The Jensen Inequality for (M, N)-Convex Functions

FLORIN POPOVICI AND CĂTĂLIN-IRINEL SPIRIDON

ABSTRACT. We prove an Jensen type inequality in the context of functions which are convex with respect to a pair of regular means.

2010 Mathematics Subject Classification. Primary 26A51; Secondary 52A41. Key words and phrases. Jensen inequality, mean, convexity associated to a pair of means.

1. Introduction

In what follows by a *mean* on an interval I we will understand a sequence $\mathcal{M} = (M_n)_{n \geq 2}$ of functions $M_n : I^n \to I$ such that

$$\min\{x_k : k = 1, ..., n\} \le M_n(x_1, \dots, x_n) \le \max\{x_k : k = 1, ..., n\}$$

for all families $(x_1, \ldots, x_n) \in I^n$ and all $n \ge 2$.

Given a continuous increasing function $\varphi: I \to \mathbb{R}$ we can attach to it the so called quasi-arithmetic mean $\mathcal{M}^{[\varphi]} = (\mathcal{M}_n^{[\varphi]})_{n>2}$, defined by the formula

$$M_n^{[\varphi]}(x_1,\ldots,x_n) = \varphi^{-1}\left(\frac{\varphi(x_1) + \cdots + \varphi(x_n)}{n}\right)$$

The special case where $\varphi(x) = x$ corresponds to the arithmetic mean $\mathcal{A} = (A_n)_{n \geq 2}$, where

$$A_n(x_1,\ldots,x_n) = \frac{\varphi(x_1) + \cdots + \varphi(x_n)}{n},$$

while the function $\varphi(x) = \log x$ corresponds to the geometric mean $\mathcal{G} = (G_n)_{n \geq 2}$, where

$$G_n(x_1,\ldots,x_n) = \sqrt[n]{x_1\ldots x_n}.$$

The quasi-arithmetic mean is an example of a *regular mean* in the sense that the following three conditions are fulfilled:

Symmetry:

$$M_n(x_1,\ldots,x_n) = M_n(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

for every family $(x_1, \ldots, x_n) \in I^n$ every permutation σ and every $n \ge 2$; Associativity:

$$M_n(x_1, \ldots, x_k, x_{k+1}, \ldots, x_n) = M_n(M_k(x_1, \ldots, x_k), \ldots, M_k(x_1, \ldots, x_k)), x_{k+1}, \ldots, x_n)$$

for every family $(x_1, \ldots, x_n) \in I^n$ and every $n \ge k \ge 2$;

Strict monotonicity:

x < y implies $M_n(x, z_2, ..., z_n) < M_n(y, z_2, ..., z_n)$

for every $z_2, ..., z_n \in I$ and every $n \ge 2$. See [1] for details.

Received June 17, 2011. Revision received October 21, 2011.

Every regular mean verifies the equalities

$$M_n\left(x,\ldots,x\right)=x$$

and

$$M_{2n}(x, ..., x, y, ..., y) = M_2(x, y).$$

In order to simplify the notation we will denote the means by capitol letters such as M, N, \ldots and the functions $M_n(x_1, \ldots, x_n)$ simply $M(x_1, \ldots, x_n)$, the lower index resulting from the context.

In what follows we will be interested in the following special class of functions extending the concept of midconvexity of Jensen.

Definition 1.1. Suppose that M and N are means defined on the intervals I and J respectively. A function $F: I \to J$ is called (M, N) –convex if

$$F(M(x,y)) \le N(F(x,y))$$
 for every pair x, y of elements of I. (MN)

In this paper we will prove an Jensen type inequality in the context of functions which are convex with respect to a pair of regular means. A more restrictive theory of convex functions associated to means is described in [2], [3] and [4].

2. Main results

Theorem 2.1. Let I and J be intervals and let M and N be regular means on I and J respectively. If $f : I \to J$ is a (M, N)-convex function, then the following generalization of Jensen's inequality holds

$$f(M(x_1, x_2, ..., x_n)) \le N(f(x_1), f(x_2), ..., f(x_n))$$

$$(J_n)$$

for all families $x_1, x_2, ..., x_n \in I$ and all $n \in \mathbb{N}$, $n \geq 2$.

The proof will be done by mathematical induction, based on the following two technical lemmas.

The initial step where n = 2, corresponds to the definition of (M, N)-convexity,

Lemma 2.1. Under the assumptions of Theorem 2.1, if (J_n) works for families of length $n \in \mathbb{N}$, $n \geq 2$, then it also works for families of length 2n.

Proof. Let $x_1, x_2, ..., x_{2n} \in I$. Then $f(M(x_1, x_2, ..., x_{2n}))$ equals

$$f\left(M(\underbrace{M(x_1,\ldots,x_n),\ldots,M(x_1,\ldots,x_n)}_{n \text{ times}}), \underbrace{M(\underbrace{M(x_{n+1},\ldots,x_n),\ldots,M(x_{n+1},\ldots,x_n)}_{n \text{ times}})}_{= f\left(M\left(M\left(x_1,\ldots,x_n\right),M\left(x_{n+1},\ldots,x_{2n}\right)\right)\right)}\right)$$

64

and because f is (M, N)-convex, this is less than equal to

$$N(f(M(x_{1},...,x_{n}),f(M(x_{n+1},...,x_{2n}))) \leq N(N(f(x_{1}),...,f(x_{n})),N(f(x_{n+1}),...,f(x_{2n}))) = N\left(\underbrace{N(f(x_{1}),...,f(x_{n})),...,N(f(x_{1}),...,f(x_{n})))}_{n \text{ times}},\underbrace{N(f(x_{n+1}),...,f(x_{2n})),...,N(f(x_{n+1}),...,f(x_{2n})))}_{n \text{ times}}\right) = N(f(x_{1}),f(x_{2}),...,f(x_{n})).$$

Therefore the inequality J_n holds also for families of length 2n.

Lemma 2.2. Under the assumptions of Theorem 2.1, if (J_n) holds for families of length $m \in \mathbb{N}$, $m \ge 2$ then it holds also for families of any length $k \in \{2, ..., m\}$.

Proof. Let
$$k \in \{2, ..., m - 1\}$$
. Let $x_1, x_2, ..., x_k \in I$. We have

$$N(\underbrace{f(M(x_1,\ldots,x_k)),\ldots,f(M(x_1,\ldots,x_k)),\ldots}_{k \text{ times}}) = f(M(x_1,x_2,\ldots,x_k))$$

$$\leq f(M(\underbrace{M(x_1,\ldots,x_k),\ldots,M(x_1,\ldots,x_k)}_{m \text{ times}})))$$

$$= f(M(x_1,\ldots,x_k,\underbrace{M(x_1,\ldots,x_k),\ldots,M(x_1,\ldots,x_k)}_{m-k \text{ times}})))$$

$$\leq N(f(x_1),\ldots,f(x_k),\underbrace{f(M(x_1,\ldots,x_k)),\ldots,f(M(x_1,\ldots,x_k)))}_{m-k \text{ times}}$$

$$= N(\underbrace{H,\ldots,f(M(x_1,\ldots,x_k)),\ldots}_{k \text{ times}},\underbrace{f(M(x_1,\ldots,x_k)),\ldots}_{m-k \text{ times}}).$$

Here $H = N(f(x_1), \dots, f(x_k))$. Since N is strictly monotonic, we infer $f(M(x_1, \dots, x_k)) \le N(f(x_1), \dots, f(x_n))$

which yields
$$(J_n)$$
 for all k.

According to [2] (see also [3] and [4]), a nonnegative function f defined on a subinterval I of $[0, \infty)$ is called (G, G)-convex if

$$f(\sqrt{xy}) \le \sqrt{f(x)f(y)}$$
 for all $x, y \in I$.

By Theorem 2.1,

$$f\left(\sqrt[n]{x_1\cdots x_n}\right) \leq \sqrt[n]{f(x_1)\cdots f(x_n)}$$

for all families $x_1, ..., x_n \in I$ and all $n \ge 2$. For f(x) = 1 + x, $x \ge 0$, this yields the inequality of Huygens,

$$1 + \sqrt[n]{x_1 \cdots x_n} \le \sqrt[n]{(1+x_1) \cdots (1+x_n)}$$

for all $x_1, ..., x_n \ge 0$ and all $n \ge 2$.

The sum (as well as the product) of two (G, G)-convex functions is (G, G)-convex too. Thus every polynomial with nonnegative coefficients is (G, G)-convex. Other examples of such functions are presented in [2] and [4].

Let us consider now the sequence

$$a_n = n!$$
 for $n \in \mathbb{N}$.

Since

$$\sqrt{a_n a_{n+2}} = \sqrt{n! (n+2)!} = n! \sqrt{n^2 + 3n + 1} > (n+1)! = \sqrt{a_{n+1}},$$

it follows that this sequence is log-convex (that is, $(\log a_n)_n$ is a convex sequence).

Then the function g that interpolates linearly the points $(n, \log a_n)$ is convex (and increasing). As a consequence

$$h(x) = \exp g(x), \quad x \ge 0.$$

is log-convex and increasing. Notice that h(n) = n! for every $n \in \mathbb{N}$. From Theorem 2.1 we infer that

$$h\left(\frac{x_1+\cdots+x_n}{n}\right) \leq \sqrt[n]{h(x_1)\cdots h(x_n)}.$$

Consequently, using the floor function $\lfloor x \rfloor$ (the largest integer less than or equal to x) we conclude that

$$\lfloor \frac{x_1 + \dots + x_n}{n} \rfloor! \le \sqrt[n]{(\lfloor x_1 \rfloor + 1) \cdots (\lfloor x_n \rfloor + 1)}$$

for every $x_1, ..., x_n \ge 0$ and every $n \ge 2$.

References

- P.S. Bullen, D.S. Mitrinović and P.M. Vasić, *Means and their inequalities*, D. Reidel Publishing Company, Dordrecht, 1988.
- [2] C.P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), 155– 167.
- [3] C.P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003), 571-579.
- [4] C.P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics 23, Springer-Verlag, New York, 2006.

(Florin Popovici) COLLEGE GRIGORE MOISIL, BRAŞOV, ROMANIA *E-mail address*: popovici.florin@yahoo.com

(Cătălin-Irinel Spiridon) UNIVERSITY OF CRAIOVA, DEPARTMENT OF MATHEMATICS, STREET A. I. CUZA 13, CRAIOVA, RO-200585, ROMANIA *E-mail address*: catalin_gsep@yahoo.com

66