Annals of the University of Craiova, Mathematics and Computer Science Series Volume 40(2), 2013, Pages 128–139 ISSN: 1223-6934

Fuzzy deductive systems in BE-semigroups

A. H. HANDAM

ABSTRACT. In this paper, we introduce the notion of fuzzy deductive systems and investigate some of their properties. Also we give the construction of quotient self-distributive BE-semigroup X/μ induced by a fuzzy deductive system μ and discuss their interesting properties.

2010 Mathematics Subject Classification. 03E72, 03G25, 94D05. Key words and phrases. BE-semigroup, deductive system, fuzzy deductive systems.

1. Introduction

Imai and Iséki introduced two classes of abstract algebras, namely, BCK-algebras and BCI-algebras [5], [6]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [11], Neggers and Kim introduced the notion of d-algebras which is a generalization of BCK-algebras. Moreover, Jun et al. [7] introduced a new notion, called a BH-algebra, which is a generalization of BCK/BCIalgebras. Recently, as another generalization of BCK-algebras, the notion of a BEalgebra was introduced by Kim and Kim [9]. They provided an equivalent condition of the filters in BE-algebras using the notion of upper sets. In [2], [3], Ahn and So introduced the notion of ideals in BE-algebras and proved several characterizations of such ideals. In [1], Ahn and Kim combined BE-algebras and semigroups and introduced the notion of BE-semigroups. Also, congruences and BE-Relations in BE-Algebras was studied by Yon et al. [15]. Recently, Handam introduced the notion of BE-homomorphisms between BE-semigroups [4].

The theory of fuzzy sets was first developed by Zadeh [16] and has been applied to many branches in mathematics. The fuzzification of algebraic structures was initiated by Rosenfeld [13] and he introduced the notion of fuzzy subgroups. In 1975, Zadeh [17] introduced the concept of interval valued fuzzy subset, where the values of the membership functions are intervals of numbers instead of the numbers. Later on, Song et al. [14] introduced the concept of a fuzzy ideals in BE-algebras. Recently, Rezaei and Saeid [12] introduced the concepts of fuzzy BE-subalgebras and fuzzy topological BE-algebras. In this paper, we introduce the concept of fuzzy deductive systems and investigate some of their properties. We give the construction of quotient self-distributive BE-semigroup X/μ via a fuzzy deductive system μ . In addition, we establish a generalization of fundamental BE-homomorphism theorem in self-distributive BE-semigroups by using fuzzy deductive systems.

Received December 9, 2011. Revised July 10, 2013.

2. Preliminaries

In this section we cite some elementary aspects that will be used in the sequel of this paper.

Definition 2.1. [9]. An algebra (X, *, 1) of type (2, 0) is called a *BE-algebra* if $(BE1) \ x * x = 1$ for all $x \in X$, $(BE2) \ x * 1 = 1$ for all $x \in X$,

 $(BE3) 1 * x = x \text{ for all } x \in X,$

 $(BE4) \ x * (y * z) = y * (x * z) \text{ for all } x, y, z \in X.$

Example 2.1. [9]. Let $X = \{1, a, b, c, d, 0\}$ be a set with the following table:

*	0	a	b	c	d	0
0	1	a	b	С	d	0
a	1	1	a	c	c	d
b	1	1	1	c	c	c
c	1	a	b	1	a	b
d	1	1	a	1	1	a
0	1	1	1	1	1	1

Then (X; *, 1) is a BE-algebra.

We can define a relation " \leq "on X by $x \leq y$ if and only if x * y = 1.

In an BE-algebra, the following identities are true (see [9]): (a1) $x \neq (u \neq x) = 1$

$$(a1) \ x * (y * x) = 1.$$

 $(a2) \ x * ((x * y) * y)) = 1.$

Definition 2.2. [9]. A BE-algebra (X, *, 1) is said to be *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$.

Example 2.2. [9]. Let $X = \{1, a, b, c, d\}$ be a set with the following table:

*	1	a	b	c	d
0	1	a	b	С	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

Then it is easy to see that X is a self-distributive BE-algebra.

Definition 2.3. [1]. An algebraic system $(X; \odot, *, 1)$ is called a *BE-semigroup* if it satisfies the following:

(i) $(X; \odot)$ is a semigroup,

(ii) (X; *, 1) is a BE-algebra,

(*iii*) the operation " \odot " is distributive (on both sides) over the operation "*", that is, $x \odot (y * z) = (x \odot y) * (x \odot z)$ and $(x * y) \odot z = (x \odot z) * (y \odot z)$ for all $x, y, z \in X$. **Example 2.3.** [1]. Define two operations " \odot " and "*" on a set $X = \{1, a, b, c\}$ as follows:

\odot	1	a	b	c		*	1	a	b	c
0	1	1	1	1	-	0	1	a	b	С
a	1	1	1	1		a	1	1	b	c
b	1	1	1	1		b	1	a	1	c
c	1	a	b	c		c	1	1	1	c

It is easy to see that $(X; \odot, *, 1)$ is a BE-semigroup.

Definition 2.4. [4]. A BE-semigroup $(X; \odot, *, 1)$ is said to be *self-distributive BE-semigroup* if X is self-distributive BE-algebra.

Proposition 2.1. [1]. Let $(X; \odot, *, 1)$ be a BE-semigroup. Then (i) $(\forall x \in X)$ $(1 \odot x = x \odot 1 = 1)$, (ii) $(x, y, z \in X)$ $(x \le y \Rightarrow x \odot z \le y \odot z, z \odot x \le z \odot y)$.

Definition 2.5. [1]. Let $(X; \odot, *, 1)$ be a BE-semigroup. A nonempty subset D of X is called a *left* (resp., *right*) *deductive system* if it satisfies: (ds1) $X \odot D \subseteq D$ (resp. ($D \odot X \subseteq D$)), (ds2) ($\forall a \in D$) (($\forall x \in X$) ($a * x \in D \Rightarrow x \in D$).

Both left and right deductive system is a two sided deductive system or simply deductive system.

Example 2.4. [1]. Let $X = \{x, y, z, 1\}$ be a set with the following Cayley tables:

\odot	1	x	y	z		*	1	x	y	z
1	1	1	1	1	_	1	1	x	y	z
x	1	x	1	1		x	1	1	y	z
y	1	1	y	z		y	1	1	1	z
z	1	1	z	y		z	1	1	1	1

It is easy to show that $(X; \odot, *, 1)$ is a BE-semigroup and $D = \{1, x\}$ is an left deductive system of X.

Definition 2.6. [4]. Let X and Y be two BE-semigroups. A mapping $\psi : X \to Y$ is called a *BE-homomorphism* if for all $a, b \in X$, $\psi(a * b) = \psi(a) * \psi(b)$ and $\psi(a \odot b) = \psi(a) \odot \psi(b)$.

Proposition 2.2. [4]. Suppose that $\psi : X \to Y$ is a BE-homomorphism of BE-semigroups. Then $\psi(1) = 1$.

A BE-homomorphism ψ is called a *BE-monomorphism* (resp. *BE-epimorphism*) if it is injective (resp. surjective). A bijective BE-homomorphism is called a *BE-isomorphism*. For any BE-homomorphism $\psi : X \to Y$, the set $\{x \in X \mid \psi(x) = 1\}$ is called the *kernel* of ψ , denoted by $Ker(\psi)$ and the set $\{\psi(x) \mid x \in X\}$ is called the *image* of ψ , denoted by $Im(\psi)$. We denote by Hom(X, Y) the set of all BEhomomorphisms of BE-semigroups from X to Y.

We now review some fuzzy logic concepts. The readers are referred to [10] for some basic definitions and results on fuzzy sets and fuzzy algebras, not given in this paper. Let X be a set. A fuzzy set A in X is characterized by a membership function $\mu_A: X \to [0, 1]$. For any $t \in [0, 1]$, the set $U(\mu, t) = \{x \in A : \mu(x) \ge t\}$ is called level subset of μ . Let ξ be a mapping from the set X to the set Y and let B be a fuzzy set in Y with membership function μ_B . The inverse image of B, denoted $\xi^{-1}(B)$, is the fuzzy set in X with membership function $\mu_{\xi^{-1}(B)}$ defined by $\mu_{\xi^{-1}(B)}(x) = \mu_B(\xi(x))$ for all $x \in X$. Conversely, let A be a fuzzy set in X with membership function μ_A Then the image of A, denoted by $\xi(A)$, is the fuzzy set in Y such that:

$$\mu_{\xi(A)}(y) = \begin{cases} \sup_{z \in \xi^{-1}(y)} \mu_A(z), & \text{if } \xi^{-1}(y) = \{x : \xi(x) = y\} \neq \emptyset \\ 0, & \text{otherwise.} \end{cases}$$

A fuzzy set A in a BE-semigroup X with the membership function μ_A is said to have the *sup property* if for any subset $T \subseteq X$ there exists $x_0 \in T$ such that

$$\mu_A(x_0) = \sup_{t \in T} \mu_A(t).$$

3. Fuzzy deductive systems

In what follows, X denotes a BE-semigroup, A or μ_A denotes a fuzzy set A in X.

Definition 3.1. A fuzzy set μ in X is called a *fuzzy deductive system of* X if it satisfies the following conditions:

 $\begin{array}{l} (FD1) \ \mu(x \odot y) \geq \mu(y) \ \text{for all } x, y \in X, \\ (FD2) \ \mu(x \odot y) \geq \mu(x) \ \text{for all } x, y \in X, \\ (FD3) \ \mu(x) \geq \min \left\{ \mu(y), \mu(y \ast x) \right\} \ \text{for all } x, y \in X. \end{array}$

Note that μ is a fuzzy left deductive system of X if it satisfies (FD1) and (FD3), and μ is a fuzzy right deductive system of X if it satisfies (FD2) and (FD3).

Example 3.1. Let $X = \{1, x, y, z\}$ be the set with the following Cayley tables:

\odot	1	x	y	z	*	1	x	y	z
1	1	1	1	1	1	1	x	y	z
x	1	x	1	1	x	1	1	y	z
y	1	1	y	z	y	1	1	1	z
z	1	1	z	y	z	1	1	1	1

Then $(X; \odot, *, 1)$ is a BE-semigroup (see [1]). Let μ be a fuzzy set in X defined by $\mu(1) = t_0, \ \mu(x) = t_1, \ \mu(y) = \mu(z) = t_2$, where $t_0 > t_1 > t_2$ in [0, 1]. Then μ is a fuzzy deductive system of X.

Lemma 3.1. If D is a fuzzy left (resp. right) deductive system of X, then for all $x \in X$

$$\mu_D(1) \ge \mu_D(x).$$

Proof. Let $x \in X$. Since D is a fuzzy left (resp. right) deductive system of X, it follows that $\mu_D(1) = \mu_D(1 \odot x) \ge \mu_D(x)$ (resp. $\mu_D(1) = \mu_D(x \odot 1) \ge \mu_D(x)$). \Box

Theorem 3.2. Let D be a fuzzy left (resp. right) deductive system of X. If there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} \mu_D(x_n) = 1$, then $\mu_D(1) = 1$.

Proof. By Lemma 3.1, we have $\mu_D(1) \ge \mu_D(x)$ for $x \in X$. Consider $1 \ge \mu_D(1) \ge \lim_{n \to \infty} \mu_D(x_n) = 1$. Therefore, $\mu_D(1) = 1$.

Theorem 3.3. Let μ be a fuzzy left (resp. right) deductive system of X. Then the set $X_{\mu} = \{x \in X \mid \mu(x) = \mu(1)\}$ is a left (resp. right) deductive system of X.

Proof. Let μ be a fuzzy left deductive system of X. Let $X_{\mu} = \{x \in X \mid \mu(x) = \mu(1)\}$. If $x \in X$ and $y \in X_{\mu}$, then $\mu(y) = \mu(1)$. Since $\mu(x \odot y) \ge \mu(y) = \mu(1)$, it follows that $x \odot y \in X_{\mu}$ so that $X \odot X_{\mu} \subseteq X_{\mu}$. Now let $x, y \in X$ be such that $y \in X_{\mu}$ and $y * x \in X_{\mu}$. Then $\mu(x) \ge \min \{\mu(y), \mu(y * x)\} = \min \{\mu(1), \mu(1)\} = \mu(1)$, and thus $x \in X_{\mu}$. Therefore, X_{μ} is a left deductive system of X. Similarly we have the desired result for the right case.

Corollary 3.4. If μ is a fuzzy deductive system of X, then the set $X_{\mu} = \{x \in X \mid \mu(x) = \mu(1)\}$ is a deductive system of X.

Theorem 3.5. Let μ be a fuzzy set in X. Then μ is a fuzzy deductive system of X if and only if the nonempty level subset $U(\mu, t)$, $t \in Im(\mu)$ is a deductive system of X.

Proof. Let μ be a fuzzy deductive system of X and the level subset $U(\mu, t) = \{x \in A : \mu(x) \ge t\}$ of μ . Let $x \in X$ and $y \in U(\mu, t)$. Then $\mu(y) \ge t$. Since $\mu(x \odot y) \ge \mu(y) \ge t$, it follows that $x \odot y \in U(\mu, t)$ so that $X \odot U(\mu, t) \subseteq U(\mu, t)$. Let $y \in X$ and $x \in U(\mu, t)$. Then $\mu(x) \ge t$. Since $\mu(x \odot y) \ge \mu(x) \ge t$, it follows that $x \odot y \in U(\mu, t)$ so that $U(\mu, t) \odot X \subseteq U(\mu, t)$. Now, let $x, y \in X$ be such that $y \in U(\mu, t)$ and $y * x \in U(\mu, t)$. Then $\mu(x) \ge \min \{\mu(y), \mu(y * x)\} \ge t$, and thus $x \in U(\mu, t)$. Therefore, $U(\mu, t)$ a deductive system of X.

Conversely, assume that the nonempty level set $U(\mu, t)$ of μ is a deductive system of X for every $t \in [0,1]$. If $\mu(x_0 \odot y_0) < \mu(y_0)$ for some $x_0, y_0 \in X$, then by taking $t_0 = \frac{1}{2}(\mu(x_0 \odot y_0) + \mu(y_0))$ we have $\mu(x_0 \odot y_0) < t_0 < \mu(y_0)$. Thus $y_0 \in U(\mu, t_0)$ and $x_0 \odot y_0 \notin U(\mu, t_0)$, a contradiction and so $\mu(x_0 \odot y_0) \ge \mu(y_0)$ for all $x_0, y_0 \in X$. If $\mu(x_1 \odot y_1) < \mu(x_1)$ for some $x_1, y_1 \in X$, then by taking $t_1 = \frac{1}{2}(\mu(x_1 \odot y_1) + \mu(x_1))$ we have $\mu(x_1 \odot y_1) < t_1 < \mu(x_1)$. Thus $x_1 \in U(\mu, t_1)$ and $x_1 \odot y_1 \notin U(\mu, t_1)$, which is also a contradiction and so $\mu(x_1 \odot y_1) \ge \mu(x_1)$ for all $x_1, y_1 \in X$. Next, if $\mu(x_2) < \min \{\mu(y_2), \mu(y_2 * x_2)\}$ for some $x_2, y_2 \in X$, then by taking $t_2 = \frac{1}{2}(\mu(x_2) + \min \{\mu(y_2), \mu(y_2 * x_2)\})$ we have $\mu(x_2) < t_2 < \min \{\mu(y_2), \mu(y_2 * x_2)\}$. Thus $y_2, y_2 * x_2 \in U(\mu, t_2)$ and $x_2 \notin U(\mu, t_2)$, which is again a contradiction and so $\mu(x_2) \ge \min \{\mu(y_2), \mu(y_2 * x_2)\}$ for all $x_2, y_2 \in X$. This completes the proof. \Box

Theorem 3.6. Let μ be a fuzzy deductive system of X. Then

$$(\forall a, b \in X) \ (a \le b \Rightarrow \mu(a) \le \mu(b))$$

Proof. Let $a, b \in X$ be such that $a \leq b$. Then a * b = 1. It follows from (FD3) and Lemma 3.1 that $\mu(b) \geq \min \{\mu(a), \mu(a * b)\} = \min \{\mu(a), \mu(1)\} = \mu(a)$. Hence $\mu(a) \leq \mu(b)$.

Definition 3.2. For a family of fuzzy sets $\{\mu_i \mid i \in I\}$ in a BE-semigroup X, define the *joint* $\bigvee_{i \in I} \mu_i$ and *meet* $\bigwedge_{i \in I} \mu_i$ of $\{\mu_i \mid i \in I\}$ as follows:

$$\left(\bigvee_{i\in I}\mu_i\right)(x) = \sup\left\{\mu_i(x)\mid i\in I\right\}, \quad \left(\bigwedge_{i\in I}\mu_i\right)(x) = \inf\left\{\mu_i(x)\mid i\in I\right\},$$

for all $x \in X$, where I is any index set.

Consider two fuzzy sets A and B in X. Zadeh [16] gave a definition of fuzzy set inclusion with: $A \subset B \iff \mu_A(x) \le \mu_B(x), \forall x \in X.$

Theorem 3.7. The family of fuzzy deductive systems of X is a completely distributive lattice under the ordering of fuzzy set inclusion \subset .

Proof. Let $\{\mu_i \mid i \in I\}$ be a family of fuzzy deductive systems of X. Since [0, 1] is a completely distributive lattice with respect to the usual ordering in [0, 1], it is sufficient to show that $\bigwedge_{i \in I} \mu_i$ is a fuzzy deductive systems of X. For any $x, y \in X$, we have

$$\left(\bigwedge_{i\in I}\mu_i\right)(x\odot y) = \inf\left\{\mu_i(x\odot y) \mid i\in I\right\} \ge \inf\left\{\mu_i(x) \mid i\in I\right\} = \left(\bigwedge_{i\in I}\mu_i\right)(x),$$
$$\left(\bigwedge_{i\in I}\mu_i\right)(x\odot y) = \inf\left\{\mu_i(x\odot y) \mid i\in I\right\} \ge \inf\left\{\mu_i(y) \mid i\in I\right\} = \left(\bigwedge_{i\in I}\mu_i\right)(y),$$

$$\left(\bigwedge_{i \in I} \mu_{i}\right)(x) = \inf \{\mu_{i}(x) \mid i \in I\}$$

$$\geq \inf \{\min \{\mu_{i}(y), \mu_{i}(y * x)\} \mid i \in I\}$$

$$= \min \{\inf \{\mu_{i}(y) \mid i \in I\}, \inf \{\mu_{i}(y * x) \mid i \in I\}\}$$

$$= \min\left\{\left(\bigwedge_{i\in I}\mu_i\right)(y), \left(\bigwedge_{i\in I}\mu_i\right)(y*x)\right\}.$$

Hence $\bigwedge_{i \in I} \mu_i$ is a fuzzy deductive system of X, completing the proof.

Theorem 3.8. Let D be a subset of X. Suppose that μ is a fuzzy set in X defined by

$$\mu(x) = \begin{cases} \alpha & \text{if } x \in D, \\ \beta & \text{otherwise,} \end{cases}$$

where $\alpha > \beta$ in [0, 1]. Then μ is a fuzzy deductive system if and only if D is a deductive system of X. Moreover, $X_{\mu} = D$.

Proof. Let μ be a fuzzy deductive system. Let $x \in D$ and $y \in X$. Then $\mu(x \odot y) \ge \mu(x) = \alpha$ and so $x \odot y \in D$, that is, $D \odot X \subseteq D$. Let $y \in D$ and $x \in X$. Then $\mu(x \odot y) \ge \mu(y) = \alpha$ and so $x \odot y \in D$, that is, $X \odot D \subseteq D$. Now let $a, x \in X$ be such that $a \in D$ and $a * x \in D$. Then $\mu(x) \ge \min \{\mu(a), \mu(a * x)\} = \min \{\alpha, \alpha\} = \alpha$ and so $x \in D$. Thus D is a deductive system of X.

Conversely, suppose that D is a deductive system of X. Let $x, y \in X$. If at least one of $x, y \in D$, then $\mu(x \odot y) = \alpha \ge \mu(y)$ and $\mu(x \odot y) = \alpha \ge \mu(x)$. If $x \notin D$ and $y \notin D$, then $\mu(x \odot y) \ge \beta = \mu(x) = \mu(y)$. In order to prove $\mu(x) \ge \min \{\mu(y), \mu(y * x)\}$, we consider two cases:

(1) If $x \in D$, then the inequality is obvious.

(2) If $x \notin D$ implies that $y \notin D$ or $y * x \notin D$, so that $\mu(y) = \beta$ or $\mu(y * x) = \beta$ which implies $\mu(x) \ge \beta = \min \{\mu(y), \mu(y * x)\}$ and hence μ is a fuzzy deductive system. Moreover, we have

$$X_{\mu} = \{ x \in X \mid \mu(x) = \mu(1) \} = \{ x \in X \mid \mu(x) = \alpha \} = D.$$

Corollary 3.9. Let X be a BE-semigroup and χ_D be the characteristic function of a subset $D \subset X$. Then χ_D is a fuzzy deductive system if and only if D is a deductive system.

Definition 3.3. Let $\xi : X \to Y$ be a mapping of BE-semigroups. If μ is a fuzzy set of Y, then the fuzzy subset $\nu = \mu \circ \xi$ in X (i.e. the fuzzy subset defined by $\mu^{\xi}(x) = \nu(x) = \mu(\xi(x))$ for all $x \in X$) is called the *preimage of* μ under ξ .

Theorem 3.10. Let $\xi : X \to Y$ be a BE-homomorphism of BE-semigroups. If μ is a fuzzy deductive system of Y, then μ^{ξ} is a fuzzy deductive system of X.

Proof. Let $x, y \in X$. Then we have

$$\begin{split} \mu^{\xi}(x \odot y) &= \mu(\xi(x \odot y)) = \mu(\xi(x) \odot \xi(y)) \ge \mu(\xi(x)) = \mu^{\xi}(x), \\ \mu^{\xi}(x \odot y) &= \mu(\xi(x \odot y)) = \mu(\xi(x) \odot \xi(y)) \ge \mu(\xi(y)) = \mu^{\xi}(y), \end{split}$$

and

134

$$\begin{split} \mu^{\xi}(x) &= \mu(\xi(x)) \\ &\geq \min \left\{ \mu(\xi(y)), \mu(\xi(y) * \xi(x)) \right\} \\ &= \min \left\{ \mu(\xi(y)), \mu(\xi(y * x)) \right\} \\ &= \min \left\{ \mu^{\xi}(y), \mu^{\xi}(y * x) \right\}. \end{split}$$

Therefore, μ^{ξ} is a fuzzy deductive system of X.

Theorem 3.11. Let μ be a fuzzy set of Y and let $\xi : X \to Y$ be a BE-epimorphism of BE-semigroups. If μ^{ξ} is a fuzzy deductive system of X, then μ is a fuzzy deductive system of Y.

Proof. For any $x, y \in Y$, there exist $a, b \in X$ such that $x = \xi(a)$ and $y = \xi(b)$. It follows that

$$\mu(x \odot y) = \mu(\xi(a) \odot \xi(b)) = \mu(\xi(a \odot b)) = \mu^{\xi}(a \odot b) \ge \mu^{\xi}(a) = \mu(\xi(a)) = \mu(x),$$

$$\mu(x \odot y) = \mu(\xi(a) \odot \xi(b)) = \mu(\xi(a \odot b)) = \mu^{\xi}(a \odot b) \ge \mu^{\xi}(b) = \mu(\xi(b)) = \mu(y),$$

d

and

$$\begin{split} \mu(x) &= \mu(\xi(a)) = \mu^{\xi}(a) \\ &\geq \min \left\{ \mu^{\xi}(b), \mu^{\xi}(b*a) \right\} \\ &= \min \left\{ \mu(\xi(b)), \mu(\xi(b*a)) \right\} \\ &= \min \left\{ \mu(\xi(b)), \mu(\xi(b)*\xi(a)) \right\} \\ &= \min \left\{ \mu(y), \mu(y*x) \right\}. \end{split}$$

Hence μ is a fuzzy deductive system of Y.

Definition 3.4. A BE-semigroup X is said to satisfy the ascending (resp. descending) chain condition if for every ascending (resp. descending) sequence $A_1 \subseteq A_2 \subseteq A_3...$ (resp. $A_1 \supseteq A_2 \supseteq A_3...$) of deductive systems of X, there exists a natural number n such that $A_n = A_k$ for all $n \ge k$. If X satisfies the ascending chain condition, we say X is a Noetherian BE-semigroup.

Theorem 3.12. Let X be a BE-semigroup. If every fuzzy deductive system of X has finite number of values, then X is Noetherian.

Proof. Suppose that X is not Noetherian. Then, there exists a strictly descending chain $X = A_1 \supset A_2 \supset A_3$... of deductive systems of X. Define a fuzzy set μ in X by

$$\mu(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in A_n - A_{n+1} \\ 1, & \text{if } x \in \bigcap_{n=1}^{\infty} A_n, \end{cases}$$

for all $x \in X$. We prove that μ is a fuzzy deductive system. Let $x, y \in X$. If $x \odot y \in \bigcap_{n=1}^{\infty} A_n$, then obviously $\mu(x \odot y) = 1 \ge \min \{\mu(x), \mu(y)\}$. If $x \odot y \notin \bigcap_{n=1}^{\infty} A_n$, then $x \odot y \in A_t - A_{t+1}$ for some $t \in \mathbb{N}^*$. If $x \in \bigcap_{n=1}^{\infty} A_n$ or $y \in \bigcap_{n=1}^{\infty} A_n$, then $x \odot y \in \bigcap_{n=1}^{\infty} A_n$, a contradiction. Hence $x \notin \bigcap_{n=1}^{\infty} A_n$ and $y \notin \bigcap_{n=1}^{\infty} A_n$. So $x \in A_m - A_{m+1}$ and $y \in A_j - A_{j+1}$ for some $m, j \in \mathbb{N}^*$. Without loss of generality, we assume that $m \le j$. Then clearly, $y \in A_m$. It follows that $x \odot y \in A_m$. If t < m,

then $A_m \subseteq A_{t+1} \subset A_t$ and so $x \odot y \in A_{t+1}$, a contradiction. Hence $m \leq t$. Thus $\mu(x \odot y) = \frac{t}{t+1} \geq \min \{\mu(x), \mu(y)\} = \frac{m}{m+1}$.

Let $x, y \in X$. Suppose that $y * x \in A_k - A_{k+1}$ and $y \in A_r - A_{r+1}$ for some $k, r \in N^*$. Without loss of generality, we assume that $k \leq r$. Then clearly $y \in A_k$. Hence $\mu(x) \geq \frac{k}{k+1} = \min \{\mu(y * x), \mu(y)\}$.

If $y * x, y \in \bigcap_{n=1}^{\infty} A_n$, then $x \in \bigcap_{n=1}^{\infty} A_n$. Thus $\mu(x) = 1 \ge \min \{\mu(y * x), \mu(y)\}$. If $y * x \notin \bigcap_{n=1}^{\infty} A_n$ and $y \in \bigcap_{n=1}^{\infty} A_n$, then there exists $k \in \mathbb{N}^*$ such that $y * x \in A_k - A_{k+1}$. It follows that $x \in A_k$ and so we have $\mu(x) \ge \frac{k}{k+1} = \min \{\mu(y * x), \mu(y)\}$.

If $y * x \in \bigcap_{n=1}^{\infty} A_n$ and $y \notin \bigcap_{n=1}^{\infty} A_n$, then there exists $i \in \mathbb{N}^*$ such that $y \in A_i - A_{i+1}$. It follows that $x \in A_i$. Hence $\mu(x) \geq \frac{i}{i+1} = \min \{\mu(y * x), \mu(y)\}$. Therefore, μ is a fuzzy deductive system and has infinite number of different values, which is a contradiction.

Definition 3.5. Let $\mu_1, \mu_2, ..., \mu_n$ be *n* fuzzy subsets of BE-semigroups $X_1, X_2, ..., X_n$, respectively. Then the *direct product* of finite fuzzy subsets of BE-semigroup is denoted by $\mu_1 \times \mu_2 \times ... \times \mu_n$ and is defined as $\mu_1 \times \mu_2 \times ... \times \mu_n : X_1 \times X_2 \times ... \times X_n \to [0,1]$ by $(\mu_1 \times \mu_2 \times ... \times \mu_n)(s_1, s_2, ..., s_n) = \min\{\mu_1(s_1), \mu_2(s_2), ..., \mu_n(s_n)\}.$

Theorem 3.13. Let $\mu_1, \mu_2, ..., \mu_n$ be n fuzzy left (resp. right) deductive systems of BE-semigroups $X_1, X_2, ..., X_n$, respectively. Then $\mu_1 \times \mu_2 \times ... \times \mu_n$ is a fuzzy left (resp. right) deductive system of BE-semigroup $X_1 \times X_2 \times ... \times X_n$.

Proof. Let $\mu_1, \mu_2, ..., \mu_n$ be *n* fuzzy left deductive systems of BE-semigroups $X_1, X_2, ..., X_n$, respectively and let $(x_1, x_2, ..., x_n), (y_1, y_2, ..., y_n) \in X_1 \times X_2 \times ... \times X_n$. Then

- $\begin{aligned} &(\mu_1 \times \mu_2 \times ... \times \mu_n)((x_1, x_2, ..., x_n) \odot (y_1, y_2, ..., y_n)) \\ &= (\mu_1 \times \mu_2 \times ... \times \mu_n)(x_1 \odot y_1, x_2 \odot y_2, ..., x_n \odot y_n) \\ &= \min \{\mu_1(x_1 \odot y_1), \mu_2(x_2 \odot y_2), ..., \mu_n(x_n \odot y_n)\} \\ &\geq \min \{\mu_1(y_1), \mu_2(y_2), ..., \mu_n(y_n)\} \end{aligned}$
- $= (\mu_1 \times \mu_2 \times \dots \times \mu_n)(y_1, y_2, \dots, y_n),$

and

 $(\mu_1 \times \mu_2 \dots \times \mu_n)(x_1, x_2, \dots, x_n)$

- $= \min \{\mu_1(x_1), \mu_2(x_2), ..., \mu_n(x_n)\}$
- $\geq \min \left\{ \min \left\{ \mu_1(y_1), \mu_1(y_1 * x_1) \right\}, \dots, \min \left\{ \mu_n(y_n), \mu_n(y_n * x_n) \right\} \right\}$
- $= \min \{\min \{\mu_1(y_1), ..., \mu_n(y_n)\}, \min \{\mu_1(y_1 * x_1), ..., \mu_n(y_n * x_n)\}\}$
- $= \min \{ (\mu_1 \times ... \times \mu_n) (y_1, y_2, ..., y_n), (\mu_1 \times ... \times \mu_n) (y_1 * x_1, y_2 * x_2, ..., y_n * x_n) \}$
- $= \min \left\{ (\mu_1 \times ... \times \mu_n)(y_1, y_2, ..., y_n), (\mu_1 \times ... \times \mu_n)((y_1, y_2, ..., y_n) * (x_1, x_2, ..., x_n)) \right\}.$

Consequently, $\mu_1 \times \mu_2 \times \ldots \times \mu_n$ is a fuzzy left deductive system of BE-semigroup $X_1 \times X_2 \times \ldots \times X_n$. Similarly we have the desired result for the right case.

Definition 3.6. A fuzzy deductive system μ of X is said to be *normal* if there exists $x \in X$ such that $\mu(x) = 1$.

Let $\mathfrak{D}(X)$ denote the set of all normal fuzzy deductive system of X.

Theorem 3.14. Let μ be a fuzzy deductive system of X and let μ^+ be a fuzzy set in X defined by $\mu^+(x) = \mu(x) + 1 - \mu(1)$ for all $x \in X$. Then $\mu^+ \in \mathfrak{D}(X)$ and $\mu \subseteq \mu^+$.

A. H. HANDAM

Proof. Clearly, $\mu^+(1) = 1$. Let $x, y \in X$. Then $\mu^+(x \odot y) = \mu(x \odot y) + 1 - \mu(1) \ge \mu(y) + 1 - \mu(1) = \mu^+(y)$. Similarly, we have that $\mu^+(x \odot y) \ge \mu^+(x)$. Let $z, w \in X$. Then

$$\mu^{+}(z) = \mu(z) + 1 - \mu(1)$$

$$\geq \min \{\mu(w), \mu(w * z)\} + 1 - \mu(1)$$

$$= \min \{\mu(w) + 1 - \mu(1), \mu(w * z) + 1 - \mu(1)\}$$

$$= \min \{\mu^{+}(w), \mu^{+}(w * z)\}.$$

Therefore, $\mu^+ \in \mathfrak{D}(X)$, and obviously $\mu \subseteq \mu^+$.

Corollary 3.15. If μ is a fuzzy deductive system of X satisfying $\mu^+(s) = 0$ for some $s \in X$, then $\mu(s) = 0$.

Theorem 3.16. Let $\mu \in \mathfrak{D}(X)$ be non-constant such that is a maximal element of the poset $(\mathfrak{D}(X), \subseteq)$. Then μ takes only the values 0 and 1.

Proof. Since μ is normal, we have $\mu(1) = 1$. Let $x \in X$ be such that $\mu(x) \neq 1$. We have to prove that $\mu(x) = 0$. If not, then there exists $a \in X$ such that $0 < \mu(a) < 1$. Define a fuzzy set ν in X by $\nu(x) = \frac{\mu(x) + \mu(a)}{2}$, for all $x \in X$. Clearly, ν is well-defined. Let $x, y \in X$. Then

$$\nu(x \odot y) = \frac{\mu(x \odot y) + \mu(a)}{2}$$
$$\geq \frac{\mu(y) + \mu(a)}{2}$$
$$= \nu(y).$$

In a similar way we get $\nu(x \odot y) \ge \nu(x)$. Let $x \in X$. Then

$$\nu(x) = \frac{\mu(x) + \mu(a)}{2} \\
\geq \frac{\min \{\mu(y), \mu(y * x)\} + \mu(a)}{2} \\
= \min \left\{ \frac{\mu(y) + \mu(a)}{2}, \frac{\mu(y * x) + \mu(a)}{2} \right\} \\
= \min \{\nu(y), \nu(y * x)\}.$$

Hence ν is a fuzzy deductive system of X. By Theorem 3.14 $\nu^+ \in \mathfrak{D}(X)$, where ν^+ is defined by $\nu^+(x) = \nu(x) + 1 - \nu(1)$, for all $x \in X$. Note that

$$\nu^{+}(a) = \nu(a) + 1 - \nu(1) \\
= \frac{\mu(a) + \mu(a)}{2} + 1 - \frac{\mu(1) + \mu(a)}{2} \\
= \frac{\mu(a) + \mu(a)}{2} + 1 - \frac{1 + \mu(a)}{2} \\
= \frac{\mu(a) + 1}{2} \\
> \mu(a),$$

and $\nu^+(a) < 1 = \nu^+(1)$. It follows that ν^+ is non-constant, and μ is not a maximal element of $(\mathfrak{D}(X), \subseteq)$. This is a contradiction.

4. Quotient self-distributive BE-semigroups induced by fuzzy deductive system

Let D be a deductive system of a self-distributive BE-semigroup X. We define a relation " \sim_D " on X as follows:

$$x \sim_D y$$
 if and only if $x * y \in D$ and $y * x \in D$.

Then \sim_D is an equivalence relation on X (see [4]). We denote the equivalence class containing x by D_x and the set of all equivalence classes in X by X/D, that is, $D_x = \{y \in X \mid y \sim_D x\}$ and $X/D = \{D_x \mid x \in X\}$. Define binary operations \odot' and \ast on X/D by $D_x \odot' D_y = D_{x \odot y}$ and $D_x \ast D_y = D_{x \ast y}$ for all $D_x, D_y \in X/D$. Then $(X/D, \odot', \ast, D_1)$ is a self-distributive BE-semigroup (see [4]). Let μ be a nonconstant fuzzy deductive system of a self-distributive BE-semigroup X and define a binary relation, denoted by $x \sim_{\mu} y$, on X as follows:

 $x \sim_{\mu} y$ if and only if $\mu(x * y) = \mu(1)$ and $\mu(y * x) = \mu(1)$,

for every $x, y \in X$.

Lemma 4.1. \sim_{μ} is an equivalence relation of a self-distributive BE-semigroup X.

Proof. For any $x \in X$, we have $\mu(x * x) = \mu(1)$. Hence $x \sim_{\mu} x$. The symmetry of \sim_{μ} follows directly from the definition. For any $x, y, z \in X$, if $x \sim_{\mu} y$ and $y \sim_{\mu} z$, then $\mu(x*y) = \mu(y*z) = \mu(y*z) = \mu(z*y) = \mu(1)$ and so $x*y, y*x, y*z, z*y \in X_{\mu}$. Since $\mu((y*z)*((x*y)*(x*z))) = \mu(1)$, by Corollary 3.4, we have $(x*y)*(x*z) \in X_{\mu}$ and so $x*z \in X_{\mu}$, that is, $\mu(x*z) = \mu(1)$. Similarly, we have $\mu(z*x) = \mu(1)$. Therefore, \sim_{μ} is an equivalence relation on X.

Theorem 4.2. \sim_{μ} is a congruence relation on a self-distributive BE-semigroup X.

We denote $\mu_x = \{y \in X \mid y \sim_{\mu} x\}$ the equivalence class containing x and $X/\mu = \{\mu_x \mid x \in X\}$ the set of all equivalence classes of X. Define binary operations \odot and \circledast on X/μ by $\mu_x \odot \mu_y = \mu_{x \odot y}$ and $\mu_x \circledast \mu_y = \mu_{x \ast y}$. Note that $\mu_x = \mu_y$ if and only if $x \sim_{\mu} y$.

Theorem 4.3. If μ is a fuzzy deductive system of a self-distributive BE-semigroup X, then $(X/\mu, \odot, \circledast, \mu_1)$ is a self-distributive BE-semigroup.

Proof. Clearly $(X/\mu, \circledast, \mu_1)$ is a BE-algebra. Let $\mu_x = \mu_y$ and $\mu_u = \mu_v$. Then $x * y, y * x, u * v, v * u \in X_\mu$. Since X_μ is a deductive system, we have $(x \odot u) * (x \odot v) = x \odot (u * v) \in X_\mu$ and $(x \odot v) * (x \odot u) = x \odot (v * u) \in X_\mu$. Thus $(x \odot u) \sim_\mu (x \odot v)$. On the other hand, $(x \odot v) * (y \odot v) = (x * y) \odot v \in X_\mu$ and $(y \odot v) * (x \odot v) = (y * x) \odot v \in X_\mu$. Hence $(x \odot v) \sim_\mu (y \odot v)$, and so $\mu_{x \odot u} = \mu_{y \odot v}$. This shows that \odot is well-defined. Therefore, it is easy to prove that $(X/\mu, \odot)$ is a semigroup. Moreover, for any $\mu_x, \mu_y, \mu_z \in X/\mu$, we obtain $\mu_x \odot (\mu_y \circledast \mu_z) = \mu_x \odot \mu_{y * z} = \mu_{x \odot (y * z)} = \mu_{(x \odot y) * (x \odot z)} = \mu_{(x \odot y)} \circledast \mu_{(x \odot z)} = (\mu_x \odot \mu_y) \circledast (\mu_x \odot \mu_z)$. Similarly, $(\mu_x \circledast \mu_y) \odot \mu_z = (\mu_x \odot \mu_z) \circledast (\mu_y \odot \mu_z)$. Thus, X/μ is a BE-semigroup. Let $\mu_x, \mu_y, \mu_z \in X/\mu$. Then $\mu_x \circledast (\mu_y \circledast \mu_z) = \mu_x \circledast \mu_{y * z} = \mu_{x * (y * z)} = \mu_{(x * y) * (x * z)} = \mu_{x * y} \circledast \mu_{x * z} = (\mu_x \circledast \mu_y) \circledast (\mu_x \circledast \mu_z)$. Therefore, $(X/\mu, \odot, \circledast, \mu_1)$ is a self-distributive BE-semigroup. □

Theorem 4.4. (*BE-Homomorphism Theorem*) Let X and Y be self-distributive *BE-semigroups*, $\xi : X \to Y$ a *BE-epimorphism and* μ a fuzzy deductive system. Then $X/(\mu \circ \xi) \cong Y/\mu$.

Proof. By Theorem 3.10 we have that $\mu \circ \xi$ is a fuzzy deductive system. Then, by Theorem 4.3, $(X/(\mu \circ \xi), \circledast, \circledcirc, (\mu \circ \xi)_1)$ and $(Y/\mu, \circledast', \circledcirc', \mu_1)$ are self-distributive BE-semigroups. Define $\psi : X/(\mu \circ \xi) \to Y/\mu$ by

$$\psi((\mu \circ \xi)_x) = \mu_{\xi(x)}.$$

For any $(\mu \circ \xi)_x, (\mu \circ \xi)_y \in X/(\mu \circ \xi)$, we have

$$\begin{aligned} (\mu \circ \xi)_x &= (\mu \circ \xi)_y &\Leftrightarrow \quad (\mu \circ \xi)(x * y) = (\mu \circ \xi)(y * x) = (\mu \circ \xi)(1) \\ &\Leftrightarrow \quad \mu(\xi(x * y)) = \mu(\xi(y * x)) = \mu(\xi(1)) \\ &\Leftrightarrow \quad \mu(\xi(x) * \xi(y)) = \mu(\xi(y) * \xi(x)) = \mu(1) \\ &\Leftrightarrow \quad \mu_{\xi(x)} = \mu_{\xi(y)} \end{aligned}$$

Hence ψ is well-defined and injective. For all $(\mu \circ \xi)_x, (\mu \circ \xi)_y \in X/(\mu \circ \xi)$, we get

$$\begin{split} \psi((\mu \circ \xi)_x \circledast (\mu \circ \xi)_y) &= \psi((\mu \circ \xi)_{x*y}) \\ &= \mu_{\xi(x*y)} \\ &= \mu_{\xi(x)*\xi(y)} \\ &= \mu_{\xi(x)} \circledast^{'} \mu_{\xi(y)} \\ &= \psi((\mu \circ \xi)_x) \circledast^{'} \psi((\mu \circ \xi)_y), \end{split}$$

and

$$\begin{split} \psi((\mu \circ \xi)_x \odot (\mu \circ \xi)_y) &= \psi((\mu \circ \xi)_{x \odot y}) \\ &= \mu_{\xi(x \odot y)} \\ &= \mu_{\xi(x) \odot \xi(y)} \\ &= \mu_{\xi(x)} \odot' \mu_{\xi(y)} \\ &= \psi((\mu \circ \xi)_x) \odot' \psi((\mu \circ \xi)_y) \end{split}$$

So ψ is a BE-homomorphism of self-distributive BE-semigroups. Let $\mu_z \in Y/\mu$. Since ξ is a BE-epimorphism, there exists $x \in X$ such that $\xi(x) = z$. So $\psi((\mu \circ \xi)_x) = \mu_{\xi(x)} = \mu_z$. Hence ψ is a BE-epimorphism. Therefore, $X/(\mu \circ \xi) \cong Y/\mu$. \Box

Acknowledgements. The author is highly grateful to the referees for the comments and suggestions helpful in improving this paper.

References

- S. S. Ahn and Y. H. Kim, On BE-Semigroups, International Journal of Mathematics and Mathematical Sciences, Volume 2011, Article ID 676020, 8 pages.
- [2] S. S. Ahn and K. S. So, On ideals and upper sets in BE-algebras, Scientiae Mathematicae Japonicae 68 (2008), no. 2, 279–285.
- [3] S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bulletin of the Korean Mathematical Society 46 (2009), no. 2, 281–287.
- [4] A. H. Handam, On BE-homomorphisms of BE-semigroups, International Journal of Pure and Applied Mathematics 78 (2012), no. 8, 1211–1220.
- [5] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ. 8 (1980), no. 1, 125–130.
- [6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, *Mathematica Japonica* 23 (1978), 1–26.
- [7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347–354.
- [8] K. H. Kim, Multipliers in BE-Algebras, International Mathematical Forum 6 (2011), no. 17, 815–820.

- [9] H. S. Kim and Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae 66 (2007), no. 1, 113–116.
- [10] J. N. Mordeson and M. S. Malik, Fuzzy Commutative Algebra, World Publishing, Singapore, 1998.
- [11] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19–26.
- [12] A. Rezaei and A. Borumand Saeid, On fuzzy subalgebras of BE-algebras, Afrika Matematika 22 (2011), 115–127.
- [13] A. Rosenfeld, Fuzzy groups, Journal of mathematical analysis and applications 35 (1971), 512– 517.
- [14] S. Z. Song, Y. B. Jun and K. J. Lee, Fuzzy ideals in BE-algebras, Bulletin of the malaysian mathematical sciences society 33 (2010), no. 1, 147–153.
- [15] Y. H. Yon, S. M. Lee and K. H. Kim, On Congruences and BE-Relations in BE-Algebras, International Mathematical Forum 5 (2010), no. 46, 2263–2270.
- [16] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.
- [17] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reason, *Inform. Control* 18 (1975), no. 2, 199–249.

(A. H. Handam) Department of Mathematics, Al al-Bayt University, P.O.Box: 130095, Al Mafraq, Jordan

 $E\text{-}mail \ address: \texttt{ali.handam@windowslive.com}$