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Abstract. In this paper, we establish the sharp maximal function estimates for the Toeplitz
type operators associated to some integral operator with general kernel and the Lipschitz
functions. As an application, we obtain the boundedness of the Toeplitz type operators on
the Lebesgue, Morrey and Triebel-Lizorkin space. The operator includes the Littlewood-Paley
operator, Marcinkiewicz operator and Bochner-Riesz operator.

2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25.

Key words and phrases. Toeplitz type operator; Littlewood-Paley operator; Marcinkiewicz
operator; Bochner-Riesz operator; Sharp maximal function; Morrey space; Triebel-Lizorkin
space; Lipschitz function.

1. Introduction and Preliminaries

As the development of the singular integral operators (see [6][22][23]), their commu-
tators have been well studied. In [3][20][21], the authors prove that the commutators
generated by the singular integral operators and BMO functions are bounded on
Lp(Rn) for 1 < p < ∞. Chanillo (see [2]) proves a similar result when singular
integral operators are replaced by the fractional integral operators. In [7][17], the
boundedness for the commutators generated by the singular integral operators and
Lipschitz functions on Triebel-Lizorkin and Lp(Rn)(1 < p < ∞) spaces are obtained.
In [1], some singular integral operators with general kernel are introduced, and the
boundedness for the operators and their commutators generated by BMO and Lip-
schitz functions are obtained (see [1][10]). In [8][9], some Toeplitz type operators
related to the singular integral operators and strongly singular integral operators are
introduced, and the boundedness for the operators generated by BMO and Lipschitz
functions are obtained. In this paper, we will study the Toeplitz type operators gen-
erated by some integral operators with general kernel and the Lipschitz functions. As
an application, we obtain the boundedness of the operators on the Lebesgue, Mor-
rey and Triebel-Lizorkin space. The operator includes Littlewood-Paley operator,
Marcinkiewicz operator and Bochner-Riesz operator.

First, let us introduce some notations. Throughout this paper, Q will denote a
cube of Rn with sides parallel to the axes. For any locally integrable function f , the
sharp maximal function of f is defined by

M#(f)(x) = sup
Q3x

1
|Q|

∫

Q

|f(y)− fQ|dy,

Received October 3, 2011.
Supported by the Key Project of Chinese Ministry of Education (211118)

35



36 GUO SHENG, HUANG CHUANGXIA, AND LIU LANZHE

where, and in what follows, fQ = |Q|−1
∫

Q
f(x)dx. It is well-known that (see [6][22])

M#(f)(x) ≈ sup
Q3x

inf
c∈C

1
|Q|

∫

Q

|f(y)− c|dy.

Let

M(f)(x) = sup
Q3x

1
|Q|

∫

Q

|f(y)|dy.

For η > 0, let Mη(f)(x) = M(|f |η)1/η(x).
For 0 < η < 1 and 1 ≤ r < ∞, set

Mη,r(f)(x) = sup
Q3x

(
1

|Q|1−rη/n

∫

Q

|f(y)|rdy

)1/r

.

The Ap weight is defined by (see [6])

Ap =

{
w ∈ L1

loc(R
n) : sup

Q

(
1
|Q|

∫

Q

w(x)dx

)(
1
|Q|

∫

Q

w(x)−1/(p−1)dx

)p−1

< ∞
}

,

1 < p < ∞, and

A1 = {w ∈ Lp
loc(R

n) : M(w)(x) ≤ Cw(x), a.e.}.
For β > 0 and p > 1, let Ḟ β,∞

p (Rn) be the homogeneous Triebel-Lizorkin space
(see [17]).

For β > 0, the Lipschitz space Lipβ(Rn) is the space of functions f such that

||f ||Lipβ
= sup

x,y∈Rn

x6=y

|f(x)− f(y)|
|x− y|β < ∞.

Definition 1.1. Let ϕ be a positive, increasing function on R+ and there exists a
constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.

Let f be a locally integrable function on Rn. Set, for 1 ≤ p < ∞,

||f ||Lp,ϕ = sup
x∈Rn, d>0

(
1

ϕ(d)

∫

Q(x,d)

|f(y)|pdy

)1/p

,

where Q(x, d) = {y ∈ Rn : |x− y| < d}. The generalized Morrey space is defined by

Lp,ϕ(Rn) = {f ∈ L1
loc(R

n) : ||f ||Lp,ϕ < ∞}.
If ϕ(d) = dδ, δ > 0, then Lp,ϕ(Rn) = Lp,δ(Rn), which is the classical Morrey

spaces (see [18][19]). If ϕ(d) = 1, then Lp,ϕ(Rn) = Lp(Rn), which is the Lebesgue
spaces (see [4]).

As the Morrey space may be considered as an extension of the Lebesgue space, it
is natural and important to study the boundedness of the operator on the Morrey
spaces (see [4][5][11][16]).

In this paper, we will study some integral operators as following (see [1]).

Definition 1.2. Let Ft(x, y) be defined on Rn × Rn × [0,+∞) and b be a locally
integrable function on Rn, set

Ft(f)(x) =
∫

Rn

Ft(x, y)f(y)dy
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for every bounded and compactly supported function f . And Ft satisfies: there is a
sequence of positive constant numbers {Cj} such that for any j ≥ 1,∫

2|y−z|<|x−y|
(||Ft(x, y)− Ft(x, z)||+ ||Ft(y, x)− Ft(z, x)||)dx ≤ C,

and(∫

2j |z−y|≤|x−y|<2j+1|z−y|
(||Ft(x, y)− Ft(x, z)||+ ||Ft(y, x)− Ft(z, x)||)qdy

)1/q

≤ Cj(2j |z − y|)−n/q′ ,

where 1 < q′ < 2 and 1/q + 1/q′ = 1.
Let H be the Banach space H = {h : ||h|| < ∞}. For each fixed x ∈ Rn, we view

Ft(f)(x) as the mapping from [0, +∞) to H. Set

T (f)(x) = ||Ft(f)(x)||,
which T is bounded on L2(Rn). The Toeplitz type operator related to T is defined by

T b(f) = ||F b
t (f)||,

where

F b
t (f) =

m∑

k=1

F k,1
t MbF

k,2
t (f),

moreover, F k,1
t (f) are Ft(f) or ±I(the identity operator), T k,2(f) = ||F k,2

t (f)|| are
the bounded linear operators on Lp(Rn) for 1 < p < ∞ and k = 1, ..., m, Mb(f) = bf .

Note that the commutator [b, T ](f) = bT (f) − T (bf) is a particular operator of
the Toeplitz type operators T b. The Toeplitz type operators T b are the non-trivial
generalizations of the commutator. It is well known that commutators are of great
interest in harmonic analysis and have been widely studied by many authors (see
[20][21]). The main purpose of this paper is to prove the sharp maximal inequalities
for the Toeplitz type operators T b. As the application, we obtain the the Lp-norm
inequality and Triebel-Lizorkin spaces boundedness for the Toeplitz type operators
T b.

2. Theorems

We shall prove the following theorems.

Theorem 2.1. Let T be the integral operator as Definition 1.2, the sequence {Cj} ∈
l1, 0 < β < 1, q′ ≤ s < ∞ and b ∈ Lipβ(Rn). If g ∈ Lu(Rn)(1 < u < ∞) and
F 1

t (g) = 0, then there exists a constant C > 0 such that, for any f ∈ C∞0 (Rn) and
x̃ ∈ Rn,

M#(T b(f))(x̃) ≤ C||b||Lipβ

m∑

k=1

Mβ,s(T k,2(f))(x̃).

Theorem 2.2. Let T be the integral operator as Definition 1.2, the sequence {2jβCj} ∈
l1, 0 < β < 1, q′ ≤ s < ∞ and b ∈ Lipβ(Rn). If g ∈ Lu(Rn)(1 < u < ∞) and
F 1

t (g) = 0, then there exists a constant C > 0 such that, for any f ∈ C∞0 (Rn) and
x̃ ∈ Rn,

sup
Q3x̃

1
|Q|1+β/n

∫

Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||Lipβ

m∑

k=1

Ms(T k,2(f))(x̃).
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Theorem 2.3. Let T be the integral operator as Definition 1.2, the sequence {jCj} ∈
l1, 0 < β < 1, q′ ≤ s < ∞ and b ∈ BMO(Rn). If g ∈ Lu(Rn)(1 < u < ∞) and
F 1

t (g) = 0, then there exists a constant C > 0 such that, for any f ∈ C∞0 (Rn) and
x̃ ∈ Rn,

M#(T b(f))(x̃) ≤ C||b||BMO

m∑

k=1

Ms(T k,2(f))(x̃).

Theorem 2.4. Let T be the integral operator as Definition 1.2, the sequence {Cj} ∈
l1, 0 < β < min(1, n/q′), q′ < p < n/β, 1/r = 1/p − β/n and b ∈ Lipβ(Rn). If
g ∈ Lu(Rn)(1 < u < ∞) and F 1

t (g) = 0, then T b is bounded from Lp(Rn) to Lr(Rn).

Theorem 2.5. Let T be the integral operator as Definition 1.2, the sequence {Cj} ∈
l1, 0 < β < min(1, n/q′), q′ < p < n/β, 0 < D < 2n and b ∈ Lipβ(Rn). If
g ∈ Lu(Rn)(1 < u < ∞) and F 1

t (g) = 0, then T b is bounded from Lp,ϕ(Rn) to
Lr,ϕ(Rn).

Theorem 2.6. Let T be the integral operator as Definition 1.2, the sequence {2jβCj} ∈
l1, 0 < β < min(1, n/q′), q′ < p < n/β and b ∈ Lipβ(Rn). If g ∈ Lu(Rn)(1 < u < ∞)
and F 1

t (g) = 0, then T b is bounded from Lp(Rn) to Ḟ β,∞
p (Rn).

Theorem 2.7. Let T be the integral operator as Definition 1.2, the sequence {jCj} ∈
l1, q′ < p < n/β and b ∈ BMO(Rn). If g ∈ Lu(Rn)(1 < u < ∞) and F 1

t (g) = 0,
then T b is bounded on Lp(Rn).

Theorem 2.8. Let T be the integral operator as Definition 1.2, the sequence {jCj} ∈
l1, q′ < p < n/β, 0 < D < 2n and b ∈ BMO(Rn). If g ∈ Lu(Rn)(1 < u < ∞) and
F 1

t (g) = 0, then T b is bounded on Lp,ϕ(Rn).

3. Proofs of Theorems

To prove the theorems, we need the following lemmas.

Lemma 3.1. (see [1]) Let T be the integral operator as Definition 1.2. Then T is
bounded on Lp(Rn) for 1 < p < ∞.

Lemma 3.2. (see [17]) For 0 < β < 1 and 1 < p < ∞, we have

||f ||Ḟ β,∞
p

≈
∣∣∣∣
∣∣∣∣sup
Q3·

1
|Q|1+β/n

∫

Q

|f(x)− fQ|dx

∣∣∣∣
∣∣∣∣
Lp

≈
∣∣∣∣
∣∣∣∣sup
Q3·

inf
c

1
|Q|1+β/n

∫

Q

|f(x)− c|dx

∣∣∣∣
∣∣∣∣
Lp

.

Lemma 3.3. (see [6]) Let 0 < p < ∞ and w ∈ ∪1≤r<∞Ar. Then, for any smooth
function f for which the left-hand side is finite,∫

Rn

M(f)(x)pw(x)dx ≤ C

∫

Rn

M#(f)(x)pw(x)dx.

Lemma 3.4. (see [2]) Suppose that 0 < η < n, 1 ≤ s < p < n/η and 1/q = 1/p−η/n.
Then

||Mη,s(f)||Lq ≤ C||f ||Lp .

Lemma 3.5. Let 1 < p < ∞, 0 < D < 2n. Then, for any smooth function f for
which the left-hand side is finite,

||M(f)||Lp,ϕ ≤ C||M#(f)||Lp,ϕ .
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Proof. For any cube Q = Q(x0, d) in Rn, we know M(χQ) ∈ A1 for any cube
Q = Q(x, d) by [6]. Noticing that M(χQ) ≤ 1 and M(χQ)(x) ≤ dn/(|x− x0| − d)n if
x ∈ Qc, by Lemma 3.3, we have, for f ∈ Lp,ϕ(Rn),

∫

Q

M(f)(x)pdx =
∫

Rn

M(f)(x)pχQ(x)dx

≤
∫

Rn

M(f)(x)pM(χQ)(x)dx ≤ C

∫

Rn

M#(f)(x)|pM(χQ)(x)dx

= C

(∫

Q

M#(f)(x)pM(χQ)(x)dx +
∞∑

k=0

∫

2k+1Q\2kQ

M#(f)(x)pM(χQ)(x)dx

)

≤ C

(∫

Q

M#(f)(x)pdx +
∞∑

k=0

∫

2k+1Q\2kQ

M#(f)(x)p |Q|
|2k+1Q|dx

)

≤ C

(∫

Q

M#(f)(x)pdx +
∞∑

k=0

∫

2k+1Q

M#(f)(x)p2−kndy

)

≤ C||M#(f)||pLp,ϕ

∞∑

k=0

2−knϕ(2k+1d)

≤ C||M#(f)||pLp,ϕ

∞∑

k=0

(2−nD)kϕ(d)

≤ C||M#(f)||pLp,ϕϕ(d),

thus
(

1
ϕ(d)

∫

Q

M(f)(x)pdx

)1/p

≤ C

(
1

ϕ(d)

∫

Q

M#(f)(x)pdx

)1/p

and

||M(f)||Lp,ϕ ≤ C||M#(f)||Lp,ϕ .

This finishes the proof. ¤

Lemma 3.6. Let 0 < D < 2n, 1 ≤ s < p < n/η and 1/r = 1/p− η/n. Then

||Mη,s(f)||Lr,ϕ ≤ C||f ||Lp,ϕ .

The proof of the Lemma is similar to that of Lemma 3.5 by Lemma 3.4, we omit
the details.

Proof. Of Theorem 2.1. It suffices to prove for f ∈ C∞0 (Rn) and some constant C0,
the following inequality holds:

1
|Q|

∫

Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||Lipβ

m∑

k=1

Mβ,s(T k,2(f))(x̃).

Without loss of generality, we may assume T k,1 are T (k = 1, ..., m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. Write, for f1 = fχ2Q and f2 = fχ(2Q)c ,

F b
t (f)(x) = F

b−bQ

t (f)(x) = F
(b−bQ)χ2Q

t (f)(x) + F
(b−bQ)χ(2Q)c

t (f)(x) = f1(x) + f2(x).
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Then

1
|Q|

∫

Q

∣∣T b(f)(x)− ||f2(x0)||
∣∣ dx =

1
|Q|

∫

Q

|||F b
t (f)(x)|| − ||f2(x0)|||dx

≤ 1
|Q|

∫

Q

||F b
t (f)(x)− f2(x0)||dx

≤ 1
|Q|

∫

Q

||f1(x)||dx +
1
|Q|

∫

Q

||f2(x)− f2(x0)||dx = I1 + I2.

For I1, by Hölder’s inequality and Lemma 3.1, we obtain

1
|Q|

∫

Q

||F k,1
t M(b−bQ)χ2Q

F k,2
t (f)(x)||dx

=
1
|Q|

∫

Q

|T k,1M(b−bQ)χ2Q
T k,2(f)(x)|dx

≤
(

1
|Q|

∫

Rn

|T k,1M(b−bQ)χ2Q
T k,2(f)(x)|sdx

)1/s

≤ C|Q|−1/s

(∫

2Q

|M(b−bQ)χ2Q
T k,2(f)(x)|sdx

)1/s

≤ C|Q|−1/s

(∫

2Q

(|b(x)− bQ||T k,2(f)(x)|)sdx

)1/s

≤ C|Q|−1/s||b||Lipβ
|2Q|β/n|Q|1/s−β/n

(
1

|Q|1−sβ/n

∫

Q

|T k,2(f)(x)|sdx

)1/s

≤ C||b||Lipβ
Mβ,s(T k,2(f))(x̃),

thus

I1 ≤
m∑

k=1

1
|Q|

∫

Q

||F k,1
t M(b−bQ)χ2Q

F k,2
t (f)(x)||dx

≤ C||b||Lipβ

m∑

k=1

Mβ,s(T k,2(f))(x̃).

For I2, by the boundedness of T and recalling that s > q′, we get, for x ∈ Q,

||F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x)− F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x0)||

≤
∫

(2Q)c

|b(y)− b2Q|||Ft(x, y)− Ft(x0, y)|||T k,2(f)(y)|dy

≤
∞∑

j=1

∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)|||b(y)− b2Q||T k,2(f)(y)|dy

≤ C||b||Lipβ

∞∑

j=1

|2j+1Q|β/n

(∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)||qdy

)1/q

×
(∫

2j+1Q

|T k,2(f)(y)|q′dy

)1/q′
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≤ C||b||Lipβ

∞∑

j=1

|2j+1Q|β/nCj(2jd)−n/q′ |2j+1Q|1/q′−β/n

×
(

1
|2j+1Q|1−sβ/n

∫

2j+1Q

|T k,2(f)(y)|sdy

)1/s

≤ C||b||Lipβ
Mβ,s(T k,2(f))(x̃)

∞∑

j=1

Cj

≤ C||b||Lipβ
Mβ,s(T k,2(f))(x̃),

thus

I2 ≤ 1
|Q|

∫

Q

m∑

k=1

||F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x)− F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x0)||dx

≤ C||b||Lipβ

m∑

k=1

Mβ,s(T k,2(f))(x̃).

These complete the proof of Theorem 2.1. ¤

Proof. Of Theorem 2.2. It suffices to prove for f ∈ C∞0 (Rn) and some constant C0,
the following inequality holds:

1
|Q|1+β/n

∫

Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||Lipβ

m∑

k=1

Ms(T k,2(f))(x̃).

Without loss of generality, we may assume T k,1 are T (k = 1, ..., m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. For f1 = fχ2Q and f2 = fχ(2Q)c , write

F b
t (f)(x) = F

b−bQ

t (f)(x) = F
(b−bQ)χ2Q

t (f)(x) + F
(b−bQ)χ(2Q)c

t (f)(x) = f1(x) + f2(x)

and

1
|Q|1+β/n

∫

Q

∣∣T b(f)(x)− ||f2(x0)||
∣∣ dx =

1
|Q|1+β/n

∫

Q

|||F b
t (f)(x)|| − ||f2(x0)|||dx

≤ 1
|Q|1+β/n

∫

Q

||F b
t (f)(x)− f2(x0)||dx ≤ 1

|Q|1+β/n

∫

Q

||f1(x)||dx

+
1

|Q|1+β/n

∫

Q

||f2(x)− f2(x0)||dx = I3 + I4.

By using the same argument as in the proof of Theorem 2.1, we get

I3 ≤
m∑

k=1

C

|Q|β/n
||b||Lipβ

|2Q|β/n|Q|−1/s

(∫

2Q

|T k,2(f)(x)|sdx

)1/s

≤ C||b||Lipβ

m∑

k=1

(
1
|2Q|

∫

2Q

|T k,2(f)(x)|sdx

)1/s

≤ C||b||Lipβ

m∑

k=1

Ms(T k,2(f))(x̃),
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I4 ≤
m∑

k=1

1
|Q|1+β/n

∫

Q

∞∑

j=1

∫

2jd≤|y−x0|<2j+1d

|b(y)− b2Q||

×|Ft(x, y)− Ft(x0, y)|||T k,2(f)(y)|dydx

≤
m∑

k=1

C

|Q|1+β/n

∫

Q

∞∑

j=1

||b||Lipβ
|2j+1Q|β/n

×
(∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)||qdy

)1/q

×
(∫

2j+1Q

|T k,2(f)(y)|q′dy

)1/q′

dx

≤ C||b||Lipβ

m∑

k=1

|Q|−β/n
∞∑

j=1

|2j+1Q|β/nCj(2jd)−n/q′ |2j+1Q|1/q′

×
(

1
|2j+1Q|

∫

2j+1Q

|T k,2(f)(y)|sdy

)1/s

≤ C||b||Lipβ

m∑

k=1

Ms(T k,2(f))(x̃)
∞∑

j=1

2jβCj

≤ C||b||Lipβ

m∑

k=1

Ms(T k,2(f))(x̃).

This completes the proof of Theorem 2.2. ¤

Proof. Of Theorem 2.3. It suffices to prove for f ∈ C∞0 (Rn) and some constant C0,
the following inequality holds:

1
|Q|

∫

Q

∣∣T b(f)(x)− C0

∣∣ dx ≤ C||b||BMO

m∑

k=1

Ms(T k,2(f))(x̃).

Without loss of generality, we may assume T k,1 are T (k = 1, ..., m). Fix a cube
Q = Q(x0, d) and x̃ ∈ Q. For f1 = fχ2Q and f2 = fχ(2Q)c , similar to the proof of
Theorem 1, we have

F b
t (f)(x) = F

b−bQ

t (f)(x) = F
(b−bQ)χ2Q

t (f)(x) + F
(b−bQ)χ(2Q)c

t (f)(x) = f1(x) + f2(x)

and

1
|Q|

∫

Q

∣∣T b(f)(x)− ||f2(x0)||
∣∣ dx =

1
|Q|

∫

Q

|||F b
t (f)(x)|| − ||f2(x0)|||dx

≤ 1
|Q|

∫

Q

||F b
t (f)(x)− f2(x0)||dx ≤ 1

|Q|
∫

Q

||f1(x)||dx

+
1
|Q|

∫

Q

||f2(x)− f2(x0)||dx = I5 + I6.
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For I5, choose 1 < r < s, by Hölder’s inequality and the boundedness of T , we obtain

1
|Q|

∫

Q

||F k,1
t M(b−bQ)χ2Q

F k,2
t (f)(x)||dx

≤ 1
|Q|

∫

Q

|T k,1M(b−bQ)χ2Q
T k,2(f)(x)|dx

≤
(

1
|Q|

∫

Rn

|T k,1M(b−bQ)χ2Q
T k,2(f)(x)|rdx

)1/r

≤ C|Q|−1/r

(∫

Rn

|M(b−bQ)χ2Q
T k,2(f)(x)|rdx

)1/r

≤ C|Q|−1/r

(∫

2Q

|T k,2(f)(x)|sdx

)1/s (∫

2Q

|b(x)− bQ|sr/(s−r)dx

)(s−r)/sr

≤ C||b||BMO

(
1
|Q|

∫

2Q

|T k,2(f)(x)|sdx

)1/s

≤ C||b||BMOMs(T k,2(f))(x̃),

thus

I5 ≤
l∑

k=1

1
|Q|

∫

Q

||F k,1
t M(b−bQ)χ2Q

F k,2
t (f)(x)||dx

≤ C||b||BMO

m∑

k=1

Ms(T k,2(f))(x̃).

For I6, recalling that s > q′, taking 1 < p < ∞, 1 < r < s with 1/p + 1/q + 1/r = 1,
by the boundedness of T , we get, for x ∈ Q,

||F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x)− F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x0)||

≤
∫

(2Q)c

|b(y)− b2Q|||Ft(x, y)− Ft(x0, y)|||T k,2(f)(y)|dy

≤
∞∑

j=1

∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)|||b(y)− b2Q||T k,2(f)(y)|dy

≤
∞∑

j=1

(∫

2jd≤|y−x0|<2j+1d

||Ft(x, y)− Ft(x0, y)||qdy

)1/q

×
(∫

2j+1Q

|b(y)− bQ|pdy

)1/p (∫

2j+1Q

|T k,2(f)(y)|rdy

)1/r

≤ C||b||BMO

∞∑

j=1

Cj(2jd)−n/q′j(2jd)n/p(2jd)n/s

(
1

|2j+1Q|
∫

2j+1Q

|T k,2(f)(y)|sdy

)1/s

≤ C||b||BMOMs(T k,2(f))(x̃)
∞∑

j=1

jCj

≤ C||b||BMOMs(T k,2(f))(x̃),
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thus

I6 ≤ 1
|Q|

∫

Q

l∑

k=1

||F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x)− F k,1
t M(b−bQ)χ(2Q)c F k,2

t (f)(x0)||dx

≤ C||b||BMO

l∑

k=1

Ms(T k,2(f))(x̃).

This completes the proof of Theorem 2.3. ¤

Proof. Of Theorem 2.4. Choose q′ < s < p in Theorem 2.1, we have, by Lemma 3.1,
3.3 and 3.4,

||T b(f)||Lr ≤ ‖M(T b(f))‖Lr ≤ C‖M#(T b(f))‖Lr

≤ C||b||Lipβ

m∑

k=1

‖Mβ,s(T k,2(f))‖Lr ≤ C||b||Lipβ

m∑

k=1

‖T k,2(f)‖Lp

≤ C||b||Lipβ
‖f‖Lp .

This completes the proof. ¤

Proof. Of Theorem 2.5. Choose q′ < s < p in Theorem 2.1, we have, by Lemma 3.5
and 3.6,

||T b(f)||Lr,ϕ ≤ ‖M(T b(f))‖Lr,ϕ ≤ C‖M#(T b(f))‖Lr,ϕ

≤ C||b||Lipβ

m∑

k=1

‖Mβ,s(T k,2(f))‖Lr,ϕ ≤ C||b||Lipβ

m∑

k=1

‖T k,2(f)‖Lp,ϕ

≤ C||b||Lipβ
‖f‖Lp,ϕ .

This completes the proof. ¤

Proof. Of Theorem 2.6. Choose q′ < s < p in Theorem 2.2, we have, by Lemma 3.1,
3.2 and 3.3,

||T b(f)||Ḟ β,∞
p

≤ C

∣∣∣∣
∣∣∣∣sup
Q3·

1
|Q|1+β/n

∫

Q

∣∣T b(f)(x)− C0

∣∣ dx

∣∣∣∣
∣∣∣∣
Lp

≤ C||b||Lipβ

m∑

k=1

‖Ms(T k,2(f))‖Lp ≤ C||b||Lipβ

m∑

k=1

‖T k,2(f)‖Lp

≤ C||b||Lipβ
||f ||Lp .

This completes the proof. ¤

Proof. Of Theorem 2.7. Choose q′ < s < p in Theorem 2.3, we have, by Lemma 3.1,
3.3 and 3.4,

||T b(f)||Lp ≤ ‖M(T b(f))‖Lp ≤ C‖M#(T b(f))‖Lp

≤ C||b||BMO

m∑

k=1

‖Ms(T k,2(f))‖Lp ≤ C||b||BMO

m∑

k=1

‖T k,2(f)‖Lp

≤ C||b||BMO‖f‖Lp .

This completes the proof. ¤
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Proof. Of Theorem 2.8. Choose q′ < s < p in Theorem 2.3, we have, by Lemma 3.5
and 3.6,

||T b(f)||Lp,ϕ ≤ ‖M(T b(f))‖Lp,ϕ ≤ C‖M#(T b(f))‖Lp,ϕ

≤ C||b||BMO

m∑

k=1

‖Ms(T k,2(f))‖Lp,ϕ ≤ C||b||BMO

m∑

k=1

‖T k,2(f)‖Lp,ϕ

≤ C||b||BMO‖f‖Lp,ϕ .

This completes the proof. ¤

4. Applications

In this section we shall apply the Theorems 2.1-2.8 of the paper to some parti-
cular operators such as the Littlewood-Paley operator, Marcinkiewicz operator and
Bochner-Riesz operator.

Application 4.1. Littlewood-Paley operator.
Fixed ε > 0. Let ψ be a fixed function which satisfies:
(1)

∫
Rn ψ(x)dx = 0,

(2) |ψ(x)| ≤ C(1 + |x|)−(n+1),
(3) |ψ(x + y)− ψ(x)| ≤ C|y|ε(1 + |x|)−(n+1+ε) when 2|y| < |x|;
Let ψt(x) = t−nψ(x/t) for t > 0 and Ft(f)(x) =

∫
Rn f(y)ψt(x − y)dy. The

Littlewood-Paley operator is defined (see [23])

gψ(f)(x) =
(∫ ∞

0

|Ft(f)(x)|2 dt

t

)1/2

.

Set H be the space

H =

{
h : ||h|| =

(∫ ∞

0

|h(t)|2dt/t

)1/2

< ∞
}

.

Let b be a locally integrable function on Rn. The Toeplitz type operator related to
the Littlewood-Paley operator is defined by

gb
ψ(f)(x) =

(∫ ∞

0

|F b
t (f)(x)|2 dt

t

)1/2

,

where

F b
t =

m∑

k=1

F k,1
t MbF

k,2
t ,

F k,1
t are Ft or ±I(the identity operator), T k,2 = ||F k,2

t || are the bounded linear
operators on Lp(Rn) for 1 < p < ∞ and k = 1, ..., m, Mb(f) = bf . Then, for each
fixed x ∈ Rn, F b

t (f)(x) may be viewed as the mapping from [0, +∞) to H, and it is
clear that

gb
ψ(f)(x) = ||F b

t (f)(x)||, gψ(f)(x) = ||Ft(f)(x)||.
It is easily to see that gb

ψ satisfies the conditions of Theorems 2.1-2.8 (see [12-14]),
thus Theorems 2.1-2.8 hold for gb

ψ.
Application 4.2. Marcinkiewicz operator.
Fixed 0 < γ ≤ 1. Let Ω be homogeneous of degree zero on Rn with

∫
Sn−1 Ω(x′)dσ(x′)

= 0. Assume that Ω ∈ Lipγ(Sn−1). Set Ft(f)(x) =
∫
|x−y|≤t

Ω(x−y)
|x−y|n−1 f(y)dy. The
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Marcinkiewicz operator is defined by (see [24])

µΩ(f)(x) =
(∫ ∞

0

|Ft(f)(x)|2 dt

t3

)1/2

.

Set H be the space

H =

{
h : ||h|| =

(∫ ∞

0

|h(t)|2dt/t3
)1/2

< ∞
}

.

Let b be a locally integrable function on Rn. The Toeplitz type operator related to
the Marcinkiewicz operator is defined by

µb
Ω(f)(x) =

(∫ ∞

0

|F b
t (f)(x)|2 dt

t3

)1/2

,

where

F b
t =

m∑

k=1

F k,1
t MbF

k,2
t ,

F k,1
t are Ft or ±I(the identity operator), T k,2 = ||F k,2

t || are the bounded linear
operators on Lp(Rn) for 1 < p < ∞ and k = 1, ...,m, Mb(f) = bf . Then, it is clear
that

µb
Ω(f)(x) = ||F b

t (f)(x)||, µΩ(f)(x) = ||Ft(f)(x)||.
It is easily to see that µb

Ω satisfies the conditions of Theorems 2.1-2.8 (see [12-14][24]),
thus Theorems 2.1-2.8 hold for µb

Ω.
Application 4.3. Bochner-Riesz operator.
Let δ > (n− 1)/2, F δ

t (f )̂(ξ) = (1− t2|ξ|2)δ
+f̂(ξ) and Bδ

t (z) = t−nBδ(z/t) for t > 0.
The maximal Bochner-Riesz operator is defined by (see [15])

Bδ,∗(f)(x) = sup
t>0

|F δ
t (f)(x)|.

Set H be the space H = {h : ||h|| = sup
t>0

|h(t)| < ∞}. Let b be a locally integrable

function on Rn. The Toeplitz type operator related to the maximal Bochner-Riesz
operator is defined by

Bb
δ,∗(f)(x) = sup

t>0
|Bb

δ,t(f)(x)|,

where

Bb
δ,t =

m∑

k=1

F k,1
t MbF

k,2
t ,

F k,1
t are Ft or ±I(the identity operator), T k,2 = ||F k,2

t || are the bounded linear
operators on Lp(Rn) for 1 < p < ∞ and k = 1, ..., m, Mb(f) = bf . Then

Bb
δ,∗(f)(x) = ||Bb

δ,t(f)(x)||, Bδ
∗(f)(x) = ||Bδ

t (f)(x)||.

It is easily to see that Bb
δ,∗ satisfies the conditions of Theorems 2.1-2.8 (see [12][13]),

thus Theorems 2.1-2.8 hold for Bb
δ,∗.
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