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A remark on the behavior of integrable functions at infinity

Marcela V. Mihai

Abstract. We prove that any continuous function f : [0,∞) → R, for which the integral∫∞
0

f(x)
x

dx exists at least as a Riemann improper integral, verifies the condition

lim
x→∞

1

x

∫ x

0
f(t)dt = 0.
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There are many ways to describe the behavior at infinity of integrable functions.
The recent paper by Niculescu and Popovici [2] calls the attention to an old result of
B. O. Koopman and J. von Neumann [1] relating the convergence of certain arithmetic
means to convergence in density. For the convenience of the reader we recall here the
basic facts involved in their approach.

The density of a measurable subset A ⊂ R is defined by the formula

d(A) = lim
r→∞

λ (A ∩ [0, r))
r

.

Here λ denotes the Lebesgue measure on real line.
Clearly, all bounded measurable subsets of R have density 0. However, one can

exhibit easily examples of subsets having density 0 that are not bounded.
Given a real-valued function f defined on the interval [0,∞), its limit in density

at infinity,
` = (d)- lim

x→∞
f(x),

is defined by the condition that each of the sets {t ≥ α : |f(t)− `| ≥ ε} has zero
density, whenever ε > 0.

Lemma 0.1. (B. O. Koopman and J. von Neumann). Suppose that f : [0,∞) → R
is a nonnegative continuous function. Then

lim
x→∞

1
x

∫ x

0

f(t)dt = 0 implies (d)- lim
x→∞

f(x) = 0.

The following result outlines a class of integrals satisfying the hypotheses of Lemma
1:

Theorem 0.1. Let f : [0,∞) → R be a continuous function such that
∫∞
0

f(x)
x dx

existsas a Riemann improper integral. Then

lim
x→∞

1
x

∫ x

0

f(t)dt = 0.

Consequently, if f(x)/x is Lebesgue integrable, then limx→∞ f(x) = 0.
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Proof. Given ε > 0, there exists positive numbers y such that∣∣∣∣
∫ x

y

f(t)
t

dt

∣∣∣∣ <
ε

3
for all x ∈ (y,∞).

Integrating by parts we get
1
x

∫ x

0

f(t)dt =
1
x

(∫ y

0

f(t)dt +
∫ x

y

t
f(t)

t
dt

)

=
1
x

(∫ y

0

f(t)dt +
∫ x

y

t
d

dt

(∫ t

y

f(s)
s

ds

)
dt

)

=
1
x

∫ y

0

f(t)dt +
∫ x

y

f(s)
s

ds− 1
x

∫ x

y

(∫ t

y

f(s)
s

ds

)
dt.

For every x ∈ (y,∞) we have
∣∣∣∣
1
x

∫ x

y

(∫ t

y

f(s)
s

ds

)
dt

∣∣∣∣ <
1
x

ε

3
(x− y) <

ε

3
.

Choose z ∈ (y,∞) such that∣∣∣∣
1
x

∫ y

0

f(t)dt

∣∣∣∣ <
ε

3
for every x ∈ (z,∞).

Then for every x ∈ (z,∞) we have∣∣∣∣
1
x

∫ x

0

f(t)dt

∣∣∣∣ <
ε

3
+

ε

3
+

ε

3
= ε,

and the proof is done. ¤
According to Theorem 1, if a continuous function f : [0,∞) → R does not verify the

condition limx→∞ 1
x

∫ x

0
f(t)dt = 0, then the improper integral

∫∞
0

f(x)
x dx is divergent.

In particular, ∫ ∞

0

sin2 x

x
dx = ∞.

Stronger results concerning the behavior at infinity of Lebesgue integrable functions
will appear in [3].

References

[1] B.O. Koopman and J. von Neumann, Dynamical systems of continuous spectra, Proc. Natl. Acad.
Sci. U.S.A. 18 (1932), 255–263.

[2] C.P. Niculescu and F. Popovici, A note on the behavior of integrable functions at infinity, J.
Math. Anal. Appl. 381 (2011), no. 2, 742–747.

[3] C.P. Niculescu and F. Popovici, The behavior at infinity of an integrable function, submitted.

(Marcela V. Mihai) University of Craiova, Department of Mathematics, Craiova
RO-200585, Romania
E-mail address: mmihai58@yahoo.com


