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Data stream management systems: a response to large scale
scientific data requirements

Sabina Surdu

Abstract. Exact sciences research communities are dealing with data sets that are expected
to reach exascale sizes in the years to come. Analysing such data sets becomes a tedious task,
when using classical data processing paradigms. An increasing number of domains from exact
sciences, like radio astronomy or financing, are handling data streams, which are sequences of
values produced over time by data sources. Data streams require new processing approaches
and a number of prototypes have already been implemented. As an important application of
informatics in exact sciences, we consider the case of Data Stream Management Systems, as
a response to increasingly large scale data in a great number of fields. We aim at highlighting
the main challenges in data stream processing. Based on identified difficulties, we present a
preliminary set of five principles, SCIPE, that we plan to use in further research work. The
final purpose would be to design and develop a dedicated Scientific Data Stream Management
System.
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1. Introduction

Nowadays scientific databases are reaching petascale sizes and in the years to come
these repositories are expected to exceed exascale dimensions. The research com-
munity is constantly seeking for new data models and data processing paradigms for
these extremely large databases. Sustained efforts are made in niches like data storage
and distribution, data mining analysis or query optimization.

But in domains like radio or optical astronomy data arrives in continuous streams
from an ever increasing number of celestial bodies and is captured by field-specific
telescopes. Seismometers perpetually monitor continuous streams of seismic waves to
study seismic activity, in an attempt to predict earthquakes. Radiation monitoring
devices scan sequences of environment radiation data, in order to emit alerts when the
ration level surpasses a given threshold. In quantum physics streams of information
from the atomic world describe the activity of elementary particles. Financial data
also takes the form of data streams. Weather satellites continuously stream collected
data in order to monitor the planet’s climate. Telephone calls also generate streams
of phone records. And the examples can go on.

As we can see, in a large number of scientific domains data is presented as an
arbitrary number of continuous streams. A data stream is a continuous sequence of
data, provided by a data source as time goes by. Storing all this data is impossible,
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with the current technology. Whereas storage capabilities are limited, data streams
are practically infinite. Only part of this data needs to be stored for future querying
purposes, which are domain dependent. However, a large number of scientific appli-
cations that need to handle data streams require that a considerable fraction of the
data should be processed on the fly and then discarded or stored for a short period
of time.

Consider a financial application that must alert its subscribers whenever a stock is
below a given value more than twice in the last 3 minutes. At any given time instant,
a processing system should only store the data that arrived on the financial stream
in the last three minutes. Processing is performed on this three minutes window of
data and then the data is discarded, as new information arrives on the stream.

As an important application of informatics in exact sciences, we consider the case
of Data Stream Management Systems, as a response to increasingly large scale data
in a great number of scientific domains.

Data Stream Management Systems (DSMSs) are dedicated systems that process
streams of continuous data. If traditional Database Management Systems (DBMSs)
handle stored and finite data relations, DSMSs cope with transient data streams,
which come from a various number of data sources, cannot be entirely stored and
are virtually unlimited in size. DSMSs process data streams by executing continuous
queries, which perpetually run over their continuous input data. A number of pro-
totype DSMSs have been implemented. We will refer to a selection of these in our
paper and we will also mention a key benchmark, whose experiments show that a
DSMS outperforms a DBMS in data stream processing.

We intend to show how a dedicated DSMS can serve the needs of applications in a
number of domains from exact sciences. We will touch processing paradigms that are
still in their infancy, like load shedding and operator scheduling, in a continuous data
processing context. We will show how a DSMS can provide a scientific application
with the data analyses it needs, in a continuous flow processing paradigm. We propose
a set of principles which can guide the design of what we call a Scientific Data Stream
Management System (Sci-DSMS). Starting from related work in the field of data
stream processing, we take into consideration general goals in exact sciences data
processing and draw the general directions than can be followed in the process of
designing a Sci-DSMS.

In the rest of the paper, we use the term scientific to refer to aspects from exact
sciences, i.e. domains that use precise and rigorous methods to express quantifiable
results.

This paper is organized as follows. Section 2 provides an introduction to the
data stream processing paradigm. The main theoretical aspects are revealed, placing
them in a comparative light with traditional data processing approaches. Section 3
highlights the key features of DSMSs. In Section 4 we take a brief look at large scale
scientific databases. Section 5 discusses the data model and performance issues in
specific DSMSs. In Section 6 we present the set of principles that should guide the
design of a Sci-DSMS. Section 7 concludes on the results of our work and provides
future research directions.

2. Data stream processing

2.1. Data streams. Data streams take the form of sequences of values, which are
provided over time by data sources. In radio astronomy the data sources could be the
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Figure 1. Temperature tuples from a data stream provided by a
temperature sensor

planets and stars that emanate radio waves. Weather satellites sensors can also be
viewed as data sources. Although the real data source is the weather, we will make the
assumption that the data source is the device that produces data in a digital manner.
Temperature sensors for instance provide streams of temperature notifications. In
financial services, a stock exchange is a data source that provides data to stock ticker
feeds providers, which act as a data source in turn and pass data along to end-users.

As we can see, data streams are omnipresent. In recent years, research community
has started to propose data models and querying capabilities that can cope with data
streams. The main difference between data streams and data from traditional DBMSs
is the fact that the latter doesn’t have the built-in notion of time. For data streams
time is an essential feature, as data sources produce their elements as time goes by.
Each element on a stream is associated with a time-based value, indicating when the
element was produced, i.e. a timestamp.

In our examples data is structured, resembling records in traditional relations from
DBMSs. Data that arrives on streams can also take the form of images for instance.
In this paper we will only consider systems that process streams of structured data
records, encompassing fields with basic data types like strings, numbers, etc. We
chose to stick to this palette of systems because most users are familiar with relational
databases and the querying languages they use. In the rest of the paper we will refer
to a unitary piece of data that arrives on a stream with the terms tuple, record or
element. FIGURE 1. shows five tuples of temperature notifications, produced by a
temperature sensor which emits a temperature tuple every ten seconds.

2.2. Query evaluation. Query evaluation on data streams is usually performed
in a window-based manner. Data streams are infinite and hence cannot be stored,
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as system resources are limited. Consider the case of a temperature sensor from a
refrigeration container. One may be interested to know when the temperature in the
container exceeds a given threshold for more than ten consecutive time instants in the
last three minutes. In this case, even if all the data on the stream of temperatures
could be stored, this approach would be highly ineffective. One should only store a
window of data that arrived on the stream in the previous three minutes and perform
desired computation on this fraction of data. As new tuples appear on the stream,
the data window slides over them, refreshing itself, hence the name sliding window.

Traditional DBMSs perform one-shot queries on their input data [3]. These queries
are executed against stored, finite data relations and they complete in a finite amount
of time. Systems that handle data streams on the other hand execute continuous
queries over them. A continuous query runs over time and updates its results based
on new input data it receives. In the previous example, a continuous query could run
perpetually over the temperature notifications stream and compute the result (which
is itself a stream) on windows of three minutes data.

One can control the rhythm at which to execute continuous queries. [15] introduces
a novel way of categorizing continuous queries. Change-based continuous queries
execute whenever a new element appears on the data stream. In our example, this
means the sliding window refreshes with every newly arrived element on the stream.
Timer-based continuous queries are executed at specified time instants, i.e. every
10 seconds. For our example, this means at every 10 seconds the sliding window
contains all the elements that arrived on the stream in the last three minutes and
the continuous query is executed against this window. This way system resources as
memory and CPU are saved, at the expense of some (bounded) inaccuracy in results
(for instance, one could miss a window of data when the temperature exceeds the
threshold for more than ten consecutive time instants in the last three minutes).

Based on our example, we can state that a continuous query resembles a view or
a condition statement from a trigger. From this perspective, one could add a great
number of triggers to a DBMS and perform continuous processing in a traditional,
although enhanced context. [1] however shows that a classical DBMS doesn’t scale
well past a certain number of triggers, whereas a monitoring application could easily
track hundreds of streams with a great number of running continuous queries.

3. Data Stream Management Systems

DSMSs are dedicated systems, built around stream processing engines, that process
data streams using continuous queries. These systems emerged to serve the needs of
monitoring data-intensive applications, that scan streams of data in order to produce
relevant results.

A key benchmark for comparing the performances of DSMSs relative to each other
and to traditional DBMSs is the Linear Road [6]. In three hours simulation experi-
ments, the benchmark clearly showed that a DSMS can outperform a DBMS by at
least a factor of five, when processing high load data streams and executing continuous
and one-shot queries.

DSMSs perform better than DBMSs in the context of data streams and continuous
queries because they address fundamental demands of monitoring applications. We
enumerate the most important ones.

Continuous queries provide results in a real time manner, with a low latency re-
quirement. In a variable tolling system [24] that computes highway tolls based on



70 S. SURDU

dynamic factors such as accident proximity or traffic congestion, a driver must be
alerted in real time whenever a new toll is issued for his or her car. Providing this
answer later in the future would be of no use.

Data streams are processed on the fly and then discarded. Once an element has
been seen and processed by the processing engine, it can no longer be retrieved. Al-
though some history over the data streams can be retained, in the end it is discarded.

The number of data sources can dramatically increase. So can the stream tuple
rate, i.e. the rhythm at which tuples arrive on the stream. The system can get
overloaded and may no longer be able to provide query results in a timely manner.
Various strategies are used to deal with high tuple rate, which we will later describe
in this paper.

Another processing paradigm difference is that the stream processing engine (SPE)
must react to arriving data, as opposed to traditional query processing engines that
orchestrate their data movement [14]. The SPE is not in complete control over the
input data any more.

If DBMSs can rely on all their available data to compute exact queries answers,
DSMSs can only compute approximate answers, based on the window of data their
queries consider.

4. Large scale scientific databases

Recent years have brought an explosion of data sets, both in their volume and their
complexity. [16] shows that in 2007 the world’s storage capacity was 290 exabytes (1
exabyte = 1018 bytes). Data sets of petascale sizes are encountered not only in the
industry, but also in scientific domains.

The Extremely Large Dabases community [25] has started a series of workshops
in order to address the challenges faced by both academic and industrial users, when
dealing with ever increasing data sets. Representatives from oil and gas domains,
radio astronomy, medicine, bioinformatics, finance, geoscience or high-energy physics
complained over the last years about current lack of solutions to problems arising
from extremely large data sets, like statistical analysis tools or approximation and
sampling techniques that cannot cope with nowadays volumes of data [11].

Whereas some challenges remain domain-specific, others arise in the majority of the
considered scientific domains. In radio astronomy, finance or marketing the number
of data sources and tuple rate can be incredibly large. Thousands of billions of
celestial bodies emanate radio waves every time instant, transaction records (whether
from a marketer or a credit card processor point of view) arrive on streams at an
ever increasing rate. Analysing scientific data from these sources can prove to be
a tedious task. For domains like these we consider the opportunity of designing
dedicated scientific data stream management systems, whose design and development
is performed having general scientific goals in mind.

5. Data model

5.1. Aurora, STREAM, Medusa and Borealis. We will exemplify on four known
DSMSs what we consider to be the core current challenges in nowadays stream pro-
cessing. In the following section we will explore these challenges from a Scientific
DSMS point of view.
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Aurora is a DSMS which allows specifying queries in a visual manner [10]. Using
a boxes-and-arrows paradigm, Aurora displays queries as networks of operators, con-
nected by data streams. On a query diagram, the boxes represent operators and the
arcs that connect the boxes are flowing streams of data.

STREAM is a general-purpose DSMS [4], which builds queries using a designated
SQL-like query language, CQL (Continuous Query Language [5]). Queries written in
CQL are transformed into physical query plans, composed of operators, inter-operator
queues and synopses. Operators perform the query processing, queues buffer input
and output data stream tuples and synopses store operators state, when required.

Medusa is a distributed DSMS that expresses its queries using the query diagrams
from Aurora [23]. Medusa actually uses Aurora as a single node processing engine.

Borealis is a distributed second generation DSMS, which uses Aurora’s stream
processing techniques and Medusa’s distributed functionalities [2]. Therefore, Borealis
uses as well the boxed-and-arrows paradigm to express its queries.

5.2. Data stream model. The above mentioned DSMSs consider a data stream S
to be a sequence of tuple-timestamp pairs (s, t) that appear over time, where s is the
tuple that arrives on stream S and t is the timestamp when s appeared on S. The
tuples conform to the stream schema of named attributes (similar to records that
follow a relation schema in a relational DBMS).

Apart from continuous queries, these systems also allow one-shot queries, expressed
against data sets equivalents. STREAM for instance contains the relation data type
[17]. Dealing with finite stored relations is out of the scope of our paper.

An interesting improvement over this model can be observed on Borealis. Whereas
all the other three systems allow only tuple insertion on their streams, Borealis encom-
passes a technique of correcting previously arrived records on streams [12], enabling
stream tuples delete and update operations [18].

Borealis also allows its queries specification to be changed at runtime, in a non-
disruptive manner. This means the user can change some parameters of the query,
i.e. selected fields, or even the query operators while the query network is running.

5.3. Improving performance. When data stream rates are very high or the stream
schema has tens of attributes, the DSMS uses certain strategies in order to improve
performance. Otherwise, tuples can accumulate at various places in the system, com-
promising its ability to provide results in a timely manner.

5.3.1. Load shedding. Load shedding is the action taken by a DSMS when the tuple
rate exceeds its abilities to provide desired results in a real time manner.

Aurora developed two types of load-shedding algorithms: Random-LoadShedding
and Semantic-LoadShedding [22]. For both approaches, Aurora and its related sys-
tems Medusa and Borealis use the notion of Quality of Service.

Quality of Service encompasses parameters that can refer to the latency bound
allowed for a DSMS queries or input tuples that are important and should not be
subject to load shedding during overload [19].

In Aurora every output tuple is associated with multiple QoS functions. Examples
of these include dropped tuple-based (indicates the amount of dropped input tuples),
time-based (specifies the latency requirement for query results) and value-based (in-
dicates which output values are more important than others) [21]. The random load
shedding algorithm drops elements in a random manner at strategic points in the
query diagram. The semantic load shedding algorithm takes a superior approach. It
takes into account value-based QoS, if such data is available, when choosing which
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tuples to drop, so that less important tuples are more likely to get dropped than more
important tuples. This way the semantics of the application is impacted in a minimal
manner.

Both Aurora and Borealis use a Window Drop operator for their aggregation queries
[20]. Previosuly described algorithms extract and drop tuples from within a window.
This operator has the advantage of maintaining windows integrity, during load shed-
ding, by disallowing tuples that get dropped to start new windows.

STREAM’s load shedding approach works best with aggregation queries [9]. The
system inserts load shedder operators on certain places in the query operator tree and
assigns them a probability value. Every tuple that flows through a load shedder is
discarded with the load shedder’s assigned probability.

5.3.2. Operator scheduling. In order to save memory and CPU, DSMSs use vari-
ous operator scheduling strategies, that lead to less intermediate state used and less
performed computations, while still achieving desired results.

Aurora performs a train superbox scheduling approach, which batches multiple in-
put tuples into trains and pushes them through multiple boxes in the query diagram[13].
This way, the box call overhead is avoided, as is the cost of spilling data to disk. So
does Borealis. Borealis however can also schedule operators in a way that maximizes
the chances to produce significant data values as output (using QoS metrics on both
input and output values).

STREAM uses a FIFO approach to operator scheduling when the data arrival rate
is uniform [8] and a dedicated Chain algorithm when the tuple rate is erratic [7], in
order to reduce intermediate state.

6. A Scientific DSMS - design principles

The first aspect that must be considered when dealing with data streams from
exact sciences is their size. Some of the large scientific data sets described in Section
4 are constructed by storing and archiving arriving elements on streams. We believe
that, in the case of some scientific domains, scientific structured data that arrives
on streams fits into the data model presented in Section 5. Instead of receiving the
input streams and archive or store the elements for later use, an on the fly processing
technique that encompasses both summarization and results computation should be
designed. We chose this to be the first from our set of principles oriented towards a
Sci-DSMS design. This principle is domain and application dependent, i.e. in some
fields or applications there might be a need to access each of previously arrived data
elements on a stream, hence summarization may not be able to answer the results of
such queries.

As an alternative to the above approach, if individual elements storage is necessary,
one could store tuples up to a certain moment in the past. Past that moment, all
tuples should be either summarized or discarded. This is our second principle.

The third principle is inspired from Borealis. When designing a Sci-DSMS one
should take into account the possibility to correct previously arrived data on input
streams. Revision processing is a great enhancement of Borealis and saves the daunt-
ing task of dealing with incorrect query results, due to incorrect input data.

The load shedding strategies used by the described systems can also be successfully
applied in a designed Sci-DSMS. Load shedding is necessary in a Sci-DSMS, where
tuple rate can be erratic and data can appear in high loads. The best load shedding
technique to use is however domain dependent. Astronomical data could be less
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interesting in certain periods of time for instance, whereas for the same time intervals
financial data could arise the greatest interest. However, we do believe that, no
matter the chosen approach, load shedding algorithms should take into account QoS
information, if available, in order to perform a semantic load shedding.

Last but not least, one should consider the interaction with a Sci-DSMS from
the scientist point of view. Researchers from different domains are not necessarily
database experts. Generally speaking, a monitoring application can be the interface
between the researcher and a DSMS. But we embark on designing a Sci-DSMS which
attempts to answer most of the needs of a researcher. Therefore, we aim at eliminating
the interface and let the scientist work directly on the Sci-DSMS. We still maintain the
idea of customizing the Sci-DSMS depending on the scientist’s domain, but this will
be the subject of future work. Hence, we aim to design a system where data and query
specification are performed in a user-friendly manner, that is a visual programming
language combined with an SQL-like declarative query interface (as the reader may
have noticed, the sources of inspiration are Aurora’s GUI and STREAM’s CQL).

We concisely present our SCIentific data stream processing PrinciplEs - SCIPE:
1. Whenever possible: process, then summarize or discard a data tuple. This

has a great impact on storage, whereas still keeping the tuple value for subsequent
querying, in a summarized manner, if necessary.

2. If individual elements storage is necessary, store only tuples from the recent
past and discard or summarize old elements. The effect from principle 1 is obtained
following this principle as well.

3. Design a revision processing enabled system.
4. Shed load in a domain-dependent manner, using QoS information, when avail-

able.
5. Construct queries in a user-friendly manner, combining visual and declarative,

SQL-like languages.

7. Conclusion and future directions

In this paper we provided an overview of data streams and the query process-
ing that accompanies them. We discussed theoretical and concrete, implementation-
related aspects of DSMSs. We showed the identified needs from exact sciences research
communities who are dealing with extremely large data sets. We identified the in-
tersection of current state-of-the-art in data stream processing with exact sciences
data processing demands. We presented a preliminary guide to designing a dedicated
Sci-DSMS, composed of a set of principles - SCIPE.

Future work includes three research directions. SCIPE is in its preliminary stage.
We intend to develop a formalization of our Sci-DSMS oriented set of designing prin-
ciples. Subsequently, we want to identify additional common requirements in exact
sciences data processing, that can add value to our SCIPE set. Once these steps are
performed, we intend to provide an implemented prototype of a Sci-DSMS, that can
handle streams of data in exact sciences in a uniform manner.
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