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Abstract. Aiming to extend relational databases while preserving their declarative program-
ming style, deductive databases support a rule-based language capable of expressing com-
plete applications. Distributed deductive databases have been intensively studied in the past
decades mainly because they provide a high level for protecting voluminous data with low
costs. In such systems one of the most important processes is the fragmentation of data and
rules since it represents a basis for the allocation process. It also needs to be secured all the re-
mote database fragments and the infrastructure. This paper studies the vertical fragmentation
for such a system proposing a security method which provides authentication.
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1. Introduction

Deductive databases have resulted from relational databases by adding rules that
includes deductive capabilities. A deductive database system is a combination of a
conventional database containing facts, a knowledge base containing rules, and an
inference engine which allows the derivation of information implied by the facts and
rules. Commonly, the knowledge base is expressed in a subset of first-order logic and
either a SLDNF or Datalog inference engine is used. Deductive databases provide
a declarative, logic-based language for expressing queries, reasoning, and complex
applications on databases [16].

The most important advantages of deductive databases languages are [17]:
• The goals execution order does not depend on their order in the rules writing;

the execution order is controlled by the system and not by the programmer.
• The selection between forward-chaining and backward-chaining execution is au-

tomatic; it is also controlled by the system and not by the programmer.
These advantages not only enhance data independency since the resulting code can
be reused even if physical changes have been made to the database, but they also ease
the programmer tasks.

A distributed database is a database physically stored in two or more computer
systems. Although geographically dispersed, a distributed database system manages
and controls the entire database as a single collection of data. If redundant data are
stored in separate databases due to performance requirements, updates to one set of
data will automatically update the additional sets in a timely manner [13]. The most
popular distributed database system is maybe the Internet’s domain name system
(DNS).
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A deductive database can be definite or disjunctive. The main difference between
these two types is that the latter can capture indefinite information. Indefinite infor-
mation is information that is possibly true and not unconditionally true. A disjunc-
tive system allows disjunction of predicates to apper in the head of any rule from the
database [4].

All the operations upon a database system are named transactions. A transaction
is a transformation of state which has the properties of atomicity, durability, and
consistency [6]. These four properties are named A.C.I.D and are followed also by the
distributed deductive database systems’ transactions:
• Automaticity: when an update occurs to a database, either all or none of the

update becomes available to anyone beyond the user or application performing
the update, which means that only a fragment of the update cannot be placed into
the database, should a problem occur with either the hardware or the software
involved.

• Consistency: if a transaction which violates the databases consistency rules is
executed, the entire transaction will be rolled back and the database will be
restored to a state consistent with those rules; however, if a transaction ends
successfully, it will take the database from one state that is consistent with the
rules to another state that is also consistent with the rules.

• Isolation: multiple transactions occurring at the same time not impact each
others execution; the following degrees of isolation were originally described as
degrees of consistency by Jim Gray [6]:

– degree 0 - a transaction does not overwrite data updated by another user
or process of other transactions;

– degree 1 - degree 0 plus a transaction does not commit any writes until it
completes all its writes (until the end of transaction);

– degree 2 - degree 1 plus a transaction does not read data updated by
another user or process of other transactions;

– degree 3 - degree 2 plus other transactions do not read data updated by
another user or process of a transaction before the transaction commits;

• Durability: ensures that any transaction committed to the database will not be
lost.

Note that the isolation property does not ensure the execution order of the trans-
actions, merely that they will not interfere with each other. Durability is ensured
through database backups and transaction logs that facilitate the restoration of com-
mitted transactions even if any subsequent software or hardware fails.

To work with an optimum distributed deductive database system we have to be sure
that the fragmentation process end successfully causing the success of the allocation
process. We propose a security method based on authentication and key exchange for
providing a safe vertical fragmentation.

2. State of Art

For working with deductive databases there must be used a declarative language
for defining relations, rules and user queries. Such a language, also one of the most
popular, is Datalog. Rules can be compared with the relational views [18, 15] since
they specify derived relations that are not stored in the database but that can be
formed from facts through inference mechanisms based on the specifications of the
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rule. the main difference between these two concepts is that rules involve recursion
and relational views do not.

Two of the main design activities in a distributed deductive database system are
fragmentation and allocation of data and rules. The performance and the efficiency
of a distributed deductive database system depends the most on the fragmentation
process which allows parallel execution of a single query and increases the level of
concurrency.

Concurrency control involves the synchronizations of accesses to the distributed
database to maintain the integrity of the database. The most popular consistency
control algorithms are locking-based. These algorithms place a lock, which depends on
the lock compatibility rules, on some unit of storage whenever a transaction attempts
to access it. All these algorithms follow the next theorem:

Theorem 2.1. No lock on behalf of a transaction should be set once a lock previously
held by the transaction is released.

This process has two phases:
• growing phase implies obtaining locks;
• shrinking phase implies releasing the transactions.

Releasing a lock before ending a transaction may cause serious problems. Therefore,
most of the concurrency control algorithms are strict in holding their locks until the
transaction ends. A big disadvantage of the concurrency control algorithms based on
locking may cause deadlocks whose detection and management in a distributed system
is very difficult. However they are more performant and simpler than timestamp-based
algorithms.

Fragmentation also improves the locality of access throw applications in such a
system since application views are usually formed by multiple relations [14]. The
performance increasing is mainly due to the decreasing of the transactions’ response
time. The response time decreases because fragmentation reduces the irrelevant data
that is transfered and accessed among different sites [8].

In the building process steps of a distributed deductive database systems, one of
the first issue is the selection of a fragmentation approach [2, 13]:
(1) horizontal fragmentation - a relation is subdivided into groups that have the

same attributes as the original one; such fragments are expressed as a selection
operation on the global relation;

(2) vertical fragmentation - the attributes from a relation schema are subdivided
into groups; such fragments are obtained through protecting the global relation
over each group.

Definition 2.1. A fragment is the result of an expression in a relational algebra
which takes global relation as operands.

All the horizontal or vertical fragments can be considered relations, too. Because of
that we can apply one or more operations on them, obtaining different fragments.

Different approaches for both vertical and horizontal fragmentation in distributive
deductive database systems have been proposed. In [8] the authors present four dif-
ferent methods for fragmentating data and rules which maximize locality of query
evaluation and minimize communication cost and execution time during query pro-
cessing. The four algorithms are: RCA for rule clustering, OVF for computing over-
lapping vertical fragmentation, DVF for generating disjoint vertical fragmentation,
and CAA for allocating rules and corresponding fragments. The vertical fragmenta-
tion technique is based on the access frequency of queries in one of the fragmentation
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algorithms. An important feature of this technique is due to the fact that the at-
tributes clustered in a vertical fragment are not determinated by using an attribute
affinity matrix [11, 12] but using the rule to attribute dependency matrices.

Another vertical partitioning algorithm on relations using a graphical technique is
described in [12]. In [9] is constructed a theory of fragmentation and is also studied
the completeness and update problems of overlapping fragments. [10] treats the rule
allocation problem in a distributed database system and proposes a rule partitioning
method, wheres [20] develops a hybrid knowledge fragmentation approach.

3. Vertical Fragmentation. Securing Rules Transfer

To exemplify fragmentation process we need some definitions.

Definition 3.1. A rule r in a deductive database system has the form:

p(X1, . . . , Xn) : −q1(Y1, . . . , Ym), . . . , qt(Z1, . . . , Zs)

where p is the head (predicate) of r and can be derived or mixed predicate, q1 . . . qt

form the body of r and can be derived, mixed or base predicates. The argument of a
predicate is a variable or a constant.

A predicate p is mixed if there is a set of ground facts for p, and q appears as the
head predicate of some rules [1] and a base predicate corresponds to a relation in the
database.

Definition 3.2. A rule which has an empty body and all Xi are constants is named
a fact.

Definition 3.3. A query is a rule that does not have a head.

Definition 3.4. A rule r is recursively if at least one of the predicates in its body is
the head of r.

A predicate may have multiple definitions since multiple rules can have the same
head predicate.

Definition 3.5. Let p be a predicate in a rule r. Any argument of p which appears
as ” ” is an unnamed variable called anonymous variable.

Definition 3.6. Let p and q be two predicates. The predicate p directly depends on
the predicate q if the latter appears in the body of p.

Suppose we have the rule:
student(Name,University,Desg):-
studentbase( ,Name,University,Desg,Age),
Age>21.

To horizontally fragmentate this rule we have:
student1(Name,University,Desg):-
studentbase1( ,Name,’Craiova’,Desg,Age),
Age>21.
student2(Name,University,Desg):-
studentbase2( ,Name,’Oxford’,Desg,Age),
Age>21.
So, for the above fragmentation we assumed that the only values for the University
attribute are ’Craiova’ and ’Oxford’. The initial relation can be obtained from:

student=student1 UN student2
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To exemplify the vertical fragmentation we will use the same rule. Such a fragmenta-
tion can be done in two ways. First method obtains the derived relation from a rule
fragmented exactly in the same way as a stored base relation:
student 1(Name,University):-
studentbase( ,Name,University, ,Age),
Age>21.
student 2(Name,Desg):-
studentbase( ,Name, ,Desg,Age),
Age>21.

The initial relation is obtained through:

student=student 1 JOIN student 2

The other way for vertical fragmentation is obtained through distributing literals
in the body of a rule. Suppose we have the rule:

R : −P,Q, S.

where P,Q and S are relations. The rule can be written as:

R : −P1, P2, Q, S1, S2 (1)

where P is vertically fragmentated in P1 and P2 and S is vertically fragmentated in
S1 and S2. So equation (1) is vertically fragmented in:

R1 : −P, Q, S1.

and
R2 : −P2, S2.

For such a fragmentation to be possible we have to assume that P1, Q and S1 are
defined at one site forming a useful unit of knowledge, while P2 and S2 are defined
over another site also forming a useful of knowledge. We can parallelly execute R1

and R2. We can reconstruct R using:

R : −R1 JOIN F2

Our method provides a safe successful ending for the vertical fragmentation process.
Before the management system executes one fragmentation rule it first verifies its
authenticity. Suppose a user wants to fragmentate the rule (1) in:

R1 : −P, Q, S1.

and
R2 : −P2, S2.

Suppose we have an asymmetric cryptosystem where (smpu, smpr) are the public
and the private key for the management system and (uspu, uspr) are the public and
the private key for the user. En and De denote the encryption and the decryption
operations. We suppose that the key pairs are already generated by a trusted part.
First, the system sends:

Ensmpr(X)
Then the user decrypts

Desmpu(Ensmpr(X))
and sends back

Enuspr(R1 : −P, Q, S1., X)
Enuspr(R2 : −P2, S2., X).
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The management system computes

Deuspu(Enuspr(R1 : −P, Q, S1., X))

Deuspu(Enuspr(R2 : −P2, S2., X))
So the system sends a random value encrypted with his own private key. The user
receives it and decrypts it with the system’s public key. Then he encrypts the result
along with each fragmentation rule with his own private key and sends them to the
system. The system decrypts them with the user public key and verifies if the obtained
value is the same one that it randomly chose at the beginning of the protocol. If the
values are equal the user is authenticated because the rules and the value X are
decrypted by the system with the public key of the user. Obtaining the same value
proves that X was encrypted with the user’s private key which it is known only by
its owner. Using such an authentication protocol, the randomly generated value X
can also be used as a private key for a symmetric cryptosystem.

3.1. Secure the Data throw Elliptic Curve Cryptosystem. To fix the keys
the communicating parties can use two types of methods: key imposed transmission
and key agreement. We will present an example of each method. For key agreement
protocol the most used is the Elliptic Curve Diffie-Hellman. Using this protocol
the two communicating parties (named S1 and S2) agree on a symmetric key. The
protocol is described in the algorithm below:
INPUT: domain parameters (F, p, aE , bE , G, n, h) The two keys kA and kB are equal

Algorithm 1 ECDH

1: S1 generates a and computes aG
2: S1 sends aG to S2

3: S2 generates b and computes bG
4: S2 sends bG to S1

5: S1 computes kA = abG
6: S2 computes kB = baG

and we note the session key K = kA = kB . The only public values are aG and bG.
If Eve (the attacker) intercepts these two values she cannot find K = abG because
finding this key means resolving the ECDLP. This protocol is vulnerable to a man-
in-the-middle attack because the information exchange is made in two rounds. In
this attack Eve intercepts the messages sent by the two communicating parties and
sends others using her own keys. So, Eve will establish a key with S1 and one with
S2. Using these keys Eve can intercept and modify the messages between S1 and S2.
The communicating parties will not even notice believing that the protocol has been
successfully ended. We present such an attack in the next algorithm, where the key
established with S1 is acG and the one established with S2 is bdG:
INPUT: domain parameters (F, p, aE , bE , G, n, h)

To avoid this attack the communicating parties must use an authenticated Diffie-
Hellman protocol. This means that S1 will send along with aG another information
which will prove her identity to S2. This information may be a zero knowledge one, an
encrypted message known only by S2 or a digital signature. The most recommended
is using a digital signature scheme. If such a scheme is used S1 will send (aG, (r, s))
to S2, where (r, s) is the digital signature applied to the message aG.

The most used digital signature scheme based on elliptic curves is the ECDSA. Like
all the digital signature schemes, the ECDSA has three algorithms: key generation,
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Algorithm 2 Man-in-the-Middle Attack for ECDH

1: S1 generates a and computes aG
2: S1 sends aG to S2

3: Eve intercepts aG, generates c and computes cG
4: Eve sends cG to S1

5: S1 computes acG
6: Eve computes caG
7: Eve generates d and computes dG
8: Eve sends dG to S2

9: S2 generates b and computes bG
10: S2 computes bdG
11: S2 sends bG to S1 but the message is intercepted by Eve
12: Eve computes dbG

signature generation, signature verification. The input for ECDSA are the domain
parameters defined above. The advantages and disadvantages of the ECDSA can

Algorithm 3 ECDSA Key Generation

1: S1 generates a such that a ∈ [2, n− 2]
2: S1 computes Q = aG and sends it to S2

3: The public key is Q and the private one is a

Algorithm 4 ECDSA Signature Generation

1: S1 generates k ∈ {1, . . . , p− 1}
2: kG ← T (xT , yT )
3: r ← xT mod n
4: if r = 0 then
5: goto step 2
6: end if
7: s ← k−1(SHA(m) + ar)
8: if s = 0 then
9: goto step 2

10: end if
11: the signature for the message m is (r, s)

Algorithm 5 ECDSA Signature Verification

1: S2 receives (r, s)
2: c ← s−1 mod n
3: u1 ← SHA(m)c mod n
4: u2 ← rc mod n
5: u1G + u2Q ← (x0, y0)
6: v ← x0 mod n
7: if v = r then
8: valid signature
9: end if
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be read in [21]. The reader can study a comparison between ECDSA and the classic
method, DSA, in [19].

4. Conclusions

Distributed deductive database systems have become a reality in the past decade.
They are mostly used in industry, banking and administration. A great interest has
appeared in applying logic to databases, particularly in deductive database systems,
which not only manage large facts stored in relations in a database and rules in a
rulebase but also provide for deduction from given database and rulebase [3, 5]. To
provide functionality to a distributed deductive database system the fragmentation
process must be efficient and secure. An insecure fragmentation may lead to unmoti-
vated increasing rulebase resulting a system failure.

We propose a simple authentication method based on proving the knowing of a
value (throw classic asymmetric encryption and Elliptic Curve asymmetric encryp-
tion). The protocol is efficient since there is a small number of operations to compute.
The key pairs are already generated and considered valid.
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