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1. Introduction

A probabilistic normed space (PN space) is a natural generalization of an ordinary
normed linear space. In PN space, the norms of vectors are represented by probability
distribution functions rather than a positive number. Such spaces were first intro-
duced by Serstnev in 1963, (see, [27]). In [3] Alsina et al. gave a new definition of
PN-spaces which includes Serstnev’s a special case and leads naturally to the identifi-
cation of the principle class of PN-spaces, the Menger spaces. This definition becomes
the standard one and has been adopted by many authors (for instance, [4], [15], [16],
[17]) who have investigated the properties of PN spaces. The detailed history and the
development of the subject up to 2006 can be found in [19].

On the other hand, statistical convergence was first introduced by Fast [16] as a
generalization of ordinary convergence for real number sequences. Since then it has
been studied by many authors (for instance, [24], [8], [5], [9]). Statistical convergence
has also been discussed in more general abstract spaces such as the fuzzy number space
[1], locally convex spaces [18] and Banach spaces [14]. Karakus [12] introduced and
studied statistical convergence on PN spaces and followed by Karakus and Demirci
[13] studied statistical convergence of double sequences on PN spaces. Recently Esi
and Özdemir [11] introduced generalized ∆m−statistical convergence in probabilistic
normed space for single generalized difference sequences and Esi [10] has introduced
lacunary statistical convergence of double sequences in probabilistic normed space.

It seems therefore reasonable to think if the concept of statistical convergence can
be extended to probabilistic normed spaces and in that case enquire how the basic
properties are affected. But basic properties do not hold on probabilistic normed
spaces. The problem is that the triangle function in such spaces.

In this paper we extend the concept of statistical convergence of triple sequences to
probabilistic normed spaces and observe that some basic properties are also preserved
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on probabilistic normed spaces. Since the study of convergence in PN-spaces is fun-
damental to probabilistic functional analysis, we feel that the concepts of statistical
convergence and statistical Cauchy for triple sequences in a PN-space would provide
a more general framework for the subject.

2. Preliminaries

Now we recall some notations and definitions used in paper.

Definition 2.1. [30]. A function x : N ×N ×N → R(C) is called a real (complex)
triple sequence.

Definition 2.2. [3]. A function f : R → R+
o is called a distribution function if it is

non-decreasing and left continuous with inft∈R f (t) = 0 and supt∈R f (t) = 1. We will
denote the set of all distribution functions by D.

Definition 2.3. [3]. A triangular norm, briefly t-norm, is a binary operation on [0, 1]
which is continuous, commutative, associative, non-decreasing and has 1 as neutral
element, that is, it is the continuous mapping > : [0, 1] × [0, 1] → [0, 1] such that for
all a, b, c ∈ [0, 1] :

(1) a >1 = a,
(2) a >b = b >a,
(3) c >d ≥ a >b if c ≥ a and d ≥ b,
(4) (a> b) >c = a > (b> c) .

Example 2.1. The > operations a >b = max {a+ b− 1, 0} , a >b = a.b and a
>b = min {a, b} on [0, 1] are t-norms.

Definition 2.4. [26, 25]. A triple (X,N,>) is called a probabilistic normed space
or shortly PN-space if X is a real vector space, N is a mapping from X into D (for
x ∈ X, the distribution function N(x) is denoted by Nx and Nx (t) is the value of Nx
at t ∈ R) and > is a t-norm satisfying the following conditions:

(PN-1) Nx (0) = 0,
(PN-2) Nx (t) = 1 for all t > 0 if and only if x = 0,
(PN-3) Nαx (t) = Nx

(
t
|α|

)
for all α ∈ R\ {0} ,

(PN-4) Nx+y (s+ t) ≥ Nx (s) >Ny (t) for all x, y ∈ X and s, t ∈ R+
o .

Example 2.2. Suppose that (X, ‖.‖) is a normed space µ ∈ D with µ (0) = 0 and
µ 6= h, where

h (t) =
{

0 , t ≤ 0
1 , t > 0 .

Define

Nx (t) =

{
h (t) , x = 0
µ
(

t
||x||

)
, x 6= 0 ,

where x ∈ X, t ∈ R. Then (X,N,>) is a PN-space. For example if we define the
functions µ and ν on R by

µ (x) =
{

0 , x ≤ 0
x

1+x , x > 0 , ν (x) =
{

0 , x ≤ 0
e
−1
x , x > 0

then we obtain the following well-known > norms:

Nx (t) =
{
h (t) , x = 0

t
t+‖x‖ , x 6= 0 , Mx (t) =

{
h (t) , x = 0
e(
−‖x‖

t ) , x 6= 0
.
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We recall the concepts of convergence and Cauchy sequences for single sequences
in a probabilistic normed space.

Definition 2.5. [2]. Let (X,N,>) is a PN-space. Then a sequence x = (xk) is said
to be convergent to l ∈ X with respect to the probabilistic norm N if, for every ε > 0
and λ ∈ (0, 1) , there exists a positive integer ko such that Nxk−l (ε) > 1−λ whenever
k ≥ ko. It is denoted by N − limx = L or xk

N→ L as k →∞.

Definition 2.6. [2]. Let (X,N,>) is a PN-space. Then a sequence x = (xk) is
called a Cauchy sequence with respect to the probabilistic norm N if, for every ε > 0
and λ ∈ (0, 1) , there exists a positive integer ko such that Nxk−xl

(ε) > 1 − λ for all
k, l ≥ ko.

Definition 2.7. [2]. Let (X,N,>) is a PN-space. Then a sequence x = (xk) is said
to be bounded in X, if there is a r ∈ R such that Nxk

(r) > 1− λ, where λ ∈ (0, 1) .
We denote by lN∞ the space of all bounded sequences in PN space.

Remark 2.1. [1] Let (X, ‖.‖) be a real normed space and Nx (t) = t
t+|x| , where x ∈ X

and t ≥ 0 (standard > norm induced by |.|) . Then it is not hard to see that xn
‖.‖→ x

iff xn
N→ x.

The idea of statistical convergence for single sequences was introduced by Fast [7]
and then studied by various authors, e.g., Salat [24], Fridy [8], Connor [5], Esi [9],
Mohiuddine and Savas [20], Savas and Mohiuddine [29], Savas [28], Patterson and
Savas [22] and many others and in normed space by Kolk [14]. Recently Karakus [12]
and Alotaibi [2] have studied the concept of statistical convergence in probabilistic
normed spaces.

Firstly, we recall some definitions.
In 1900 Pringsheim presented the following definition for the convergence of double

sequences.

Definition 2.8. [23]. A double sequence x = (xjk) has Pringsheim limit L (de-
noted by P − limx = L) provided that given ε > 0 there exists N ∈ N such that
|xjk − L| < ε whenever j, k > N. We shall describe such an x = (xjk) more briefly as
”P-convergent”.

We shall denote the space of all P-convergent sequences by c2. By a bounded double
sequence we shall mean there exists a positive number K such that |xjk| < K for all
(j, k) and denote such bounded by ‖x‖(∞,2) = supj,k |xjk| < ∞.We shall also denote
the set of all bounded double sequences by l2∞.We also note in contrast to the case
for single sequence, a P-convergent double sequence need not be bounded.

Definitions 2.4 and 2.5 for double sequences on probabilistic normed space are as
follows:

Definition 2.9. [12]. Let (X,N,>) is a PN-space. Then a double sequence x = (xjk)
is said to be convergent to L ∈ X with respect to the probabilistic norm N , if for every
ε > 0 and λ ∈ (0, 1) , there exists a positive integer ko such that Nxjk−L (ε) > 1 − λ
whenever j, k ≥ ko. It is denoted by N2 − limx = L or xjk

N→ L as j,k →∞.

Definition 2.10. [12]. Let (X,N,>) is a PN-space. Then a double sequence x =
(xjk) is said to be Cauchy sequence with respect to the probabilistic norm N if,
for every ε > 0 and λ ∈ (0, 1) ,there exist M = M (ε) and T = T (ε) such that
Nxjk−xpq (ε) > 1− λ for all j, p ≥M and k, q ≥ T.
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Let K ⊂ N×N be two-dimensional set of positive integers and let K(n,m) be the
numbers of (i, j) in K such that i ≤ n and j ≤ m. Then the two-dimensional analogue
of natural density can be defined as follows:

The lower asymptotic density of a set K ⊂ N× N is defined as

δ2
−

(K) = P − lim
n,m

inf
K (n,m)
nm

.

In this case
(
K(n,m)
nm

)
has a limit in Pringsheim’s sense then we say that K has a

double natural density and is defined as

δ2 (K) = P − lim
n,m

K (n,m)
nm

.

For example, let K =
{(
i2, j2

)
: i, j ∈ N

}
. Then

δ2 (K) = P − lim
n,m

K (n,m)
nm

≤ lim
n,m

√
n
√
m

nm
= 0,

i.e., the set K has double natural density zero, while the set L = {(i, 2j) : i, j ∈ N}
has double natural density 1

2 .

Definition 2.11. [21]. A real double sequence x = (xjk) is said to be statistically
convergent to a number L provided that, for each ε > 0, the set

{(j, k) : |xjk − L| ≥ ε}

has double natural density zero. In this case, one writes st2 − limx = L.

Definition 2.12. [21]. A real double sequence x = (xjk) is said to be statistically
Cauchy provided that, for every ε > 0 there exist M = M (ε) and T = T (ε) such that
for all j, p ≥M , k, q ≥ T, the set

{(j, k) ∈ N× N : |xjk − xpq| ≥ ε}

has double natural density zero.

Definition 2.13. [30]. A subset K of N× N× N is said to be natural density δ3 if

δ3 (K) = lim
p,q,r→∞

K (p, q, r)
pqr

exists

where K (p, q, r) denote the number of (j, k, l) in K such that j ≤ p, k ≤ q and l ≤ r.
For example, let K =

{(
j3, k3, l3

)
: j, k, l ∈ N

}
, then δ3 (K) = limp,q,r→∞

K(p,q,r)
pqr ≤

limp,q,r→∞
3√p 3√q 3√r
pqr = 0, i.e., the set K has triple natural density zero, while the set

L = {(j, 3k, 5l) : j, k, l ∈ N} has triple natural density 1
15 .

Definition 2.14. [30]. A real triple sequence x = (xjkl) is said to be statistically
convergent to the number L if for each ε > 0

δ3 ({(j, k, l) ∈ N× N× N : |xjkl − L| ≥ ε}) = 0.

In this case, one writes st3 − limx = L.
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3. Main Results

Now we give the analogues of these definitions with respect to the probabilistic
norm N .

Definition 3.1. Let (X,N,>) be a PN-space. Then, a triple sequence x = (xjkl)
is said to be convergent to L ∈ X with respect to the probabilistic norm N provided
that, for every ε > 0 and λ ∈ (0, 1) , there exists a positive integer ko such that
Nxjkl−L (ε) > 1 − λ whenever j, k, l ≥ ko. It is denoted by N3 − limx = L or or

xjkl
N→ L as j,k, l→∞.

Definition 3.2. Let (X,N,>) be a PN-space. Then, a triple sequence x = (xjkl)
is said to be a Cauchy sequence with respect to the probabilistic norm N provided
that, for every ε > 0 and λ ∈ (0, 1) , there exist M (ε) , T (ε), P (ε) ∈ N such that
Nxjkl−xpqu (ε) > 1− λ for all j, p ≥M,k, q ≥ T and l, u ≥ P.

Definition 3.3. Let (X,N,>) be a PN-space. A triple sequence x = (xjkl) is statis-
tically convergent to L ∈ X with respect to the probabilistic norm N provided that, for
every ε > 0 and λ ∈ (0, 1)

K =
{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, Nxjkl−L (ε) ≤ 1− λ
}

has triple natural density zero, that is if K (n,m, s) become the numbers of (j, k, l) in
K

lim
n,m,s

K (n,m, s)
nms

= 0.

In this case, one writes stN3 − limj,k,l xj,k,l = L, where L is said to be stN3−limit.
Also one denotes the set of all statistically convergent triple sequences with respect
to the probabilistic norm N by stN3 .

Now we give a useful lemma as follows.

Lemma 3.1. Let (X,N,>) be a PN-space. Then, for ε > 0 and λ ∈ (0, 1) the
following statements are equivalent:

(i) stN3 − limj,k,l xj,k,l = L,
(ii) δ3

({
(j, k, l) : j ≤ n, k ≤ m and l ≤ s, Nxjkl−L (ε) ≤ 1− λ

})
= 0,

(iii) δ3
({

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, Nxjkl−L (ε) > 1− λ
})

= 1,
(iv) st3 − limNxjkl−L (ε) = 1.

Proof. The first three parts are equivalent is trivial from Definition 3.3. It follows
from Definition 2.14 that{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s,
∣∣ Nxjkl−L (ε)− 1

∣∣ ≥ λ}
=
{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, Nxjkl−L (ε) ≥ 1 + λ
}

∪
{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, Nxjkl−L (ε) ≤ 1− λ
}
.

�

Also, Definition 2.14 implies that (ii) and (iv) are equivalent.

Theorem 3.1. Let (X,N,>) be a PN-space. If a triple sequence x = (xjkl) is
statistically convergent with respect to the probabilistic norm N , then stN3 − limx is
unique.
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Proof. Let x = (xjkl) be a triple sequence. Suppose that stN3 − limx = L1 and
stN3 − limx = L2. Let ε > 0 and λ ∈ (0, 1) . Choose γ ∈ (0, 1) such that (1− γ) >
(1− γ) ≥ 1− λ. Then, we define the following sets:

K1 (γ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L1 (ε) ≤ 1− γ
}
,

K2 (γ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L2 (ε) ≤ 1− γ
}
.

Since stN3 − limx = L1, we have δ3 ({K1 (γ, ε)}) = 0 for all ε > 0. Furthermore,
using stN3 − limx = L2, we get δ3 ({K2 (γ, ε)}) = 0 for all ε > 0. Now let K (γ, ε) =
K1 (γ, ε)∩K2 (γ, ε) . Then observe that δ3 ({K (γ, ε)}) = 0 for all ε > 0 which implies
δ3 ({N× N× N/K (γ, ε)}) = 1. If (j, k, l) ∈ N× N× N/K (γ, ε) , then we have

NL1−L2 (ε) ≥ Nxjkl−L1

(ε
2

)
>Nxjkl−L2

(ε
2

)
> (1− γ) > (1− γ) ≥ 1− λ.

Since λ > 0 was arbitrary, we get NL1−L2 (ε) = 1 for all ε > 0, which yields L1 = L2.
Therefore, we conclude that stN3 − limx is unique. �

Theorem 3.2. Let (X,N,>) be a PN-space. If N3 − limx = L for a triple sequence
x = (xjkl), then stN3 − limx = L.

Proof. By hypothesis, for every λ > 0 and ε > 0, there is a number ko ∈ N such that
Nxjkl−L (ε) > 1 − λ for all j ≥ ko, k ≥ ko and l ≥ ko. This guarantees that the set{

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≤ 1− λ
}

has at most finitely many terms. Since
every finite subset of the N× N× N has triple density zero, we immediately see that
δ3
({

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≤ 1− λ
})

= 0, whence the result. �

The following example shows that the converse of this theorem does not hold in
general.

Example 3.1. Let (R, |.|) be a normed space and Nx (t) = t
t+|x| , where x ∈ X and

t ≥ 0 (standard > norm induced by |.|) . In this case, observe that (X,N,>) be a
PN-space. Now we define a sequence x = (xjkl) whose terms are given by

xjkl =
{
jkl , j, k and l are cubes
0 , otherwise . (1)

Then, for every λ ∈ (0, 1) and for any ε > 0, let

K(λ,ε) (n,m, s) =
{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, Nxjkl
(ε) ≤ 1− λ

}
.

Since

K(λ,ε) (n,m, s) =
{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, t

t+ |xjkl|
≤ 1− λ

}
=
{

(j, k, l) : j ≤ n, k ≤ m and l ≤ s, |xjkl| ≥
λt

1− λ
> 0
}

= {(j, k, l) : j ≤ n, k ≤ m and l ≤ s, |xjkl| = jkl}
= {(j, k, l) : j ≤ n, k ≤ m and l ≤ s, j, k and l are cubes} ,
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then we get

lim
n,m,s

1
nms

∣∣K(λ,ε) (n,m, s)
∣∣ ≤ lim

n,m,s

1
nms

|{(j, k, l) : j ≤ n, k ≤ m and l ≤ s,

j, k and l are cubes}|

≤ lim
n,m,s

3
√
n 3
√
m 3
√
s

nms
= 0

which implies
δ3
({
K(λ,ε) (n,m, s)

})
= 0.

Hence, by Definition 3.3, we get stN3 − limx = 0. However, since the sequence
x = (xjkl) given by (1) is not convergent in the space (R, |.|) , by Remark 2.1, we also
see that x = (xjkl) is not convergent with respect to the probabilistic norm N .

Theorem 3.3. Let (X,N,>) be a PN-space and x = (xjkl) be a triple sequence. Then
stN3−limx = L iff there exists a subset K = {(j, k, l) : j, k, l = 1, 2, 3, . . .} ⊂ N×N×N
such that δ3 ({K}) = 1 and N3 − lim

j,k,l→∞
(j,k,l)∈K

xjkl = L.

Proof. We first assume that stN3 − limx = L. Now, for any ε > 0 and r ∈ N, let

K (r, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≤ 1− 1
r

}
,

M (r, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) > 1− 1
r

}
.

Then δ3 ({K (r, ε)}) = 0 and

i) M (1, ε) ⊃M (2, ε) ⊃ · · · ⊃M (i, ε) ⊃M (i+ 1, ε) ⊃ . . .
ii) δ3 ({M (r, ε)}) = 1, r = 1, 2, 3, . . . .

Now we have to show that for (j, k, l) ∈M (r, ε), x = (xjkl) is N3 − convergent to L.
Suppose that x = (xjkl) is not N3 − convergent to L. Therefore there is λ > 0 such
that {

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≤ 1− λ
}

for finitely many terms. Let

M (λ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≥ 1− λ
}
,

λ >
1
r

(r = 1, 2, 3, . . .) .

Then
iii) δ3 ({M (λ, ε)}) = 0 and by (i), M (r, ε) ⊂M (λ, ε) .

Hence δ3 ({M (r, ε)}) = 0 which contradicts (ii). Therefore x = (xjkl) is N3 −
convergent to L.

Conversely, suppose that there exists a subset K = {(j, k, l) : j, k, l = 1, 2, 3, . . .} ⊂
N×N×N such that δ3 ({K}) = 1 and N3− lim

j,k,l→∞
(j,k,l)∈K

xjkl = L that is there exists ko ∈ N

such that for every λ ∈ (0, 1) and for any ε > 0

Nxjkl−L (ε) > 1− λ,∀j, k, l ≥ ko.
Now

M (λ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≤ 1− λ
}

⊂ N× N× N/ {(jko+1, kko+1, lko+1) , (jko+2, kko+2, lko+2) , . . .} .
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Therefore, δ3 ({M (λ, ε)}) ≤ 1−1 = 0. Hence, we conclude that stN3 − limx = L. �

Lemma 3.2. Let (X,N,>) be a PN-space.
(i) If stN3−limx = L1 and stN3−lim y = L2, then stN3−lim(x+y) = L1+L2.
(ii) If stN3 − limx = L and α ∈ R, then stN3 − limαx = αL.
(iii) If stN3 − limx = L1 and stN3 − lim y = L2, then stN3 − lim(x − y) =

L1 − L2.

Proof. (i). Let stN3 − limx = L1 and stN3 − lim y = L2, ε > 0 and λ ∈ (0, 1) . Choose
γ ∈ (0, 1) such that (1− γ) > (1− γ) ≥ 1− λ. Then, we define the following sets:

K1 (γ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L1 (ε) ≤ 1− γ
}
,

K2 (γ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L2 (ε) ≤ 1− γ
}
.

Since stN3 − limx = L1, we have δ3 ({K1 (γ, ε)}) = 0 for all ε > 0 and since
stN3 − limx = L2, we get δ3 ({K2 (γ, ε)}) = 0 for all ε > 0. Now let K (γ, ε) =
K1 (γ, ε)∩K2 (γ, ε) . Then observe that δ3 ({K (γ, ε)}) = 0 for all ε > 0 which implies
δ3 ({N× N× N/K (γ, ε)}) = 1. If (j, k, l) ∈ N× N× N/K (γ, ε) , then we have

N(xjkl−L1)+(yjkl−L2) (ε) ≥ Nxjkl−L1

(ε
2

)
>Nyjkl−L2

(ε
2

)
> (1− γ) > (1− γ) ≥ 1− λ.

This shows that

δ3
({

(j, k, l) ∈ N× N× N : N(xjkl−L1)+(yjkl−L2) (ε) ≤ 1− λ
})

= 0

so, stN3 − lim(x+ y) = L1 + L2.
(ii) Let stN3 − limx = L, ε > 0 and λ ∈ (0, 1) . First of all, we consider the

case of α = 0. In this case

N0xjkl−0L (ε) = N0 (ε) = 1 > 1− λ.
So we obtain N3 − lim 0x = 0. Then from Theorem 3.3, we have stN3 − lim 0x = 0.
Now we consider the case α 6= 0. Since stN3 − limx = L, if we define the set

K (λ, ε) =
{

(j, k, l) ∈ N× N× N : Nxjkl−L (ε) ≤ 1− λ
}

then, we can say that
δ3 ({K (λ, ε)}) = 0 for all ε > 0.

In this case
δ3 ({N× N× N/K (λ, ε)}) = 1.

If (j, k, l) ∈ N× N× N/K (λ, ε) , then

Nαxjkl−αL (ε) = Nxjkl−L

(
ε

|α|

)
>N0

(
ε

|α|
− ε
)

= Nxjkl−L (ε) > 1 = Nxjkl−L (ε) > 1− λ

for α ∈ R (α 6= 0) . This shows that

δ3
({

(j, k, l) ∈ N× N× N : Nαxjkl−αL (ε) ≤ 1− λ
})

= 0

so, stN3 − limαx = αL.
(iii) The proof is clear from (i) and (ii). �

Definition 3.4. Let (X,N,>) be a PN-space. For x = (xjkl) ∈ X, t > 0 and
0 < r < 1, the sphere centered at x with radius r is defined by

B (x, r, t) = {y ∈ X : Nx−y (t) > 1− r} .
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Definition 3.5. A subset Y of PN-space (X,N,>) is called bounded on X if for
every r ∈ (0, 1), there exists to > 0 such that Nxjkl

(to) > 1− r for all x ∈ Y.

It follows from Lemma 3.2 that the set of all bounded statistically convergent triple
sequences on PN-space is linear subspace of the linear normed space lN3

∞ (X) of all
bounded sequences on PN-space.

Theorem 3.4. Let (X,N,>) be a PN-space and the set stN3 (X)∩ lN3
∞ (X) is closed

linear subspace of the set lN3
∞ (X) .

Proof. Let y ∈ stN3 (X) ∩ lN3∞ (X). Since B (y, r, t)∩ stN3 (X)∩ lN3
∞ (X) 6= ∅, there is

an x ∈ B (y, r, t) ∩ stN3 (X)∩ lN3
∞ (X) . Let t > 0 and 0 < ε < 1. Choose r ∈ (0, 1)

such that (1− r) > (1− r) ≥ 1− ε. Since x ∈ B (y, r, t)∩ stN3 (X)∩ lN3
∞ (X) , there is

a set K ⊂ N× N× N with δ3 (K) = 1 such that

Nyjkl−xjkl

(
t

2

)
> 1− r, Nxjkl

(
t

2

)
> 1− r, for all (j, k, l) ∈ K.

Then we have

Nyjkl
(t) = Nyjkl−xjkl+xjkl

(t) ≥ Nyjkl−xjkl

(
t

2

)
>Nxjkl

(
t

2

)
> (1− r) > (1− r) ≥ 1− ε, for all (j, k, l) ∈ K.

Hence
δ3
({

(j, k, l) ∈ N× N× N : Nyjkl
(t) > 1− ε

})
= 1

and thus y ∈ stN3 (X)∩ lN3
∞ (X) . This completes the proof. �

Definition 3.6. Let (X,N,>) be a PN-space. A triple sequence x = (xjkl) ∈ X is
said to be statistically Cauchy with respect to the probabilistic norm N provided that,
for every ε > 0 and λ ∈ (0, 1) , there exist M (ε) , T (ε), P (ε) ∈ N such that for all
j, p ≥M,k, q ≥ T and l, u ≥ P, the set{

(j, k, l) ∈ N× N× N : j ≤ n, k ≤ m and l ≤ s,Nxjkl−xpqu (ε) ≤ 1− λ
}

has triple natural density zero.

Now using a similar technique in the proof of Theorem 3.3, one can get the
following result at once.

Theorem 3.5. Let (X,N,>) be a PN-space and x = (xjkl) ∈ X. Then, the following
conditions are equivalent:

(i) The triple sequence x = (xjkl) is a statistically Cauchy sequence with
respect to the probabilistic norm N ;

(ii) There exists an increasing index sequence K = {(j, k, l) ∈ N× N× N :
j, k, l = 1, 2, 3, . . .} ⊂ N×N×N such that δ3(K) = 1 and the subsequence {xjkl}(j,k,l)∈K
is a Cauchy sequence with respect to the probabilistic norm N .

4. Conclusion

In this paper we obtained some results on statistical convergence in probabilistic
normed space. As every ordinary norm induces a probabilistic norm, the results
obtained here are more general then the corresponding of normed spaces.
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