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The Jensen Inequality for (M,N)-Convex Functions
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Abstract. We prove an Jensen type inequality in the context of functions which are convex
with respect to a pair of regular means.
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1. Introduction

In what follows by a mean on an interval I we will understand a sequence M =
(Mn)n≥2 of functions Mn : In → I such that

min {xk : k = 1, ..., n} ≤ Mn(x1, . . . , xn) ≤ max {xk : k = 1, ..., n}
for all families (x1, . . . , xn) ∈ In and all n ≥ 2.

Given a continuous increasing function ϕ : I → R we can attach to it the so called
quasi-arithmetic mean M[ϕ] = (M [ϕ]

n )n≥2, defined by the formula

M [ϕ]
n (x1, . . . , xn) = ϕ−1

(
ϕ(x1) + · · ·+ ϕ(xn)

n

)
.

The special case where ϕ (x) = x corresponds to the arithmetic mean A = (An)n≥2,
where

An (x1, . . . , xn) =
ϕ(x1) + · · ·+ ϕ(xn)

n
,

while the function ϕ (x) = log x corresponds to the geometric mean G = (Gn)n≥2,
where

Gn (x1, . . . , xn) = n
√

x1 . . . xn.

The quasi-arithmetic mean is an example of a regular mean in the sense that the
following three conditions are fulfilled:

Symmetry :
Mn(x1, . . . , xn) = Mn(xσ(1), . . . , xσ(n))

for every family (x1, . . . , xn) ∈ In every permutation σ and every n ≥ 2;
Associativity :

Mn(x1, . . . , xk, xk+1, ..., xn) = Mn(Mk(x1, . . . , xk), ...,Mk(x1, . . . , xk)), xk+1, ..., xn)

for every family (x1, . . . , xn) ∈ In and every n ≥ k ≥ 2;
Strict monotonicity :

x < y implies Mn(x, z2, ..., zn) < Mn(y, z2, ..., zn)

for every z2, ..., zn ∈ I and every n ≥ 2.
See [1] for details.
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Every regular mean verifies the equalities

Mn (x, . . . , x) = x

and

M2n(x, ..., x, y, ..., y) = M2(x, y).

In order to simplify the notation we will denote the means by capitol letters such
as M, N, ... and the functions Mn (x1, . . . , xn) simply M (x1, . . . , xn), the lower index
resulting from the context.

In what follows we will be interested in the following special class of functions
extending the concept of midconvexity of Jensen.

Definition 1.1. Suppose that M and N are means defined on the intervals I and J
respectively. A function F : I → J is called (M, N)−convex if

F (M(x, y)) ≤ N(F (x, y)) for every pair x, y of elements of I. (MN)

In this paper we will prove an Jensen type inequality in the context of functions
which are convex with respect to a pair of regular means. A more restrictive theory
of convex functions associated to means is described in [2], [3] and [4].

2. Main results

Theorem 2.1. Let I and J be intervals and let M and N be regular means on I
and J respectively. If f : I → J is a (M, N)−convex function, then the following
generalization of Jensen’s inequality holds

f (M (x1, x2, ..., xn)) ≤ N (f(x1), f(x2), ..., f(xn)) (Jn)

for all families x1, x2, ..., xn ∈ I and all n ∈ N, n ≥ 2.

The proof will be done by mathematical induction, based on the following two
technical lemmas.

The initial step where n = 2, corresponds to the definition of (M, N)−convexity,

Lemma 2.1. Under the assumptions of Theorem 2.1, if (Jn) works for families of
length n ∈ N, n ≥ 2, then it also works for families of length 2n.

Proof. Let x1, x2, ..., x2n ∈ I. Then f (M (x1, x2, ..., x2n)) equals

f


M(M(x1, . . . , xn), . . . ,M(x1, . . . , xn)︸ ︷︷ ︸

n times

),

M(M(xn+1, . . . , xn), . . . ,M(xn+1, . . . , xn)︸ ︷︷ ︸
n times

)




= f (M (M (x1, . . . , xn) ,M (xn+1, . . . , x2n)))
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and because f is (M, N)−convex, this is less than equal to

N (f (M (x1, . . . , xn) , f(M (xn+1, . . . , x2n)))

≤ N (N (f(x1), . . . , f(xn)) , N (f(xn+1), . . . , f(x2n)))

= N


N(f(x1), . . . , f(xn)), . . . , N(f(x1), . . . , f(xn)))︸ ︷︷ ︸

n times

,

N(f(xn+1), . . . , f(x2n)), . . . , N(f(xn+1), . . . , f(x2n)))︸ ︷︷ ︸
n times




= N (f(x1), f(x2), ..., f(xn)) .

Therefore the inequality Jn holds also for families of length 2n. ¤
Lemma 2.2. Under the assumptions of Theorem 2.1, if (Jn) holds for families of
length m ∈ N, m ≥ 2 then it holds also for families of any length k ∈ {2, ..., m}.
Proof. Let k ∈ {2, ..., m− 1}. Let x1, x2, ..., xk ∈ I. We have

N(f(M(x1, . . . , xk)), . . .︸ ︷︷ ︸,
k times

f(M(x1, . . . , xk)), . . .︸ ︷︷ ︸
m−k times

)

= f (M (x1, x2, ..., xk))

≤ f(M(M(x1, . . . , xk), . . . , M(x1, . . . , xk)︸ ︷︷ ︸
m times

))

= f(M(x1, . . . , xk,M(x1, . . . , xk), . . . ,M(x1, . . . , xk)︸ ︷︷ ︸
m−k times

))

≤ N(f(x1), . . . , f(xk), f(M(x1, . . . , xk)), . . . , f(M(x1, . . . , xk))︸ ︷︷ ︸
m−k times

)

= N (H, ...︸ ︷︷ ︸
k times

, f(M(x1, . . . , xk)), . . .︸ ︷︷ ︸)
m−k times

.

Here H = N(f(x1), . . . , f(xk)). Since N is strictly monotonic, we infer

f (M (x1, ..., xk)) ≤ N (f(x1), ..., f(xn))

which yields (Jn) for all k. ¤
According to [2] (see also [3] and [4]), a nonnegative function f defined on a subin-

terval I of [0,∞) is called (G,G)-convex if

f (
√

xy) ≤
√

f(x)f(y) for all x, y ∈ I.

By Theorem 2.1,
f ( n
√

x1 · · ·xn) ≤ n
√

f(x1) · · · f(xn)
for all families x1, ..., xn ∈ I and all n ≥ 2. For f(x) = 1 + x, x ≥ 0, this yields the
inequality of Huygens,

1 + n
√

x1 · · ·xn ≤ n
√

(1 + x1) · · · (1 + xn)

for all x1, ..., xn ≥ 0 and all n ≥ 2.
The sum (as well as the product) of two (G, G)-convex functions is (G,G)-convex

too. Thus every polynomial with nonnegative coefficients is (G,G)-convex. Other
examples of such functions are presented in [2] and [4].
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Let us consider now the sequence

an = n! for n ∈ N.

Since
√

anan+2 =
√

n! (n + 2)! = n!
√

n2 + 3n + 1 > (n + 1)! =
√

an+1,

it follows that this sequence is log-convex (that is, (log an)n is a convex sequence).
Then the function g that interpolates linearly the points (n, log an) is convex (and

increasing). As a consequence

h(x) = exp g(x), x ≥ 0.

is log-convex and increasing. Notice that h(n) = n! for every n ∈ N. From Theorem
2.1 we infer that

h

(
x1 + · · ·+ xn

n

)
≤ n

√
h(x1) · · ·h(xn).

Consequently, using the floor function bxc (the largest integer less than or equal
to x) we conclude that

bx1 + · · ·+ xn

n
c! ≤ n

√
(bx1c+ 1) · · · (bxnc+ 1)

for every x1, ..., xn ≥ 0 and every n ≥ 2.
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[1] P.S. Bullen, D.S. Mitrinović and P.M. Vasić, Means and their inequalities, D. Reidel Publishing
Company, Dordrecht, 1988.

[2] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), 155–
167.

[3] C.P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003), 571-579.
[4] C.P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary

Approach, CMS Books in Mathematics 23, Springer-Verlag, New York, 2006.

(Florin Popovici) College Grigore Moisil, Braşov, Romania
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