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Solving nonlinear fractional differential equation using a
multi-step Laplace Adomian decomposition method

Mohammad Zurigat

Abstract. This paper presents a numerical technique for solving fractional differential equa-
tions by employing the multi-step Laplace Adomian decomposition method (MLADM). The
proposed scheme is only a simple modification of the Adomian decomposition method, in
which it is treated as an algorithm in a sequence of small intervals (i.e. time step) for find-
ing accurate approximate solutions to the corresponding problems. This method was applied
in four examples to solve non-linear fractional differential equations which were presented as
fractional initial value problems. The fractional derivatives are described in the Caputo sense.
Figurative comparisons between the MLADM and the classical fourth-order Runge–Kutta
method (RK4) reveal that this modified method is more effective and convenient.
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1. Introduction

Fractional order ordinary differential equations, as generalizations of classical in-
teger order ordinary differential equations, are increasingly used to model problems
in fluid flow, mechanics, viscoelasticity, biology, physics, engineering and other ap-
plications [1, 2, 3]. The solutions of fractional differential equations are much in-
volved. In general, there exists no method that yields an exact solution for fractional
differential equations. Only approximate solutions can be derived. Several meth-
ods have been used to solve fractional differential equations, such as Laplace trans-
form method [4, 5], Fourier transform method [6], Adomain decomposition method
[7, 8, 9, 10, 11], homotopy perturbation method [12, 13, 14] and homotopy analysis
method [15, 16, 17, 18, 19]. The objective of the present paper is to modify the LADM
[20, 21] to provide symbolic approximate solutions for nonlinear fractional initial value
problems by the MLADM. It can be found that the corresponding numerical solutions
obtained by using LADM are valid only for a short time. While by using MLADM,
they more valid and accurate during a long time, and are highly in agreement with
the RK4-5 numerical solutions. Also, the MLADM gave the same results in the case
of a multi-step Adomian decomposition method (MADM) without taking the inverse
of the operator Dα

∗ . This paper is organized as follows. A brief review of the fractional
calculus theory is given in section 2. In section 3, the MLADM is used to construct our
numerical solutions for general nonlinear fractional differential equations. In section
4, some examples are presented to show the efficiency and simplicity of this method.
Conclusions are presented in section 5.
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2. Fractional calculus

In this section, we introduce the linear operators of fractional integration and frac-
tional differentiation in the framework of the Riemann-Liouville and Caputo fractional
calculus.

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if
there exists a real number p > µ such that f(x) = xpf1(x),where f1(x) ∈ C[0,∞).

Clearly Cµ ⊂ Cβ if β ≤ µ.

Definition 2.2. A function f(x), x > 0, is said to be in the space Cm
µ , m ∈ N∪ {0},

if f (m) ∈ Cµ.

Definition 2.3. The left sided Riemann-Liouville fractional integral operator of order
α ≥ 0, of a function f ∈ Cµ, µ ≥ −1, is defined as

Jαf(t) =
1

Γ(α)

t∫

0

f(t)
(x− t)1−α

dt, α > 0, x > 0,

J0f(x) = f(x), (2.1)

Let f ∈ Cm
−1, m ∈ N ∪ {0} then the Caputo fractional derivative of f(x) is defined as

Dα
∗ f (x) =





Jm−αf (m)(x), m− 1 < α < m, m ∈ N,
dmf(x)

dxm
, α = m.

(2.2)

Hence, we have the following properties [1, 2, 3]

1. JαJvf(t) = Jα+vf(t), α, v ≥ 0.

2. Jαtγ =
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α, α > 0, γ > −1, t > 0. (2.3)

3.JαDα
∗ f(t) = f(t)−

m−1∑

k=0

f (k)(0+)
tk

k!
, t > 0, m− 1 < α ≤ m.

Lemma 2.1. If m−1 < α ≤ m, m ∈ N, then the Laplace transform of the fractional
derivative Dα

∗ f(t) is

£(Dα
∗ f(t)) = sαF (s)−

m−1∑

k=0

f (k)(0+)sα−k−1, t > 0, (2.4)

where F (s) be the Laplace transform of f(t) [19].

3. The Algorithm of the Method

The ADM is used to provide approximate solutions for a wide class of nonlinear
problems in terms of convergent series with easily computable components, it has
some drawbacks: the series solution always converges in a very small region and it
has slow convergent rate in the wider region [7, 8, 9, 10, 11]. In this section we employ
the MLADM to the discussed problem. To show the basic idea, let us consider the
following fractional differential equation

Dα
∗ u(t)+amu(m)(t)+am−1u

(m−1)(t)+ ......+a1u
′(t)+a0u(t)+N(u(t), u′(t)) = f(t),
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t ≥ 0, m− 1 < α ≤ m, (3.1)

subject to the initial conditions

u(i)(0) = bi, i = 0, 1, 2, ......,m− 1, (3.2)

where ai, bi are known real constants, N is a nonlinear operator and f(t) is known
function. Let [0, T ] be the interval over which we want to find the solution of the above
initial value problem. Assume that the interval [0, T ] is divided into n−subintervals
of equal length ∆t, [t0, t1), [t1, t2), ..., [tn−1, tn] with t0 = 0, tn = T. Let uj(t) be
approximate solutions in each subinterval [tj−1, tj), j = 1, 2, ..., n, then equation (3.1)
is transformed into the follwing system

Dα
∗ uj(t)+amu

(m)
j (t)+am−1u

(m−1)
j (t)+......+a1u

′
j(t)+a0uj(t)+N(uj(t), u′j(t)) = f(t),

t ≥ 0, j = 1, 2, ..., n, (3.3)

subject to the initial conditions

u
(i)
j (tj−1) = cj,i, j = 1, 2, ..., n, i = 0, 1, 2, ......, m− 1, (3.4)

with c1,i = bi. Applying the Laplace transform to both sides of equation (3.3) and by
using linearity of Laplace transforms, the result is

L(Dα
∗ uj(t)) + amL(u(m)

j (t)) + am−1L(u(m−1)
j (t)) + ...... + a1L(u′j(t))

+a0L(uj(t)) + L(N(uj(t), u′j(t))) = L(f(t)). (3.5)

Using the previous lemma and applying the formulas of Laplace transform, we get

sαL(uj(t)) =
m−1∑

k=0

u
(k)
j (tj−1)sα−k−1 + L(f(t))− amL(u(m)

j (t))− am−1L(u(m−1)
j (t))

−......− a1L(u′j(t))− a0L(uj(t))− L(N(uj(t), u′j(t))),

and

L(uj(t)) =
m−1∑

k=0

u
(k)
j (tj−1)s−(k+1)+

1
sα
L(f(t))− 1

sα
[amL(u(m)

j (t))+am−1L(u(m−1)
j (t))

+...... + a1L(u′j(t)) + a0L(uj(t))]− 1
sα
L(N(uj(t), u′j(t))). (3.6)

The MLADM represents the solution as an infinite series

uj(t) =
∞∑

r=0

uj,r(t), j = 1, 2, ..., n, (3.7)

and the nonlinear term N(uj(t), u′j(t)) decomposes as

N(uj(t), u′j(t)) =
∞∑

r=0

Aj,r(t), j = 1, 2, ..., n, (3.8)

where the Aj,r’s are Adomian polynomials of uj,r’s. One can calculate the polyno-
mials by the following formula

Ai,r(t) =
1
r!

dr

dpr
N

( ∞∑

i=0

pruj,r(t),
∞∑

i=0

pru′j,r(t)

)

|p=0

(3.9)

Substituting (3.7), (3.8) and (3.9) into (3.6), we have
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L(
∞∑

r=0

uj,r(t)) =
m−1∑

k=0

u
(k)
j (tj−1)s−(k+1) +

1
sα
L(f(t))

− 1
sα

[amL(
∞∑

r=0

u
(m)
j,r (t)) + ... + a1L(

∞∑
r=0

u′j,r(t)) + a0L(
∞∑

r=0

uj,r(t))]− 1
sα
L(

∞∑
r=0

Aj,r(t)).

(3.10)
Hence the iteration are defined by the following recursive algorithm

L(uj,0(t)) =
m−1∑

k=0

u
(k)
j (tj−1)s−(k+1) +

1
sα
L(f(t))

L(uj,r(t)) = − 1
sα

[amL(u(m)
j,r−1(t)) + ........ + a1L(u′j,r−1(t)) + a0L(uj,r−1(t))]

− 1
sα
L(Aj,r−1(t)), r = 1, 2, 3, ... (3.11)

Using the initial conditions (3.4) then applying the inverse Laplace transform to (3.11)
we obtain the values uj,r(t) recursively. The solution of the initial value problem (3.1)
and (3.2) for [0, T ] is given by

u(t) =
n∑

j=1

χvuj(t),

where

χv =
{

1, t ∈ [tj−1, tj),
0, t /∈ [tj−1, tj).

4. Numerical results

To demonstrate the effectiveness of the method for solving nonlinear fractional
differential equations, we consider here the following four examples.

Example 4.1. Consider the following fractional Riccati equation

Dα
∗ u(t) = 1− u2(t), t ≥ 0, 0 < α ≤ 1, (4.1)

subject to the initial condition
u(0) = 0. (4.2)

In this example, we apply the proposed algorithm on the interval [0, 10]. We
choose to divide the interval [0, 10] to subintervals with time step ∆t = 0.1. Let
uj(t) be approximate solutions of Riccati equation in each subinterval [tj−1, tj), j =
1, 2, ..., 100, then equation (4.1) is transformed into the follwing system

Dα
∗ uj(t) = 1− u2

j (t), t ≥ 0, 0 < α ≤ 1, j = 1, 2, ..., 100, (4.3)

subject to the initial condition

uj(tj−1) = cj , with c1 = 0. (4.4)

To derive the solution, we use the equation (3.5) to get

L(Dα
∗ uj(t)) = L(1)− L(u2(t)).

Use the initial conditions (4.4), then we have

L(uj(t)) =
cj

s
+

1
sα+1

− 1
sα
L(u2

j (t)).
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In view of (3.10), we have

L(
∞∑

i=0

uj,i(t)) =
cj

s
+

1
sα+1

− 1
sα
L(

∞∑

i=0

Aj,i(t)).

The Laplace Adomian decomposition series (3.11) has the form

L(uj,0(t)) =
cj

s
+

1
sα+1

,

L(uj,i(t)) = − 1
sα
L(Aj,i−1(t)), i = 1, 2, 3, ......

where

Aj,i(t) =
1
i!

di

dpi

[
u2

j,0 + 2puj,0uj,1 + p2(u2
j,1 + 2uj,0uj,2) + ......

]
|p=0

.

Now, we can obtain the following algorithm

L(uj,0(t)) =
cj

s
+

1
sα+1

,

L(uj,1(t)) = − 1
sα
L(u2

j,0(t)),

L(uj,2(t)) = − 1
sα
L(2uj,0(t)uj,1(t)),

L(uj,3(t)) = − 1
sα
L(u2

j,1(t) + 2uj,0(t)uj,2(t)),

...

and so, the first three terms of the Laplace decomposition series are derived as follows:

uj,0(t) = cj +
1

Γ(α + 1)
tα,

uj,1(t) = − c2
j

Γ(α + 1)
tα − 2cj

Γ(2α + 1)
t2α − Γ(2α + 1)

Γ2(α + 1)Γ(3α + 1)
t3α,

uj,2(t) =
2c3

j

Γ(2α + 1)
t2α +

2c2
j

Γ(3α + 1)
(2 +

Γ(2α + 1)
Γ2(α + 1)

)t3α

+
2cj

Γ(α + 1)Γ(4α + 1)
(
Γ(2α + 1)
Γ(α + 1)

+
2Γ(3α + 1)
Γ(2α + 1)

)t4α

+
2Γ(2α + 1)Γ(4α + 1)

Γ3(α + 1)Γ(3α + 1)Γ(5α + 1)
t5α,

...

Fig.1. shows the displacement of the MLADM (when α = 1, 0.9 and 0.8) and the
fourth-order Runge–Kutta method of the Riccati fractional equation. The results
from the MLADM when α = 1 match the results of the Runge–Kutta method very
well. Therefore, the proposed method is a very efficient and accurate method that can
be used to provide analytical solutions for nonlinear fractional differential equations.
Also the results from the MLADM when α = 0.9 and 0.8 have the same trajectories.

Example 4.2. Consider the following fractional nonlinear equation

Dα
∗ u(t) = 0.1− u(t) + 0.8u2(t), t ≥ 0, 0 < α ≤ 1, (4.5)
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Figure 1. The displacement for Example 4.1: solid line: RK4 method
solution, dashed line: MLADM solution when α = 1, dash-dotted line:
MLADM solution when α = 0.9, dotted line: MLADM solution when

α = 0.8.

subject to the initial condition

u(0) = 1. (4.6)

Apply the proposed algorithm on the interval [0, 10]. We choose to divide the
interval [0, 10] to subintervals with time step ∆t = 0.1. Let uj(t) be approximate
solutions of equation (4.5) in each subinterval [tj−1, tj), j = 1, 2, ..., 100, then equation
(4.5) is transformed into the follwing system

Dα
∗ uj(t) = 0.1− uj(t) + 0.8u2

j (t), t ≥ 0, 0 < α ≤ 1, j = 1, 2, ..., 100, (4.7)

subject to the initial conditions

uj(tj−1) = cj , with c1 = 1. (4.8)

Use the initial conditions (4.8), then we have

L(uj(t)) =
cj

s
+

0.1
sα+1

− 1
sα
L(uj(t)) +

0.8
sα
L(u2

j (t)),

According to the relation (3.11), we have the following Laplace Adomian decom-
position series

L(uj,0(t)) =
cj

s
+

0.1
sα+1

,

L(uj,i(t)) = − 1
sα
L(uj,i−1(t)) +

0.8
sα
L(Aj,i−1(t)), i = 1, 2, 3, ......

where

Aj,i(t) =
1
i!

di

dpi
[u2

j,0 + 2puj,0uj,1 + p2(u2
j,1 + 2uj,0uj,2) + ......]|p=0.
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Figure 2. The displacement for Example 4.2: solid line: RK4 method
solution, dashed line: MLADM solution when α = 1, dash-dotted line:
MLADM solution when α = 0.9, dotted line: MLADM solution when

α = 0.8.

So, the first three terms of the Laplace decomposition series are derived as follows:

uj,0(t) = cj +
0.1

Γ(α + 1)
tα,

uj,1(t) =
cj(0.8cj − 1)

Γ(α + 1)
tα +

(0.16cj − 0.1)
Γ(2α + 1)

t2α +
0.008Γ(2α + 1)

Γ2(α + 1)Γ(3α + 1)
t3α,

uj,2(t) =
cj(0.8cj − 1)(1.6cj − 1)

Γ(2α + 1)
t2α +

1
Γ(3α + 1)

[(1.6cj − 1)(0.16cj − 0.1)

+
0.16cj(0.8cj − 1)Γ(2α + 1)

Γ2(α + 1)
]t3α +

1
Γ(α + 1)Γ(4α + 1)

[−0.008Γ(2α + 1)
Γ(α + 1)

+
0.0128cjΓ(2α + 1)

Γ(α + 1)
+

0.16(0.16cj − 0.1)Γ(3α + 1)
Γ(2α + 1)

]t4α

+
0.00128Γ(2α + 1)Γ(4α + 1)

Γ3(α + 1)Γ(3α + 1)Γ(5α + 1)
t5α,

...

Fig.2. shows the displacement of the MLADM (when α = 1, 0.9 and 0.8) and the
fourth-order Runge–Kutta method of the fractional equation (4.5). Also the results
of our computations when α = 1 are in excellent agreement with the results obtained
by the Runge–Kutta method and the results from the MLADM when α = 0.9 and
0.8 have the same trajectories.

Example 4.3. Consider the following fractional nonlinear equation

Dα
∗ u(t) = 1 + u(t) + u′

2
(t)− u2(t), t ≥ 0, 1 < α ≤ 2, (4.9)

subject to the initial conditions

u(0) = 1, u
′
(0) = 0. (4.10)

To demonstrate the effectiveness of the proposed algorithm as an approximate tool
for solving the nonlinear fractional differential equations (4.9) for larger t, we apply
the proposed algorithm on the interval [0, 50]. We choose to divide the interval to
subintervals with time step ∆t = 0.1. Let uj(t) be approximate solutions of equation
(4.9) in each subinterval [tj−1, tj), then equation (4.9) is transformed into the following
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Figure 3. The displacement for Example 4.3: solid line: RK4 method
solution, dashed line: MLADM solution when α = 2, dotted line: MLADM
solution when α = 1.8.

system
Dα
∗ uj(t) = 1 + uj(t) + u′

2

j (t)− u2
j (t), t ≥ 0, 1 < α ≤ 2, (4.11)

subject to the initial conditions

uj(tj−1) = aj , u
′
j(tj−1) = bj with a1 = 1, b1 = 0. (4.12)

According to the relation (3.11), we have the following Laplace Adomian decom-
position series

L(uj,0(t)) =
aj

s
+

bj

s2
+

1
sα+1

,

L(uj,i(t)) =
1
sα
L(uj,i−1(t))− 1

sα
L(Aj,i−1(t)), i = 1, 2, 3, ......

where

Aj,i(t) =
1
i!

di

dpi
[(u2

j,0 − u′
2

j,0) + 2p(uj,0uj,1 − u
′
j,0u

′
j,1) + ...]|p=0.

Using mathematica software, the first few components of the Laplace Adomian
decomposition solution are derived as follows:

uj(t) = aj + bjt +
1 + aj(1− aj) + b2

j

Γ(α + 1)
tα +

bj(1− 2aj)
Γ(α + 2)

tα+1 − 2b2
j

Γ(α + 3)
tα+2

+
2bj

Γ(2α)
t2α−1 +

1− 2aj

Γ(2α + 1)
t2α − 2bjΓ(α + 2)

Γ(α + 1)Γ(2α + 2)
t2α+1,

+
Γ(2α− 1)

Γ2(α)Γ(3α− 1)
t3α−2 + ....

Fig.3. shows the displacement of the MLADM (when α = 2 and 1.8) and the fourth-
order Runge–Kutta method of the fractional equation (4.9). It can be seen that the
results from the MLADM when α = 2 match the results of the RK4 solution very
well. Therefore, the proposed method is very effcient and accurate method

Example 4.4. Consider the following fractional nonlinear Van der Pol equation

Dα
∗ u(t) = 1 + u′(t)− u(t)− u2(t)u′(t), t ≥ 0, 1 < α ≤ 2, (4.13)

subject to the initial conditions

u(0) = 0.5, u
′
(0) = 0. (4.14)
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Figure 4. The displacement for Example 4.4: solid line: RK4 method
solution, dashed line: MLADM solution when α = 2, dotted line: MLADM
solution when α = 1.8.

Also, in this example divide the interval [0, 50] to subintervals with time step
∆t = 0.1. Let uj(t) be approximate solutions of equation (4.13) in the subinterval
[tj−1, tj), then we have

Dα
∗ uj(t) = 1 + u′j(t)− uj(t)− u2

j (t)u
′
j(t), t ≥ 0, 1 < α ≤ 2, (4.15)

with initial conditions

uj(tj−1) = aj , u
′
j(tj−1) = bj with a1 = 0.5, b1 = 0. (4.16)

According to the relation (3.11), we have the following Laplace Adomian decom-
position series

L(uj,0(t)) =
aj

s
+

bj

s2
− aj

sα
+

1
sα+1

,

L(uj,i(t)) =
1

sα−1
L(uj,i−1(t))− 1

sα
L(uj,i−1(t))− 1

sα
L(Aj,i−1(t)), i = 1, 2, 3, ...

where

Aj,i(t) =
1
i!

di

dpi
[u2

j,0u
′
j,0 + p(2uj,0u

′
j,0uj,1 + u2

j,0u
′
j,1) + ...]|p=0.

So, the first few components of the Laplace Adomian decomposition solution are
derived as follows:

uj(t) = aj + bjt +
1− aj(1 + ajbj) + bj

Γ(α + 1)
tα − bj(1 + 2ajbj)

Γ(α + 2)
tα+1 − 2b3

j

Γ(α + 3)
tα+2

+
aj(a2

j − 1)
Γ(2α− 1)

t2α−2 +
1

Γ(2α)
[1 + aj − a2

j + 2a2
jbj +

2a2
jbjΓ(α)

Γ(α− 1)
]t2α−1

− Γ(α + 1)
Γ(2α + 1)

[− ajb
2
j

Γ(α− 1)
+

2ajbj(1− bj)
Γ(α)

+
1 + 2ajbj

Γ(α + 1)
]t2α

− Γ(α + 2)
Γ(2α + 2)

[
b2
j

Γ(α)
+

2b2
j

Γ(α + 1)
]t2α+1 − 2a3

jΓ(2α− 2)
Γ(α− 1)Γ(α)Γ(3α− 2)

t3α−3

−Γ(2α− 1)
Γ(3α− 1)

[
a2

j (bj − 2)
Γ2(α)

+
2a2

jbj

Γ(α− 1)Γ(α)
− 2a2

j

Γ(α− 1)Γ(α + 1)
]t3α−2 + ...

Fig.4. exhibits the comparison between the MLADM solution and the numerical
results obtained by RK4 method for the displacement of nonlinear equation (4.13).
From Fig.4, it is obvious that the solution obtained by the present method when
α = 2 is nearly identical with that given by RK4 method.



SOLVING NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION USING A MULTI-STEP...209

5. Conclusions

The main goal of this work is to purpose an efficient algorithm for the solution
of nonlinear fractional differential equation. The Adomian decomposition method
has been known to be a powerful device for solving many functional equations. In
this paper, the multi-step Laplace Adomian decomposition method is suggested, as a
modification of the ADM. It is found that the results obtained by using the MLADM
with that obtained by the fourth-order Runge–Kutta method revealed that the ap-
proximate solutions obtained by ADM are only valid for a small time, compared to
that the ones obtained by MLADM which are highly accurate and valid for a long
time. It is recommended that the MLADM be used to solve other nonlinear problems
in fractional calculus field.
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