbihi and Wittbold [27] for the problem
u— div a(u, Du) = f in (4.2)
—a(u, Du).n € B(z,u) on 0. ’

Following [27], we define an entropy solution of (Ep)(f).

Definition 4.1. A function u € 7,-7(Q) is an entropy solution of problem (E)(f) if
b(u) € L*(Q2) and there exists a measure p € M} (99Q) with

pr () € 0j(z,u(x)) + 01y _ () vy ()] (u(T)) a.e. z € 0N (4.3)
such that for all ¢ € WHP(Q) N L>(Q),

/Q a(u, Du).DTj(u — ¢) < /

Q

(f — b(w))Tu(u — §) - / Ty(i — ) du,

T9)

=7y pi — ae 00, G =v_ p; — a.e. . (4.4)
Remark 4.1. Note that each integral in the preceding definition is well defined. Indeed,
the first term can be understood as / a(Ty(u), DTy (u)).DTk(u — @) where | > k +||9||oo-
The second is well defined accordmgﬂto Hélder inequality. Since ¢ € WHP(Q) N L>¥(Q),
we have u — ¢ € TP (Q) (see [7], Theorem 3.1). Hence, Ti(u — ¢) € WIP(Q) N L™=(Q)

and admits a trace which has a quasi-continuous representative, according to the remarks
made in the preliminary. Thus, the last integral in the above definition is well defined.

We define an operator A by the rule
f € LYQ) and
(b(u), f —b(u)) € Aif and only if
u is an entropy solution of problem (E)(f).
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In the following, we use the notation A, , (resp. ¥m ) instead of As (resp. d), where
wm,n(u) = %w(ujL) - % (u™), m,n € N*.

Theorem 4.1. The operator A is m—accretive with dense domain in L*(Q) and A =
liminf A,,, where liminf A,,, is the operator defined by (z,y) € liminf A,, .,

m,n—- 400 m,n—-> ~400 n—-s—+o0o

if for allm > 0,n > 0, there are (Tmn, Ym,n) € Am,n such that

($7 y) = limin (xm7n7 ym,n)
m,n—-—+o0o

mn X x X.
Proof. We divide the proof into six steps.

Step 1. A priori estimates.

Let f € L'(2). We approximate f and b respectively by f,, ,» = (f Am)V (—n) € L>=(Q)
nondecreasing in m, nonincreasing in n and by, ,,(¢) = b(o) + —0" — ~0~ Vo € R.
m n

Note that |[fmnll < [[f]1.
Then by Theorem 3.1, fy,., € R(I + A,,.,,) and there exists u,, , € W'P(Q) N L>®(Q)
and a measure fi,, , € M} (0Q) satisfying

(tm,n)r () € 0 (T, U () + Ol _ (2) 44 (2)) (Um,n () ace. x € O,
such that for all ¢ € WHP(Q) N L>(Q),

/ a(um,na Dum,n)'D(um,n - ¢) + "/}m,n(um,n)(um,n - (b)
Q o

S /Q(fm,n - bm,n(um,n))(um,n - d)) - /6 (am,n - ¢) dﬂlm,n

Q

with ﬂfn/; = V4/- (tm.n)T/~ a.e. on Q.

Now, let k£ > 0 be fixed. Using ¢ = ., — Tk(Um,n) as a test function in (4.5) and
applying hypothesis (Hs), we obtain

do [ DT P+ - [ Bty = ¢ [ T,

n

Tk(ﬁm’n)d,umyn—/a(um’n,O).DTk(umyn).

< /QTk(um,n)(fm,n _bm,n(um,n)) _~/6 Q
(4.6)

Q

By Gauss-Green Formula and hypothesis (Hs), we have

< ‘/BQ (/OTk(um'n)a(n 0)dr).1do]

Ty (wm,n) (47)
< / ‘/ A(|r|)dr’da
o' Jo

<C,

where C is a constant depending on k. Then, from inequality (4.6), according to the
monotonicity of 1, we conclude that

Ao / | DTy ()P < C. (4.8)
Q

‘ /Q (., 0).D T ()
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Thus, (Tk(tUmn))mn is a bounded sequence of W'P(Q). Hence, after passing to a
suitable subsequence if necessary, (Tk(tm.n))m.n converges weakly in WP(Q). Then,
T (Um,n) — vk in LP(Q) as m,n — co. We may also assume that DTy (tp, n) — gk in
(LP(Q)N as m,n — oc.

Now, we must prove the almost everywhere convergence of 4, n. As A,, ,, is T'—accretive
in L1(Q), we have for all m > m/,

/ (bm’,n(um’,n) - bm,n(um,n))+ S /(fm’,n - fm,n)+-
Q Q

As fi,.n is nondecreasing in m, we have: m > m' = frn — fron < 0= (fin —
+ .

fm,n)Jr = 0. Then m > m = (bm’,n(um’,n) - bm,n(um,n)) =0, ie. bm’,n(um’,n) -

b (Um.n) <0 a.e. on Q. Thus,

(B ) — bltim)) + %((um’,n)Jr = ()t + %((umm)* (grn)”) 0. (49)

It is easy to see that the three terms of the inequality (4.9) have the same sign, then
they are negatives which implies that s » — Um, < 0 for m > m’ and n fixed. Then,
(Wm,n)m is nondecreasing. By the same method, we show that (u, »)» is nonincreasing.
Since (Um,n)m is uniformly bounded then we deduce that

Um,n | Up When m — 400 and u, | © when n — +o00.
By applying Lebesgue dominated convergence theorem, we get

U, T Un Lo Uy Umon Lo U T w in LH(€2). (4.10)

Therefore, from (4.10) we get the convergence of (wyn)m.n to u in L1() and also the
convergence almost everywhere on €.
Then, we conclude that vy = Ty (u) and gx = DTy (u). Therefore, T} (u) € WP (Q)
for all k > 0. Consequently, u € 7P(Q).
Finally, we show following [7], that (7(um,n))m,n converges a.e. on 9.
For every k > 0, let Ay := {x € 0Q : [T (u(x))| < k} and C' := 90\ U Ajg. Then,
E>0

meas(C) = %/C|T;€(u(x))|d$

1
i [ mue)l

Cq
?HTI@(U)HWLl(Q)

IN

IN

C
= —||Tk(w)||L1 () + fHDTk(U)HLI(Q)

C/
< — 1 Tw(W)lpr o) + fHDTk(U)HLp(Qy

According to (4.8) and the boundedness of {||T;€(u)||L1(Q) g k> O}, we deduce by letting

k — +o0 that meas(C) = 0.
Let us define in 92 the function v by

v(x) == Tp(u(x)) if © € Ag.
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As Ty (U n) converges to Tj(u) a.e. on IS, there exists C' C 9Q such that Ty (um n)
converges to Ty (u) on ON\C" with meas(C’) = 0.
We take z € 9Q\(C U "), then there exists k > 0 such that « € Ay and we have

U, () = V(@) = (Um0 (@) = Th(tm,n(2))) + (Ti(Umn(2)) — T (u(z))).

Since = € Ay, we have |Tj(u(z))| < k and so |Tk(tm,n(z))| < k, from which we deduce
that || < k and Tk (v n(2)) = Umn(z).
Therefore

Um,n (@) — 0(2) = Tk(tm,n(x)) — Tp(u(z)) — 0, as n — +o0.

This means that w,, , converges to v a.e. on dQ and then, u € T,."(Q).
Step 2. Existence of the measure.

It remains to show the existence of a measure p € MY (9Q) such that pp,, — p
strongly in M7 (99).
Let uf;ln be a solution to the problem

1 1 _
[ atn 000 [ wtdine -1 [ vt
Q m Joq n Joo
(4.11)
- / Frn — b (@0 — [ Baatdy ),

oQ

for all o € WHP(Q) N L>(Q).
We know from Theorem 3.1 (part ii)) that ||3x(.,u, ,,)||1 is uniformly bounded by a

9 Ym,n

constant C' independent of A, thus 35(., u;\nn) — lmn in Mp(09Q) as A — 0. Therefore
[lm nllay o) < liminf (B3 um )l 00) < C

and we deduce, after extracting a subsequence if necessary that i, , — p weakly in
My(09) as m,n — oco.

In order to prove the strong convergence of fi,, ,, We need the following comparison
result.

Lemma 4.1. Assume that m > m, 7 > n and fm.n, fan € L°(Q). Let uﬁln,uf‘hn be
the weak solutions which verify (4.11). Then
uﬁhﬁ < uﬁln < u%n a.e. in <
and
Byt 7) < Baleyupm ) < Baleyup, ) a.e. on O

Proof. Of Lemma 4.1. As Ay, , is T—accretive in L'(2), we have for all m > m,

[ Gt = ban@h )™ < [ (G = fnn)
Q Q

AS fin,n is nondecreasing in m then, m > m = fi n—fiun < 0= (foun—Ffan)T =0.
Therefore

m>m = (bm,n(u’\ )= by (uiy n))+ =0, i.e. byn(u) )—bmn(uﬁhn) <0 a.e. on .

m,n m, m,n
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Thus, (b(ui\n,n) - b(u:\h,n)> +
and then

i A +_l + l X oy— (A 7>
m (u’m,n) m (Uf’rn,n) + n ((u’ﬁl,n) (um,n) <0

() = %)) + o ()T = (oman) ™) 2 (84, = () ) 0. (412

It is easy to see that the three terms of the inequality (4.12) have the same sign, then
they are negative, which implies that uf,‘ln — u;\hn <0 a.e. on Q and as () is monotone
then Bx(.,u) ) < Ba(,,ud ) ae. on 90 By the same methods, we show the other

m,n m,n
inequalities. Thus the result of Lemma 4.1 follows. (I

Note that the result of Lemma 4.1 remains true for the positive and negative parts,
ie. iﬁ)\(.,uz‘%ﬁ)i < iﬁ)\(.,uﬁkn)i < iﬁ,\(.,uf‘hm)i.

Thus, by the previous result of convergence, we deduce that :tu,in’ﬁ < iuffm < :I:,uan,
which is equivalent to say that the regular and the singular parts verify this comparison
result. From this, it follows that M'r—:,,n Tm b in My(09) as m — +oo. Indeed, let

pr s B(OQ) — [0,4o00] defined by uf(A) = lirrJlr firh n(A) < 400. Here, B(6Q)
denotes the set of Borel sets of €. Note that u is a Radon measure. We have

ek = it |
(Ei)i=1,n€B(9Q)

S (B — i (B)
= i (09) — i (09)

— 0 as m — +o00,

p [ (ot =) 0]

where (F;); denotes a finite partition of 9§2. We applied the same methods to show that
pt | pt asm — +oo. Note that we get the same results for the negative parts and this
concludes the proof of Step 2.

Step 3. The pseudo-monotonicity argument.

We recall that u,, ,, satisfies, for all ¢ € WP(Q) N L>(9)

1 + 3, L -
[t Dun) Dot - [ tatde = [ vt "

_ /Q(fm,n N /{m By U, ) p-

Since T (um,n) is bounded in W1P(Q) then, thanks to the growth assumption (Hs),
there exists a vector fields x, € (LP ()N such that a(Tk(tmn), DTk(Umn)) — Xk
weakly in (LPI(Q))N as m,n — —+oo, for all K € N*. The aim is to prove, via a pseudo-
monotonicity argument, that div x; = div a(Tg(u), DTk (u)) in D'(Q). To this end, we
define for [ < k, the following integral

I:/Q[G(Tk(um,n)yDTk(um,n))_a(Tk(um’,n’);DTk(um’,n’))]~DT‘l(Tk(um,n)_Tk(um’,n’))7
(4.14)
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which can be written as

/ (@t D(ttnn)) — @t s Dt ))]-DT it — tir )
{wm | <k | <k}
+ / (@t s D1t 1)) — (T2t ), 0)] DTi(tt s — Tt )
{‘um,n‘<k”‘um’ n! |Zk}

+ / [T (), 0) — @ty s Dt )] DTy (T () — i)
{\umm\Zk,\um/ n/|<k}

= I1+IQ+I‘3.

We want to pass to the limit in I, in the following order, with m’,n’ — 400, m,n —
+o00 and then | — 0. Note that the term I; can be written as

Il = / [a(um,n7 Dum,n) - a(um’,n’ 5 D(um’,n’))}-DiTl (um,n - um’,n’)
Q

_ / [G(Um,'ru D(Um,n)) - a(um/’n/,D(um,wn,))].DTl(um,n _ Um’,n’)
{|um,n|<k,|um/’n/‘2k}}

- / (@(ttmns D1t 1)) — (2t s Dt )] DTt — s )
{lum,nlzkvlum/,n’ |<k}

- / [a(umﬂﬂ D(um,n)) - a’(um',n’ ’ D(“m’,n'))]DTl (um,n - um’,n’)
{|umr,n|2k7|“m/,n/‘2k}

= Il - -1} -1

Choosing T} (Um,n — Um/,n/) a0d Ty (U n/ — Um,n) corresponding to solutions u,, , and
U/ ns Tespectively in the equation (4.13), adding both equalities, we get

/ [a(um,ny Dum,n) - a(um/,n’a Dum/,n’)] D,-Tl (um,n - um’,n’)
Q

+/ (wm,n(um,n) - wm/,n’ (um’,n/))T’l(um,n - um’,n/)
- (4.15)

= / (fm,n - fm’,n’ + bm’,n’(um’,n’) - bm,n(um,n))rfl(um,n - um’,n’)
Q

- / (ﬂ)\(-a um,n) - ﬁ)\('a um’,n’))n(um,n - um’,n’)-
o0

Using the fact that wm pn,bm.n, fr,ns ¥m,n are uniformly bounded, wpm n,Um/n — u
a.e. in Q, by n,bm/ns — b which is continuous in R, fon, frvn — f in LY(Q),
Mo,y B/ e — @ strongly in My,(99Q), by Lebesgue dominated convergence theorem,
passing to the limit in equation (4.15) we obtain

lim lim lim / [a(tm,n, Dt n) = a(tn ./, Dy )| -DTy (U0 — Uy ) = 0,
Q

l—0m,n—oom’ n'— oo
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i.e.
lim  lim lim I{ =0.

l—0m,n—ocom’ n'— oo

By hypothesis (H;), we have

112 B / [a(um’n’ D(um’")) B a(um'an’v D(um’,n’))}'DTl(um,n - Um’,n’)
{ [, | <k |t | >k}

m’,n

v

/ |a(tm,ns Dtims nr) — a(tms nrs Dty )|
{ltm | <Es |t 2R3t 0 =ty s [<U}

X[ D (tm,n = s )|
Note that
[Um,n — U | <T=> [tmn| = [Ums | <T=> U/ | < |Umn] + 1= |t /| < k+1
(since |umn| < k) = |tm/ n/| < 2k (since | < k). Therefore, using hypothesis (Hy),
Hélder inequality, coerciveness of the power application and (4.8) we obtain

112 > _/ la(tm,ns Dt/ n) — a(tims nss Dty oo )| D (U, — Um0
F1

e

> - |:/ 2p/C(u7n,n7 um’,n/)p |um,n — Um/' n’ |pl (1 + |Dum’,n/ |p):|
Fi

1
<[ [ 1D = )]
Fi1

Z _Cl7
where Fi = {|umn| <k, [/ n/| < 2k, [ n—Um n/| < 1} and C is a constant depending
on f,b,p and k. Then
lim  lim lim 17 >0.

l—0m,n—ocom’ n'— oo

By the same methods, we show that

lim  lim lim I} >0.

l—0mn—ocom’ ,n'—oo
For the term I}, define the function hy, by

0 if |r] < &
hi(r) =
r — ksigno(r) if |r| > k.

Then, If is equal to

If = / [a(umma Dum,n) - a(um’,n’a Dum/,n’)]-DTl(hk(um,n) - hk(um’,n/))
Q
-/ (@t Dien) = @t Dt ) DT~ ()
{l“M,n|<kv|“m’,n’|2k}

- / [a(um,na Dum,n) - a(um’,n’a Dum’,n’)}-Dﬂ(hk (um,n)
{lumw|2k3|“m’,n’|<k}

K, — Ky — K.

(4.16)
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Using T (hk (tm,n) — hi(Um n/)) as a test function in the equalities corresponding to both
solutions uyy, ,, and ., ./, we show as for Ill, that

lim lim lim K;=0.

|—0 m,n—s00 m’ ,n'— o0

Note that, by using Tj(hg(um,n)) as a test function in (4.13), by the same technics as for
(4.8), it follows

[ IpTithsum P < 1, (4.17)

where C is a constant depending only on f,b and k.
Now, by Holder inequality

rey S/ |a(um,naDum,n)_a(um’,n’>Dum’,n’>||DTl(hk(um’,n’))|
Fa

.
|p/ I

A

- [/ |a(um’n7 Dum7n) - a’(um’,n'a Dum’7n’)
{‘umw‘<kv‘um’,n’|<2k}

1

<[ / DTy (B (ttmr )]

where Fy = {|um7n| <k, |um/7n/| < 2k, |hk(um/7n/)\ < l}
Then, the hypothesis (Hs) and the estimations (4.8) and (4.17) imply

lim lim lim K9 =0.
l—0m,n—oo m’ ,n’— oo
Similarly, we have lim  lim lim K3=0.
l—0mn—oom’ n'—oo
Consequently, combining all limits in (4.16), we get lim  lim lim I} =0 and
l—0m,n—o00 m’ ,n’'— oo

we conclude that

lim lim lim I, =0.
|—0 m,n— o0 m’ ,n’— oo

Now, consider the term I5. Let’s remark that

I, = [a(um,na Dum,n) - a(um,nv O)]DTI (Um,n — Ty (Um’,n’))

/{Ium,n|<k,|umunr>k}
+ / [a(um,n, 0) - a(Tk(um/,n/), O)]DTl(umm — Tk(um’,n’))
Humnl <kl s 12k}

= Iy +1I2.
Hypothesis (Hy), Holder’s inequality and (4.8) yield

2 < / C (ttmms ttn )| T (ttn) — Tt )| DT (1 )|
F3

4
7

<c Ti(ttmn) = Tt )|

[/{Tk(u7n,n)_Tk(um/yn/)|<l}
where Fs = {|um,n| <k, [um’ n| < 2k, |Ti(Um.n) — T (U n)| < 1}, and then

lim  lim lim I3 =0.

l—0mn—ocom’ ,n'—oo



ENTROPY SOLUTION TO ELLIPTIC PROBLEM 171

Hypothesis (H) ensures that I3 > 0. On the other hand
< / [ty D(ttm 1)) — @t O)]-D(ttn)-
{k—1< |t n| <k}
Now, taking Tk (tm.n) — Tk—1(tm.n) as a test function in (4.13), we have

/ (U n, DUm.n)-D(tUm,n)
{k=1I<|um n|<k}

+— ¢(u’r_“r—1,n)(Tk(um,n) - Tk—l(um,n)
T AN k—1<|tUpm n|<k}

_7/ w(u;,n)(Tk(um,n) - kal(um,n)) (418)
N Joon{k—1<|um,n| <k}

= (fm,n - bm,n(um,n))(Tk(um,n) - Tk—l(um,n))
{k—l<|um,n|<k}

— ﬁ)\(wum,n)(Tk(um,n) - Tk*l(um’”))'
AN k—1<|tpm n|<k}

As !l — 0, we have Ty_;(Um.n) — Tk(tm,n). Then, passing to the limit in (4.18) with
Il — 0 we obtain

lim a(“m,nv Dum,n)-D(“m,n) =0.
=0 J{k—1<|tm n|<k}

‘We have

a(um,na Dum,n)~D(um,n)
{k—i<|um,n|<k}

= (a(Um,ns Dt n)—a(tm n, O)).D(um7n)+/ a(Um n,0).
{k—1<|tm, n|<k} {k—1<|tum,n|<k}

Using the hypothesis (Hs), we deduce that
/ |a(tm,n,0)] < / A|tpn|) — 0 as I — 0.
{k=I<|um,n|<k} {k—1<|tm,n|<k}

Then,

lim (a(Um,ns DUm.n) — a(tm,n, 0)).D(tm n) < 0.
=0 Jfk—1<|tim n|<k}
We conclude that

lim  lim lim Iy =0.
|—0m,n—o0 m’ ,n’— o0

An analogous decomposition and estimates can be applied to I3. Thus, combining all
limits yields

lim lim lim [ <0. (4.19)

|—0m,n—oo m’ ,n'— oo

Now, let ¢ € WHP(Q). Then, I can be written as

I = —/ a(Tk(um’n%DTk(um)n)).Dgo—/ a(Tk(um/’nf),DTk(um/’n/)).Dap+J1+J2+J3+J4
Q Q



172 S. OUARO AND A. OUEDRAOGO

where

/ (T (tmn)s DT (i r))-D (T () — Ti (i) + ),
{ITk (U, ) =Th (s )| <U}

m’,n

/ a(Tk (um/v”/)’ DTk (Um/m/)).D(Tk (um/,n’) - Tk (um,n) + @)7
{ITk () =Tk (s e )| <U}

/ (T (ttys ), DT (1)) D,
{1 Tk (wrmn) =Tk (U )| >0}

m’,n

Jy = / a(Tk(um’,n/)vDTk(um’,n/))'Dw :
{Twk (Um0 ) =Tk (W )| >0}
Passing to the limit in this last equality and using the relation (4.19), we obtain

2/ xx-De > lim  lim lim (J1 + Jy+ J5 + Jy). (4.20)

l—0m,n—oom’ n —

Consider the term J;. Using hypothesis (H;) we have

[Tt ), DT () = 0Tty D Th ) = 2) ) |- DT tm,0) = Tt ) +
) > 0, which implies that

/ (Tt ), DT (ts ) D (Tt ) — Tt ) + ) >
{lTk (um,n)ka (um/,n/)‘<l}

/ a(TiCttmn)s D (Tittmnr) = 2) ) DT (tn,n) = Thlttr ) + 0).
UTk (wm,n) =Tk Wy )| <U}

As Ty (umn), DTy (U, ) are uniformly bounded, DTy (tm. ), DTk (tms n) — DTx(u)

weakly in (LP(Q)N and Ty (wm.n), Tk (U n) — Ti(u) a.e. in Q as m,n,m’,n’ — oo.
Then, applying Lebesgue dominated convergence theorem to above inequality, we obtain

lim lim lim J; >
|—0m,n—o00 m’ ,n'— o0

lim  lim / a(Ty(um,n ), D(Ti(w) = #))-D(Th (tm,n) — Ti(u) + ¢)
l=—=0mn=—=00 JI1y (upy ) =T (w)| <1}

> / o(Ti(u), D(Ti(u) — 9)) De.
Q

Now, we treat the term Js. As a(Tg(tm.n ), DTk (tm.n)) is bounded in (L¥' ()N, Holder
inequality applied to J3 gives

1
nl <cf [ DeP?]”
{lTk(u7n‘n)_Tk(um/,n/)‘ >1}

As Ty (um,n) — Tk(u) a.e. in  then, by Lebesgue dominated convergence theorem, we
get

lim lim lim J3=0.
|—0m,n—oo m’ n'— o0

Analogously, we also have

lim lim lim J;=0.

|—0 m,n—s00 m’,n’— o0
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For the term Js, it can be written as:

Jo = a(Tk(wm )y DTy (w0 ))-D(Th (s ) — Tie () + )

/{Tk(um,n)Tk (umzyn/)|<l}

4 / (Tt ) DTty ))-D (T (11) — T (1t )
{‘Tk (umm)_Tk(um/Tn/)|<l}

= J3 + J3.
Using hypothesis (H;) and Lebesgue dominated convergence theorem, we obtain

lim  lim lim  Jy >
|—0 m,n—o0 m’ n’— oo
lim  lim lim /
’
== 0mon =00 mI ! =00 U Ty () =T ()| <1}

D (Tt ) — Tie(w) + ) > / a(Ti(u), DTy(w) — ) Dep.

a(Tk (um',n’)7 D(Tk (u) - 90))

On the other hand, since a(Tk(tm’ n'), DTk(tm/ n)) — X weakly in (LPI(Q))N and
DTy (tmn) — DTy (u) weakly in (LP(2)) as m,n,m’,n’ — oo, we deduce that

lim  lim lim J?=0.
|—0m,n—oo m’ ,n'— o0

Combining together all limits in (4.20), we obtain
2 [ wDp =2 [ alTi(w). DT - ).Dp. (421)
Q Q

for all ¢ € W'P(Q).
Now, taking ¢ = a in (4.21), where ¢ € D(2) and o € R. Dividing the inequality (4.21)
by a > 0, respectively a < 0, we get

2 / xe-DC > 2 / a(T4(w), DTy (u) — a¢).D¢
and
2 /Q D¢ < 2 /Q a(Ti(u), DTx(u) — a¢).DC.

Passing to the limit in the last two inequalities with « | 0, respectively « T 0, it follows
that

/QXk'Dg = /Qa(Tk(u),DTk(u)).DC for all ¢ € D(), i.e div x, = div a(T(u), DT (u)).

Step 4. Passage to the limit in equation (4.13).

Taking ¢ = S(t, , — @) as a test function in (4.13), where S € P = {p € C*(R); p(0) =
0, 0 < p' <1, supp(p’) is compact}, ¢ € WHP(Q) N L>(Q2) and define | = ||¢]| +
max{|z|, z € supp(S’)}.
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Considering the first integral, we obtain

/ a(um,,ny Dum,n)-DS(um,n - ¢)
Q
- /Q (Tt ), DT (1 1)) DSt — )
- / (a(Ti (2t ) DT (1)) — (Ti(ttrn ). DT4()))-D (Tt n) — To(1))S (1 0 — &)
+ / 4(Ti(ttm ), DTt ) DTy ()8 (1t — )
+ / (T (2t ), DTy (w)). DTyt ) — Ti(10))S" (te . — )

- /Q 0Tt ), DTi(110.0))-DGS (timm — ).

Using hypothesis (H7) and the fact that 0 < S'(wpm,n — ¢) < 1, we deduce that

/Q(a(Tl(um,n)aDTl(um,n))_a(Tl(um,n)aDTZ(U)))-D(Tl(um,n)_Tl(u))Sl(um,n_¢) > 0.

Therefore, we have

/Q a(Ti(tn ), DTt ))-DS (s — 3) =
/Q a(Ti (), DT (1t ). DT4(0)S (1 — )
+ [ a0t n), DT ) DT ) = To(0)S (1~ )
9)

- /Q a(Ti (1t ), DTyt ) DS (tt . — ).

(4.22)

Since S (Umn — ¢) — S'(u— ¢) ae. in Q, DT} (up,n) — DTj(u) weakly in (LP(2))V,
T (um,n) — Ti(u) ae. in Q and a(T}(um,n), DTi(Um,n)) — X1 weakly in (LY (Q)N as
m,n — 00, we obtain after passing to the limit in (4.22) the following:

im [ a(Ty(umn), DTi(tmn)) DS (tmn — ) > /Q DTy () S (u — )~

m,;n—soo [
/ xi-DéS' (u — @) = / x1-DS(u — ¢).
Q Q

Consequently,
lim a(Umn, DU n).- DS (U — @) > / a(u, Du).DS(u — ¢). (4.23)
m,n—so0 Jq 0

By Lebesgue dominated convergence theorem, we get

lim (frmn = bmon (Um,n))- DS (U, — @) = / (f = b(u)).DS(u— ). (4.24)

m,n—oo Jo Q
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Now, note that

¢m,n(um,n)8(um,n - ¢)

1219]

| [omntnn) = mn(@)]Stamn =)+ [ (@)t~ 0)
o0 o

[ t) = 9 0)] S = 8+ - | 00615t =)

L (67)S (e — 6).
onN

n

As the functions v, ,, and S are nondecreasing, we get
/ [wm,n(um,n) - wm,n(ﬁb)} S(um,n - (b) > 0.
o0

On the other hand, as ¥, u,, , and S are bounded, then
1
lim / V(dT)S(umn — @) =0 and lim — (A7) S (U, — @) = 0.
m,n—o0 1 m,n——00 1 69

Therefore,
lim Y (Umn)S (Umn — @) > 0. (4.25)

m,n—o0 50
To complete the proof, it remains to show that yu verifies u,. € 9j(.,u) +0I},_ ,)(u) a.e
in 00, @ =v; pf ae on 90, u=~v_ pu; ae. on I and

lim S(imn — O)dpmn = | S(@— ¢)du. (4.26)
m,n——20 JHQ 15)9]

We know from the proof of Theorem 3.1 (part ii)) that fiy, ., € 0T (Um,n), thus
(tm,n)r € OF (o Um,n) + Ol _ 1 (Um,n) ae. on OS).
AS U — w a.e. on 0 and |[(Lmn)r — trllzro) < [tmn — pllrm,00) — 0 as
m,n — oo then,
pr € 0§ (- u) + Opy_ . 1(u) ae. on 9.

On the other hand, we have G, n = v+ (tmn)d ae. on R, Upmp = V= (mn); a.e.
on 0f2, which are equivalent to say

/ (v+ — am,n)d(.“m n) =0 and / (v- — ﬂm,n)d(l‘m,n); =0.
o0 o

As u is bounded on 9Q and (pim,n)s — s strongly in M;(92) as m,n — oo then,
after passing to the limit in the last both integrals according to the Lebesgue dominated
convergence theorem, we obtain

/ (v+ —)dpg =0 and / (- —@)dp, =0;
o0

o0
which are equivalent to say @ = v4 u;t a.e. on Of).
As Uy, — w a.e. on O and py, , — p weakly in My,(9Q) then, using Lebesgue
dominated convergence theorem, we get (4.26).
Finally, putting together all the limits (4.23)-(4.26), we conclude that:

/Qa(u,Du)DSu— / S(i— d)dp < /Q<f—b(u)>5(u—¢),
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for all ¢ € WHP(Q) N L>(Q).

Taking S as an approximation of Ty, we get the desired entropy inequality. Therefore,
we have shown that, for all f € L>(Q), (I + A,,.n) L f converges in L'(Q) to an entropy
solution of the problem (Ej)(f), hence nlllgl Ego Ap,.n C A. For the inverse inclusion, we

refer to the step below.
Step 5. The accretivity of A.

To prove the accretivity of A, we must show that

/Q Ib(w) — b(v)| < /Q F gl (4.27)

where f € b(w) + Aw and g € b(v) + A(v).
Let Wm,n and Um,n Verifying f € b’rn,n(wm,n)"‘Am,nwm,n and g e bm,n (Um,n)"l‘Am,n'Umﬂv
Observe that

b(w)= lim blwpy,y,) and b(v) = lm  b(vmn)-

m,n——0o0 m,n——0o0

Indeed, taking ¢1 = W, n and ¢o = Wy, — Th(Wm,n —w) as test functions in inequalities
corresponding to solutions w and w,, , respectively, we obtain:

/Qa(w,Dw).DTh(w ) < /Q(f b)) T (w0 — wpn ) — /{m T (i — i) dps
and

/ a(wm,na Dwm,n)-DTh(wm,n - w) + wm,n(w'rn,n)Th(wm,n - w)
Q (o9}

1 - -
< / (fm,n - bm,n(wm,n)>Th(wm,n - w) - E/ Th(wm,n - w) d,um,n
Q o9
Adding the two inequalities above and dividing their sum by h > 0, we get
1

E/Q (a(wmvn,Dwm,n) —a(w, Dw)).DTh(wm,n —w) <

1
_7/ <f - fmm + bm,n(wm,n) - b(w>)Th(wm,n - ’LU) - E/ wm,n(wm,n)Th(wm,n - w)
o0
1 - - 1 N -
—7/ Th (W — Wy ) At — — / Th (W — W) Ao -
h (019 h o

(4.28)

Assumptions (H;) and (H,) imply that

%/ (a(wm,n,Dwm’n) — a(w, Dw)).DTh(wmm —w)
Q

1
> E / (a(wm,na Dwmﬂl) - a(vawmyn))'DTh(U}mm B w)
Q
1 p—1
> " h O(wm,naw”wmm —w| (1 + ‘Dwm7”| )‘D(wm’" —w)|
f

—0as h — 0,

where F := {|w| < [|wmnlloo + 1} N {|Jwmn —w| < h}.
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On the other hand, the last two integrals in the right hand side of inequality (4.28)
are negative thanks to properties of functions v; and ~_.

1
As hlimo ETh(wm)n —w) = signg(Wm,, — w) then, passing to the limit as i tend to
zero in (4.28), we obtain

/(f_fm,n"_bm,n(wm,n)_b(w)>329n0(wm,n_w) S / (wm,n(fwm,n))SignO(wm,n_w)
Q o

which imply

/ (b (Win,n) — b(w))signo (W, n — w)
¢ 1

< - /Q (7 = Fsignoin, =)+ [ il signo(wn —w)
1 QZJ(U} 7n)‘%gno(wm,n - ’LU) (429>

e [Vt = [ ot 2 [ ] —o

as m,n — +oo (since b is bounded and f,, , — f as m,n — +00).

Note also that

/ (b (Winn) — b(w))signo (W n — w)
Q

1
- / (bW m) — b(w))signo(wmm — w) + — [ (w})signo(wmmm — w)
Q m Jaq
1 _ .
1 / (wp ) signo(twpm — w)
n Jan ’ 1 )
> / (bt ) — b(w))signo(wmm —w) — — [ |wiy ] — / -
Q m Jaq ’ n Jaa ’

This imply that

/ (b(tnn) — b(w))signo(wm.n — w)
Q

1 1
< /(bm,n(wm,n) - b(w))SignO(wm,n —w) + */ |w’r—;,n| + 7/ |w;l,n|
Q m Joo n Joa

— 0 as m,n — +oo (according to inequality (4.29)).

Therefore,
lim / ’b(wmwn) - b(w)| =0

m,n—- 400
ie.
1b(wmn) — bw)]l, — 0 as m, 0 —> +o0.
By the same technics, we show that
16(vm,n) = b(v)|l, — 0 as m,n — +o0.

As the operator A, , is T-accretive, we can write

[ ) = 0m)] < [ 15l
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Now

/\b ) —b(v /|b ) — b(Wyn) |+/|b Wy —b(um,n)|+/g|b(vm,n)—b(v)|

ow) = bl + [ 1 =l + [ [b0) = b(em)].
Q Q Q
(4.30)
After passing to the limit in (4.30) with m,n — 400, we obtain

/|b —b(v /If gl- (4.31)

Step 6. D(A) is dense in L'(Q).

For this, we show that L*°(Q2) C D(A)H Al
Let u L= (Q) and consider um,n and U, O > 0 such that

b (Uny, ) + @ Am ntiy, 3 b(u) and b(uq) + aAug 3 b(u). (4.32)

We know from Theorem 3.1 that D(A,, ) is dense in L'(£2); then, for all m,n € N*, we
deduce that

b(um, ) — b(u) in LY(Q) as a — 0.
We show now that b(ug, n) — b(ug) in LY(Q) as m,n — oo.

To this end, taking uy, , — Ti(uy, , — Ua), respectively ug, ,, as test functions in the
entropy formulation of the problems defined by (4.32), we obtain

/Qa( s DU ) DT = 00) % [ 05 Th 0 = )
< /Q (b(16) — by ()T (1, —ua>— /8 T =
and

1
/ 0t Dit). DTy (—t% ) < / ({1t ) b)) Ti (— % 1)~ / Ty (i —0%, ) dter
Q ’ a Jo ’ Ele) ’

Adding the two inequalities above and dividing their sum by [ > 0, we get

7 [ a0 D) = 0l Do DT =00+ 7 [ 05 i = )
o 1 & —u
</ (nlt,) =) 5, )

~a ~ a 1 ~ ~ o
- 7/ CZ—‘l(u?ﬂ,n - ua)dum,n - 7/ T‘l(ua - um,n)dﬂ‘a'
o0 oN (4 33)
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Using assumptions (H;) and (Hy), we deduce that

1 @
7 [ 05 D5 ) = e, D)) DTy = )

1

> 1 [ a5 D) = a0, D )LD )

1
> 7 [ Ol )i~ el [Du P D5, )
f

—0asl—0,

where F = {[ual < [[u% ,lloo + 1} 0 {Jul,, — ual < 1.
Noticing that the last two integrals in the right hand side of inequality (4.33) are
nonnegative. Indeed these integrals can be written as

/ T8 — i) (48 0)r — (1ta)y) + / Ti(s — i) (%)
o0 o0

s

= [ T~ g7 [ B @)+ [ T )de);
a0 o0 a0
which are clearly nonnegative by properties of the measures and ~y..
1
As lEno jTl(u%n — Uq) = Signo(Uy, , — Ua), We get after passing to the limit in (4.33)

as | — 0

[ ) = W) s = o)
< — /1/) Tsigno(us, ,, — Ua) /dJ n)signo(up, , — ta)

l a,+ l o, —
- [ i+ /8 ol

— 0 as m,n — 4o0.

Note also that
/Q (b (u2) — b)) signo(ul . — )
= [ O = blua)signo(u — va) + o [ (u)signoug , - ua)
Q
1
. / (W) signo(uSh., — 1ua)
n Jon 1
> / (b(uS ) — bluta))signo(uly n — ) — — [ Jussh] — L / i,
Q o0 oN

which imply that

/ (b(u..) — blua))signo(ul , — ua)
Q

(4.34)

IN

1
< / (b (02 1) — b)) signo(uSh . — 1a) + — / s
Q ' m Joq

— 0 as m,n — 400 (according to inequality (4.34)).
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Then, it follows that

i.e.

Jim /Q Ib(ug, ) — b(ua)| =0

m,n—-—+00

|b(us, ) — b(ua)H1 — 0 as m,n — +o0.

As |[b(uq) — b(u)||1 < ||b(ufn7n) - b(ua)Hl + ||b(upy ) — b(u)||1 — 0 then

|[b(ua) —b(u)H1 — 0 as m,n — +o0.

-k

We deduce that b(u) € D(A)

The proof of Theorem 4.1 is now complete. U
Corollary 4.1. Under the assumptions of Theorem 4.1, (Ey)(f) admits a unique entropy
solution.
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