
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 38(3), 2011, Pages 76–83
ISSN: 1223-6934, Online 2246-9958

Fragmentation and Data Allocation in the Distributed
Environments

Nicoleta - Magdalena Iacob (Ciobanu)

Abstract. The distributed data processing is an effective way to improve reliability, avail-
ability and performance of a database system. In this paper we will concentrate on data
allocation problem with the aim to assure an optimal distribution of data in the process of
the distributed database design in correlation with data fragmentation. Efficient allocation
of fragments requires a balance between costs (storage, processing and transmission of data),
performance (especially response time) and data distribution restrictions. The allocation of
fragments is closely related to the replication of data from distributed databases. In addition,
we analyzed the cost of fragmentation and replication.

2010 Mathematics Subject Classification. Primary 68P05; Secondary 68P15, 68N17.

Key words and phrases. distributed databases, fragmentation design, allocation design,
strategies, methods, cost analysis.

1. Distributed databases

Definition 1.1. Let K be a collection of data Ki = {Ai1 , ..., Aik
}, k = 1, 2, ... which

consists of a set of attributes (fields, columns) and has an associated set of data
(lines, tuples, records). The database: BD = {K1, ...,Ki, ...}, i ∈ I, I = 1, 2, ..., n is
a collection of structured data.

Definition 1.2. Let C be a set of computers: C = {C1, ..., Cj}, j ∈ J , J = 1, 2, ..., m
then DDB is a distributed database and P1, P2, ..., Pj the parties that compose it.
Therefore DDB = {P1 ∪ P2 ∪ ... ∪ Pj}, with {P1 ∩ ... ∩ Pj} = ∅, where Pj is a
corresponding part of the computer Cj, Pj ∈ {K1, ..., Ki, ...}, i ∈ I, with 2 ≤ j ≤ m,
i.e. Pj is a subset of the DDB database.

Definition 1.3. A distributed database system consists of a collection of sites, con-
nected together via some kind of communications network, in which:

a. Each site is a full database system site in its own right, but
b. The sites have agreed to work together so that a user at any site can access data

anywhere in the network exactly as if the data were all stored at the user’s own site.

Definition 1.4. It follows that a distributed database (DDB) is really a kind of virtual
database, whose component parts are physically stored in a number of distinct ”real”
databases at a number of distinct sites (in effect. it is the logical union of those
database) [2].

Received July 05, 2011. Revision received August 25, 2011.
This work was partially supported by the strategic grant POSDRU/88/1.5/S/52826, Project

ID52826 (2009), co-financed by the European Social Fund - Investing in People, within the Sectoral
Operational Programme Human Resources Development 2007-2013.

76

FRAGMENTATION AND DATA ALLOCATION ... 77

Definition 1.5. A distributed database management system (DDBMS) is a software
system that manages a distributed database while making the distribution transparent
to the user [3]. Distribution is normally discussed solely in terms of the fragmenta-
tion and replication of data. A data fragment constitutes some subset of the original
database. A data replicate constitutes some copy of the whole or part of the original
database [1].

2. The design of a distributed database

The design of a distributed computer system involves making decisions on the
placement of data and programs across the sites of a computer network. In the
case of distributed DBMSs, the distribution of applications involves two things: the
distribution of the distributed DBMS software and the distribution of the application
programs that run on it [5].

The distributed nature of the data involves new further data: data fragmentation,
partitioning, replication and fragments allocation as well as replicas on different sites.
The design of DDB can be done, as in the case of centralized database, using the
top-down and/or bottom-up approach.

Top-down design shown schematically in Figure 1, aims to assure an optimal
distribution of data and is used in the distributed database design phase.

Figure 1. Top-down design of distributed databases

The starting point in a top-down design approach is to identify and analyze the
requirements of the system which will use the distributed database architecture and

78 N.M. IACOB (CIOBANU)

identify the data storage requirements and the data access mode. Based on these
requirements first will be designed the global scheme of DDB independent of physical
constraints regarding distribution and implementation. The next step is the data dis-
tribution design, which will show the fragmentation type of DDB and also allocation
of fragments on nodes. The design process will end with the local database design for
each node.

The design techniques for global scheme of DDB and local database are similar with
those used in a centralized database scenario. Specific to DDB are aspects related to
the fragmentation design and fragment allocation scheme to network nodes.

The two activities, fragmentation and data allocation are addressed independently,
fragmentation results representing the input in data allocation phase. Both activities
have the same inputs, the difference between them being the fact that fragmentation
starts from global relationships, while the data allocation takes into account fragmen-
tation results. Both take into account the data access requirements, but each of them
ignore the way in which requirements are comprised by the other design decisions.
The fragments and their allocation on sites aim to achieve, as much as possible, access
to the local data references.

2.1. Fragmentation design.

Definition 2.1. Fragmentation. The system partitions the relation into several
fragments, and stores each fragment at a different site.

If a distributed database B is partitioned this means that the parties P1, P2, ..., Pj,
i ∈ I, I = 1, 2, ..., n which compose her form disjoint subsets: B = {P1∪P2∪ ...∪Pj},
with {P1 ∩ ... ∩ Pj} = ∅.

The fragmentation is the partitioning of a global relation R into fragments R1,
R2, ..., Ri, containing enough information to reconstruct the original relation R.

There are three basic rules that should be looked at during the fragmentation,
which ensure that the database does not have semantic changes during fragmentation,
i.e. ensure consistency of the database:
• Completeness. If relation R is decomposed into fragments R1, R2, ..., Rn, each

data item that can be found in R must appear in at least one fragment.
• Reconstruction. It must be possible to define a relational operation that will

reconstruct R from the fragments. Reconstruction for horizontal fragmentation
is Union operation and Join for vertical.

• Disjointness. If data item di appears in fragment Ri, then it should not appear
in any other fragment.

Exception: vertical fragmentation, where primary key attributes must be repeated to
allow reconstruction. In the case of horizontal fragmentation, data item is a tuple;
for vertical fragmentation, data item is an attribute.

2.1.1. Fragmentation strategies. Consider a relation with scheme R. The fragmen-
tation of R consist of determining the number of fragments (subscheme) Ri obtained
by applying an algebraic relation on R (as operations on relations which show the
logical properties of data). In this context, the fragmentation of data collection can
be done in two ways:

a) Horizontal. The horizontal fragmentation of a relation R is the subdivision
of its tuples into subsets called fragments; the fragmentation is correct if each tuple
of R is mapped into at least one tuple of the fragments (completeness condition).
An additional disjointness condition, requiring that each tuple of R be mapped into

FRAGMENTATION AND DATA ALLOCATION ... 79

exactly one tuple of one of the fragments, is often introduced in distributed database
systems in order to control the existence of duplication explicitly at the fragment level
(by having multiple copies of the same fragment). The resulted fragments Ri have
the same scheme structure as well as collection R, but differ by the data they contain
and are resulted by applying a selection on R.

Selection op(R) - defines a relation that contains only those tuples of R that satisfy
the specified condition (predicate p): op(

∏
a1, ..., an(R)). A horizontal fragment can

be obtained by applying a restriction: Ri = ðcondi(R). So we can rebuild the original
relation by union as follows: R = R1 ∪R2 ∪ ... ∪Rk.

For example:
R1 = σ type=’House’(PropertyForSale)
R2 = σtype=’Flat’(PropertyForSale)
There are two versions of horizontal partitioning:
• primary horizontal fragmentation of a relation is achieved through the use

of predicates defined on that relation which restricts the tuples of the relation.
• derived horizontal fragmentation is realized by using predicates that are

defined on other relations.
b) Vertical. It divides the relation vertically by columns. The resulted fragments

Ri contain only part from the collection structure R. It keeps only certain attributes
at certain site and they contain the primary key of the relation R to ensure that
the restore is possible and are resulted from the application of a projection operation
of relational algebra:

∏
a1, ..., an(R), where a1, ..., an are attributes of the relation

R. The fragmentation is correct if each attribute of the relation is mapped into at
least one attribute of the fragments; moreover, it must be possible to reconstruct the
original relation by joining the fragments together R = R1

⊗
R2

⊗
...

⊗
Rn; in other

words, the fragments must be a lossless join decomposition of the relation.
For example:
R1 =

∏
staffNo, position, salary(Staff)

R2 =
∏

staffNo, firstName, lastName, branchNo(Staff)
c) Sometimes, only vertical or horizontal fragmentation of a database scheme is in-

sufficient to distribute adequately data for some applications. Instead it can be useful
to implement mixed or hybrid fragmentation. A mixed fragment from a relation
consists of a horizontal fragment that is vertically fragmented, or a vertical fragment
that is horizontally fragmented. A mixed fragmentation is defined using selection and
projection operations of relational algebra: σp(

∏
a1, ..., an(R)) or

∏
a1, ..., an(σp(R)).

The comparison of fragmentation strategies is showed in table 1.
For each fragment of a relation R:
• Condition C = True (all tuples are selected).
• List (L = ATTRS(R)) = True (all attributes are included in the list).

Vertical fragmentation Horizontal fragmentation Mixed fragmentation

C True (all tuples) False (not all tuples) False (not all tuples)

L False (not all columns) True (all columns) False (not all columns)

Table 1: Comparison of fragmentation strategies

The advantages of the fragmentation:
• Usage - applications work with views rather than entire relations;
• Efficiency - data is stored close to the place where it is mostly frequently used;
• Parallelism - with fragments are the unit of distribution, a transaction can be

divided into several subqueries that operate on fragments;

80 N.M. IACOB (CIOBANU)

• Security - data not required by local applications is not restored, and conse-
quently not available to unauthorized users;

• Performance of global applications that require data from several fragments lo-
cated at different sites many be slower.

2.2. Allocation design. A database is named distributed if any of its tables are
stored at different sites; one or more of its tables are replicated and their copies are
stored at different sites; one or more of its tables are fragmented and the fragments
are stored at different sites; and so on. In general, a database is distributed if not all
of its data is localized at a single site [6].

The problem of fragment allocation can be treated as a problem of placement
optimization for each data fragment. Efficient distribution of fragments requires a
balance between costs (storage, processing and transmission of data), performance
(especially response time) and data distribution restrictions.

Give:
• a set of m fragments F = {F1, F2, ..., Fm} exploited by a set of k applications

Q = {Q1, Q2, ..., Qk} on a set of p sites S = {S1, S2, ..., Sp}.
Determine:

• Det(F, S) =

{
1, if F is alocated

0, if otherwise

The allocation problem involves finding the ”optimal” distribution of F to S.
To minimize:
• storage cost + communication cost + local processing cost
Subject to:
• response time constraints
• availability constraints
• network topology
• security restrictions
The allocation of fragments is closely related to the replication of data from DDB.

In the data allocation phase the designer must decide whether DDB fragments will
be replicated and also their degree of replication.

Definition 2.2. Replication. The system maintains several identical replicas
(copies) of the relation, and stores each replica at a different site. The alternative to
replication is to store only one copy of relation r.

A database is replicated if the entire database or a portion of it (a table, some
tables, one or more fragments, etc.) is copied and the copies are stored at different
sites. The problem with having more than one copy of a database is to maintain
the mutual consistency of the copies-ensuring that all copies have identical schema
and data content. Assuming replicas are mutually consistent, replication improves
availability since a transaction can read any of the copies [4]. In addition, replica-
tion provides more reliability, minimizes the chance of total data loss, and greatly
improves disaster recoveryIn addition, replication provides more reliability, minimizes
the chance of total data loss, and greatly improves disaster recovery.

Fragmentation and replication can be combined: A relation can be partitioned into
several fragments and there may be several replicas of each fragment [7].

2.2.1. Methods of data allocation. In designing data allocation, the following rule
must be respected: the data must be placed closer to the location in which will be
used. In practice, the methods used for data allocation are:

FRAGMENTATION AND DATA ALLOCATION ... 81

• Method of determination of non redundant allocation (called the best
choices method) implies evaluating each possible allocation and choosing a single
node for each fragment. The method eliminates the possibility of placing a
fragment at a particular node if a fragment is already assigned to that node.

• The redundant allocation method on all profitable nodes implies the selec-
tion of all nodes for which the benefit of allocating a copy of the fragment is
greater than the cost of allocation. Redundant final allocation is recommended
when data retrieval frequency is higher than the frequency of updating data.
Data replication is more convenient for systems that admit temporary inconsis-
tent data.

• Progressive replication method implies initial implementation of a non re-
dundant solution and then progressively introduces the replicated copies from the
most profitable node. The benefits are calculated by taking into consideration
all query and update operations.

3. Cost analysis

Assume the set of sites is S = {S1, S2, ..., Sp}. Let p be the total number of
sites, NRel be the total number of relations, m be the total number of fragments,
Nfrag be the cardinality of the fragmented relation, n be the number of fragments of
the fragmented relation, Nrep be the cardinality of each other (NRel − 1) replicated
relations, Njoin be the cardinality of the joined relations, k be the number of attributes
in both fragmented and replicated relations, Kjoin be the number of attributes after
joining the relations from any site, Kp be the number of attributes to be projected,
CTcomp be cost per tuple comparison, CTconc be the cost per tuple concatenation,
Tcost−attr be transmission cost per attribute, TCR be the replication transmission
costs, CPp−attr be the cost per projected attribute.

3.1. Cost analysis of fragmentation and replication (CAFR). The CAFR
algorithm requires one of the relations referenced by a query to be fragmented and
other relations to be replicated at the sites that have a fragment of the fragmented
relation. The query is decomposed into the same number of subqueries as the number
of sites and each subquery is processed at one of these sites.

The cost for one of the relation to be fragmented across m sites is:

TCO−F = Nfrag ∗ k ∗ Tcost−attr ∗ n. (1)

The cost for all other (NRel − 1) relations to be replicated across n sites is:

TCR = (Nrep ∗ k ∗ Tcost−attr) ∗ (NRel − 1). (2)

The local processing costs of these sites are (union cost for fragmented relation and
natural join cost):

LPC =
r∑

j=1

Cost[
n⋃

i=1

(F)i]j+[(Nfrag∗1)+Nrep∗(NRel−1)∗CTcomp+Njoin∗CTconc]∗p.

(3)
It follows that, the total cost for CAFR strategy is:

TCCAFR = TCO−F + TCR + LPC. (4)

82 N.M. IACOB (CIOBANU)

The CAFR permits parallel processing of a query and are not applicable for pro-
cessing distributed queries, in which all the non fragmented relations are referenced
by a query.

3.2. Cost analysis of partition and replication (CAPR). The CAPR algorithm
works as follows. For a given query, the minimum response time is estimated if all
referenced data is transferred to and processed at only one of the sites. Next, for each
referenced relation and each copy of the relation, the response time is estimated if the
copy of the relation is partitioned and distributed to a subset of S and all the other
relations are replicated at the sites where they are needed. A choice of processing
sites and sizes of fragments for the selected copy of the chosen relation are determined
by CAPR so as to minimize the response time. Finally, the strategy which gives the
minimum response time among all the copies of all the referenced relations is chosen.

The union cost:

UC =
m∑

i=1

[kjoin ∗Njoin ∗ CTconc]j . (5)

If all the relations are transferred to any of the sites, to project and union the
relations then the cost is:

TCPROJ−UNI =
NTR∑

I=1

[Nrep ∗KP ∗ CPp−attr]I + UC. (6)

3.3. Comparison of cost analysis. CAFR or CAPR requires substantial data
transfer and preparation before a query can be processed in parallel at different sites.
Performing local reductions before data transfer can reduce the data replication cost
and the join processing cost. However, local reduction takes time and it delays data
transfer. It is not always true that local reduction will reduce the response time for the
processing of a given query. But comparing equations (6) and (4) it is concluded that
TCPROJ−UNI > TCCAFR ; as it is always true that sending all relations directly to
the assembly site, where all joins are performed, is unfavorable due to its high trans-
mission overhead and little exploitation of parallelism. This case is the worst case
depending on the given input query (wherein there are no conditions or predicates in
the where clause of the given query). The fragment and replicate strategy (CAFR)
permits parallel processing of a query. CAFR are not applicable for processing dis-
tributed queries; in which all the non fragmented relations are referenced by a query.
In case of CAFR strategy, if no relation referenced by a query is fragmented, it is nec-
essary to decide which relation will be partitioned into fragments; which copy of the
relation should be used; how the relation will be partitioned; and where the fragments
will be sent for processing. To resolve this problem, CAPR (Partition and Replicate
strategy) is presented. But CAPR algorithm favors joins involving small numbers
of relations, and improvement decreases as the number of relations involved in joins
increases. Improvement of CAPR over single site processing depends heavily on how
fast a relation can be partitioned. If the implementation of relation partitioning is
inefficient, CAPR actually gives worse response time than single site processing.

FRAGMENTATION AND DATA ALLOCATION ... 83

4. Conclusion

The objective of a data allocation algorithm is to determine an assignment of frag-
ments at different sites in order to minimize the total data transfer cost involved in
executing a set of queries. This is equivalent to minimization of the average query
execution time, which has a primary importance in a wide area of distributed appli-
cations. The fragmentation in a distributed database management system increases
the level of concurrency and therefore system throughput for query processing. Dis-
tributed databases have appeared as a necessity, because they improve availability
and reliability of data and assure high performance in data processing by allowing
parallel processing of queries, but also reduce processing costs.

References

[1] P. Beynon-Davies, Database systems (3rd ed.), New York: Palgrave-Macmillan, 2004.
[2] C.J. Date, An introduction to Database Systems (8th ed.), Addison Wesley, 2003.
[3] R. Elmasri and S. Navathe, Fundamentals of database systems (4th ed.), Boston: Addison-

Wesley, 2004.
[4] N.M. Iacob (Ciobanu), The use of distributed databases in e-learning systems, Procedia Social

and Behavioral Sciences Journal 15 (2011), 3rd World Conference on Educational Sciences -
WCES 2011, Bahcesehir University, Istanbul - Turkey, 03-07 February 2011, 2673–2677.

[5] M.T. Ozsu and P. Valduriez, Principles of Distributed Database Systems (3th ed.), New York:
Springer, 2011.

[6] S. Rahimi and F.S. Haug, Distributed database management systems: A Practical Approach,
IEEE, Computer Society, Hoboken, N. J: Wiley, 2010.

[7] A. Silberschatz, H.F. Korth and S. Sudarshan, Database System Concepts (6th ed.), McGraw-
Hill, 2010.

(Nicoleta - Magdalena Iacob (Ciobanu)) University of Pitesti, Faculty of Mathematics and
Computer Science, Computer Science Department, Targu din Vale Street, No.1, 110040
Pitesti, Romania
E-mail address: nicoleta.iacob 2007@yahoo.com

