
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 40(2), 2013, Pages 128–139
ISSN: 1223-6934

Fuzzy deductive systems in BE-semigroups

A. H. Handam

Abstract. In this paper, we introduce the notion of fuzzy deductive systems and inves-
tigate some of their properties. Also we give the construction of quotient self-distributive

BE-semigroup X/µ induced by a fuzzy deductive system µ and discuss their interesting pro–
perties.
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1. Introduction

Imai and Iséki introduced two classes of abstract algebras, namely, BCK-algebras
and BCI-algebras [5], [6]. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [11], Neggers and Kim introduced the notion
of d-algebras which is a generalization of BCK-algebras. Moreover, Jun et al. [7]
introduced a new notion, called a BH-algebra, which is a generalization of BCK/BCI-
algebras. Recently, as another generalization of BCK-algebras, the notion of a BE-
algebra was introduced by Kim and Kim [9]. They provided an equivalent condition
of the filters in BE-algebras using the notion of upper sets. In [2], [3], Ahn and So
introduced the notion of ideals in BE-algebras and proved several characterizations
of such ideals. In [1], Ahn and Kim combined BE-algebras and semigroups and
introduced the notion of BE-semigroups. Also, congruences and BE-Relations in BE-
Algebras was studied by Yon et al. [15]. Recently, Handam introduced the notion of
BE-homomorphisms between BE-semigroups [4].

The theory of fuzzy sets was first developed by Zadeh [16] and has been applied
to many branches in mathematics. The fuzzification of algebraic structures was ini-
tiated by Rosenfeld [13] and he introduced the notion of fuzzy subgroups. In 1975,
Zadeh [17] introduced the concept of interval valued fuzzy subset, where the values
of the membership functions are intervals of numbers instead of the numbers. Later
on, Song et al. [14] introduced the concept of a fuzzy ideals in BE-algebras. Re-
cently, Rezaei and Saeid [12] introduced the concepts of fuzzy BE-subalgebras and
fuzzy topological BE-algebras. In this paper, we introduce the concept of fuzzy de-
ductive systems and investigate some of their properties. We give the construction
of quotient self-distributive BE-semigroup X/µ via a fuzzy deductive system µ. In
addition, we establish a generalization of fundamental BE-homomorphism theorem in
self-distributive BE-semigroups by using fuzzy deductive systems.
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2. Preliminaries

In this section we cite some elementary aspects that will be used in the sequel of
this paper.

Definition 2.1. [9]. An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if
(BE1) x ∗ x = 1 for all x ∈ X,
(BE2) x ∗ 1 = 1 for all x ∈ X,
(BE3) 1 ∗ x = x for all x ∈ X,
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X.

Example 2.1. [9]. Let X = {1, a, b, c, d, 0} be a set with the following table:

∗ 0 a b c d 0
0 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (X; ∗, 1) is a BE-algebra.

We can define a relation ” ≤ ”on X by x ≤ y if and only if x ∗ y = 1.
In an BE-algebra, the following identities are true (see [9]):

(a1) x ∗ (y ∗ x) = 1.
(a2) x ∗ ((x ∗ y) ∗ y)) = 1.

Definition 2.2. [9]. A BE-algebra (X, ∗, 1) is said to be self-distributive if x∗(y∗z) =
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X.

Example 2.2. [9]. Let X = {1, a, b, c, d} be a set with the following table:

∗ 1 a b c d
0 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

Then it is easy to see that X is a self-distributive BE-algebra.

Definition 2.3. [1]. An algebraic system (X;⊙, ∗, 1) is called a BE-semigroup if it
satisfies the following:
(i) (X;⊙) is a semigroup,
(ii) (X; ∗, 1) is a BE-algebra,
(iii) the operation “⊙” is distributive (on both sides) over the operation “∗”, that is,
x⊙ (y ∗ z) = (x⊙ y) ∗ (x⊙ z) and (x ∗ y)⊙ z = (x⊙ z) ∗ (y ⊙ z) for all x, y, z ∈ X.

Example 2.3. [1]. Define two operations “⊙” and “∗” on a set X = {1, a, b, c} as
follows:

⊙ 1 a b c
0 1 1 1 1
a 1 1 1 1
b 1 1 1 1
c 1 a b c

∗ 1 a b c
0 1 a b c
a 1 1 b c
b 1 a 1 c
c 1 1 1 c
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It is easy to see that (X;⊙, ∗, 1) is a BE-semigroup.

Definition 2.4. [4]. A BE-semigroup (X;⊙, ∗, 1) is said to be self-distributive BE-
semigroup if X is self-distributive BE-algebra.

Proposition 2.1. [1]. Let (X;⊙, ∗, 1) be a BE-semigroup. Then
(i) (∀x ∈ X) (1⊙ x = x⊙ 1 = 1),
(ii) (x, y, z ∈ X) (x ≤ y ⇒ x⊙ z ≤ y ⊙ z, z ⊙ x ≤ z ⊙ y).

Definition 2.5. [1]. Let (X;⊙, ∗, 1) be a BE-semigroup. A nonempty subset D of
X is called a left ( resp., right) deductive system if it satisfies:
(ds1) X ⊙D ⊆ D ( resp. (D ⊙X ⊆ D)),
(ds2) (∀a ∈ D) ((∀x ∈ X) (a ∗ x ∈ D ⇒ x ∈ D).

Both left and right deductive system is a two sided deductive system or simply de-
ductive system.

Example 2.4. [1]. Let X = {x, y, z, 1} be a set with the following Cayley tables:

⊙ 1 x y z
1 1 1 1 1
x 1 x 1 1
y 1 1 y z
z 1 1 z y

∗ 1 x y z
1 1 x y z
x 1 1 y z
y 1 1 1 z
z 1 1 1 1

It is easy to show that (X;⊙, ∗, 1) is a BE-semigroup and D = {1, x} is an left
deductive system of X.

Definition 2.6. [4]. Let X and Y be two BE-semigroups. A mapping ψ : X → Y is
called a BE-homomorphism if for all a, b ∈ X, ψ(a ∗ b) = ψ(a) ∗ ψ(b) and ψ(a⊙ b) =
ψ(a)⊙ ψ(b).

Proposition 2.2. [4]. Suppose that ψ : X → Y is a BE-homomorphism of BE-
semigroups. Then ψ(1) = 1.

A BE-homomorphism ψ is called a BE-monomorphism (resp. BE-epimorphism)
if it is injective (resp. surjective). A bijective BE-homomorphism is called a BE-
isomorphism. For any BE-homomorphism ψ : X → Y , the set {x ∈ X | ψ(x) = 1}
is called the kernel of ψ, denoted by Ker(ψ) and the set {ψ(x) | x ∈ X} is called
the image of ψ, denoted by Im(ψ). We denote by Hom(X,Y ) the set of all BE-
homomorphisms of BE-semigroups from X to Y .

We now review some fuzzy logic concepts. The readers are referred to [10] for
some basic definitions and results on fuzzy sets and fuzzy algebras, not given in this
paper. Let X be a set. A fuzzy set A in X is characterized by a membership function
µA : X → [0, 1]. For any t ∈ [0, 1], the set U(µ, t) = {x ∈ A : µ(x) ≥ t} is called level
subset of µ. Let ξ be a mapping from the set X to the set Y and let B be a fuzzy set
in Y with membership function µB . The inverse image of B, denoted ξ−1(B), is the
fuzzy set in X with membership function µξ−1(B) defined by µξ−1(B)(x) = µB(ξ(x))
for all x ∈ X. Conversely, let A be a fuzzy set in X with membership function µA

Then the image of A, denoted by ξ (A), is the fuzzy set in Y such that:

µξ(A)(y) =

{
sup

z∈ξ−1(y)

µA(z), if ξ−1(y) = {x : ξ(x) = y} ̸= ∅,

0, otherwise.
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A fuzzy set A in a BE-semigroup X with the membership function µA is said to
have the sup property if for any subset T ⊆ X there exists x0 ∈ T such that

µA(x0) = sup
t∈T

µA(t).

3. Fuzzy deductive systems

In what follows, X denotes a BE-semigroup, A or µA denotes a fuzzy set A in X.

Definition 3.1. A fuzzy set µ in X is called a fuzzy deductive system of X if it
satisfies the following conditions:
(FD1) µ(x⊙ y) ≥ µ(y) for all x, y ∈ X,
(FD2) µ(x⊙ y) ≥ µ(x) for all x, y ∈ X,
(FD3) µ(x) ≥ min {µ(y), µ(y ∗ x)} for all x, y ∈ X.

Note that µ is a fuzzy left deductive system of X if it satisfies (FD1) and (FD3),
and µ is a fuzzy right deductive system of X if it satisfies (FD2) and (FD3).

Example 3.1. Let X = {1, x, y, z} be the set with the following Cayley tables:

⊙ 1 x y z
1 1 1 1 1
x 1 x 1 1
y 1 1 y z
z 1 1 z y

∗ 1 x y z
1 1 x y z
x 1 1 y z
y 1 1 1 z
z 1 1 1 1

Then (X;⊙, ∗, 1) is a BE-semigroup (see [1]). Let µ be a fuzzy set in X defined by
µ(1) = t0, µ(x) = t1, µ(y) = µ(z) = t2, where t0 > t1 > t2 in [0, 1]. Then µ is a fuzzy
deductive system of X.

Lemma 3.1. If D is a fuzzy left (resp. right) deductive system of X, then for all
x ∈ X

µD(1) ≥ µD(x).

Proof. Let x ∈ X. Since D is a fuzzy left (resp. right) deductive system of X, it
follows that µD(1) = µD(1⊙ x) ≥ µD(x) (resp. µD(1) = µD(x⊙ 1) ≥ µD(x)). �

Theorem 3.2. Let D be a fuzzy left (resp. right) deductive system of X. If there
exists a sequence {xn} in X such that lim

n→∞
µD(xn) = 1, then µD(1) = 1.

Proof. By Lemma 3.1, we have µD(1) ≥ µD(x) for x ∈ X. Consider 1 ≥ µD(1) ≥
lim

n→∞
µD(xn) = 1. Therefore, µD(1) = 1. �

Theorem 3.3. Let µ be a fuzzy left (resp. right) deductive system of X. Then the
set Xµ = {x ∈ X | µ(x) = µ(1)} is a left (resp. right) deductive system of X.

Proof. Let µ be a fuzzy left deductive system of X. Let Xµ = {x ∈ X | µ(x) = µ(1)} .
If x ∈ X and y ∈ Xµ, then µ(y) = µ(1). Since µ(x ⊙ y) ≥ µ(y) = µ(1), it follows
that x ⊙ y ∈ Xµ so that X ⊙Xµ ⊆ Xµ. Now let x, y ∈ X be such that y ∈ Xµ and
y ∗ x ∈ Xµ. Then µ(x) ≥ min {µ(y), µ(y ∗ x)} = min {µ(1), µ(1)} = µ(1), and thus
x ∈ Xµ. Therefore, Xµ is a left deductive system of X. Similarly we have the desired
result for the right case. �

Corollary 3.4. If µ is a fuzzy deductive system of X, then the set Xµ = {x ∈ X |
µ(x) = µ(1)} is a deductive system of X.
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Theorem 3.5. Let µ be a fuzzy set in X. Then µ is a fuzzy deductive system of X if
and only if the nonempty level subset U(µ, t), t ∈ Im(µ) is a deductive system of X.

Proof. Let µ be a fuzzy deductive system of X and the level subset U(µ, t) = {x ∈ A :
µ(x) ≥ t} of µ. Let x ∈ X and y ∈ U(µ, t). Then µ(y) ≥ t. Since µ(x⊙ y) ≥ µ(y) ≥ t,
it follows that x⊙y ∈ U(µ, t) so that X⊙U(µ, t) ⊆ U(µ, t). Let y ∈ X and x ∈ U(µ, t).
Then µ(x) ≥ t. Since µ(x ⊙ y) ≥ µ(x) ≥ t, it follows that x ⊙ y ∈ U(µ, t) so that
U(µ, t)⊙X ⊆ U(µ, t). Now, let x, y ∈ X be such that y ∈ U(µ, t) and y ∗ x ∈ U(µ, t).
Then µ(x) ≥ min {µ(y), µ(y ∗ x)} ≥ t, and thus x ∈ U(µ, t). Therefore, U(µ, t) a
deductive system of X.

Conversely, assume that the nonempty level set U(µ, t) of µ is a deductive system
of X for every t ∈ [0, 1]. If µ(x0 ⊙ y0) < µ(y0) for some x0, y0 ∈ X, then by taking
t0 = 1

2 (µ(x0 ⊙ y0) + µ(y0)) we have µ(x0 ⊙ y0) < t0 < µ(y0). Thus y0 ∈ U(µ, t0) and
x0 ⊙ y0 /∈ U(µ, t0), a contradiction and so µ(x0 ⊙ y0) ≥ µ(y0) for all x0, y0 ∈ X. If
µ(x1 ⊙ y1) < µ(x1) for some x1, y1 ∈ X, then by taking t1 = 1

2 (µ(x1 ⊙ y1) + µ(x1))
we have µ(x1 ⊙ y1) < t1 < µ(x1). Thus x1 ∈ U(µ, t1) and x1 ⊙ y1 /∈ U(µ, t1),
which is also a contradiction and so µ(x1 ⊙ y1) ≥ µ(x1) for all x1, y1 ∈ X. Next, if
µ(x2) < min {µ(y2), µ(y2 ∗ x2)} for some x2, y2 ∈ X, then by taking t2 = 1

2 (µ(x2) +
min {µ(y2), µ(y2 ∗ x2)}) we have µ(x2) < t2 < min {µ(y2), µ(y2 ∗ x2)} . Thus y2, y2 ∗
x2 ∈ U(µ, t2) and x2 /∈ U(µ, t2), which is again a contradiction and so µ(x2) ≥
min {µ(y2), µ(y2 ∗ x2)} for all x2, y2 ∈ X. This completes the proof. �
Theorem 3.6. Let µ be a fuzzy deductive system of X. Then

(∀a, b ∈ X) (a ≤ b⇒ µ(a) ≤ µ(b))

Proof. Let a, b ∈ X be such that a ≤ b. Then a ∗ b = 1. It follows from (FD3)
and Lemma 3.1 that µ(b) ≥ min {µ(a), µ(a ∗ b)} = min {µ(a), µ(1)} = µ(a). Hence
µ(a) ≤ µ(b). �
Definition 3.2. For a family of fuzzy sets {µi | i ∈ I} in a BE-semigroup X, define
the joint

∨
i∈I

µi and meet
∧
i∈I

µi of {µi | i ∈ I} as follows:(∨
i∈I

µi

)
(x) = sup {µi(x) | i ∈ I} ,

(∧
i∈I

µi

)
(x) = inf {µi(x) | i ∈ I} ,

for all x ∈ X, where I is any index set.

Consider two fuzzy sets A and B in X. Zadeh [16] gave a definition of fuzzy set
inclusion with: A ⊂ B ⇐⇒ µA(x) ≤ µB(x), ∀x ∈ X.

Theorem 3.7. The family of fuzzy deductive systems of X is a completely distributive
lattice under the ordering of fuzzy set inclusion ⊂.

Proof. Let {µi | i ∈ I} be a family of fuzzy deductive systems of X. Since [0, 1] is a
completely distributive lattice with respect to the usual ordering in [0, 1], it is sufficient
to show that

∧
i∈I

µi is a fuzzy deductive systems of X. For any x, y ∈ X, we have(∧
i∈I

µi

)
(x⊙ y) = inf {µi(x⊙ y) | i ∈ I} ≥ inf {µi(x) | i ∈ I} =

(∧
i∈I

µi

)
(x),

(∧
i∈I

µi

)
(x⊙ y) = inf {µi(x⊙ y) | i ∈ I} ≥ inf {µi(y) | i ∈ I} =

(∧
i∈I

µi

)
(y),
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(∧
i∈I

µi

)
(x) = inf {µi(x) | i ∈ I}

≥ inf {min {µi(y), µi(y ∗ x)} | i ∈ I}
= min {inf {µi(y) | i ∈ I} , inf {µi(y ∗ x) | i ∈ I}}

= min

{(∧
i∈I

µi

)
(y),

(∧
i∈I

µi

)
(y ∗ x)

}
.

Hence
∧
i∈I

µi is a fuzzy deductive system of X, completing the proof. �

Theorem 3.8. Let D be a subset of X. Suppose that µ is a fuzzy set in X defined by

µ(x) =

{
α if x ∈ D,
β otherwise,

where α > β in [0, 1]. Then µ is a fuzzy deductive system if and only if D is a deductive
system of X. Moreover, Xµ = D.

Proof. Let µ be a fuzzy deductive system. Let x ∈ D and y ∈ X. Then µ(x ⊙ y) ≥
µ(x) = α and so x ⊙ y ∈ D, that is, D ⊙ X ⊆ D. Let y ∈ D and x ∈ X. Then
µ(x⊙ y) ≥ µ(y) = α and so x⊙ y ∈ D, that is, X ⊙D ⊆ D. Now let a, x ∈ X be such
that a ∈ D and a ∗ x ∈ D. Then µ(x) ≥ min {µ(a), µ(a ∗ x)} = min {α, α} = α and
so x ∈ D. Thus D is a deductive system of X.

Conversely, suppose that D is a deductive system of X. Let x, y ∈ X. If at least one
of x, y ∈ D, then µ(x⊙ y) = α ≥ µ(y) and µ(x⊙ y) = α ≥ µ(x). If x /∈ D and y /∈ D,
then µ(x ⊙ y) ≥ β = µ(x) = µ(y). In order to prove µ(x) ≥ min {µ(y), µ(y ∗ x)}, we
consider two cases:
(1) If x ∈ D, then the inequality is obvious.
(2) If x /∈ D implies that y /∈ D or y ∗ x /∈ D, so that µ(y) = β or µ(y ∗ x) = β which
implies µ(x) ≥ β = min {µ(y), µ(y ∗ x)} and hence µ is a fuzzy deductive system.
Moreover, we have

Xµ = {x ∈ X | µ(x) = µ(1)} = {x ∈ X | µ(x) = α} = D.

�

Corollary 3.9. Let X be a BE-semigroup and χD be the characteristic function of
a subset D ⊂ X. Then χD is a fuzzy deductive system if and only if D is a deductive
system.

Definition 3.3. Let ξ : X → Y be a mapping of BE-semigroups. If µ is a fuzzy
set of Y , then the fuzzy subset ν = µ ◦ ξ in X (i.e. the fuzzy subset defined by
µξ(x) = ν(x) = µ(ξ(x)) for all x ∈ X) is called the preimage of µ under ξ.

Theorem 3.10. Let ξ : X → Y be a BE-homomorphism of BE-semigroups. If µ is
a fuzzy deductive system of Y , then µξ is a fuzzy deductive system of X.

Proof. Let x, y ∈ X. Then we have

µξ(x⊙ y) = µ(ξ(x⊙ y)) = µ(ξ(x)⊙ ξ(y)) ≥ µ(ξ(x)) = µξ(x),

µξ(x⊙ y) = µ(ξ(x⊙ y)) = µ(ξ(x)⊙ ξ(y)) ≥ µ(ξ(y)) = µξ(y),
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and

µξ(x) = µ(ξ(x))

≥ min {µ(ξ(y)), µ(ξ(y) ∗ ξ(x))}
= min {µ(ξ(y)), µ(ξ(y ∗ x))}
= min

{
µξ(y), µξ(y ∗ x)

}
.

Therefore, µξ is a fuzzy deductive system of X. �

Theorem 3.11. Let µ be a fuzzy set of Y and let ξ : X → Y be a BE-epimorphism
of BE-semigroups. If µξ is a fuzzy deductive system of X, then µ is a fuzzy deductive
system of Y .

Proof. For any x, y ∈ Y , there exist a, b ∈ X such that x = ξ(a) and y = ξ(b). It
follows that

µ(x⊙ y) = µ(ξ(a)⊙ ξ(b)) = µ(ξ(a⊙ b)) = µξ(a⊙ b) ≥ µξ(a) = µ(ξ(a)) = µ(x),

µ(x⊙ y) = µ(ξ(a)⊙ ξ(b)) = µ(ξ(a⊙ b)) = µξ(a⊙ b) ≥ µξ(b) = µ(ξ(b)) = µ(y),

and

µ(x) = µ(ξ(a)) = µξ(a)

≥ min
{
µξ(b), µξ(b ∗ a)

}
= min {µ(ξ(b)), µ(ξ(b ∗ a))}
= min {µ(ξ(b)), µ(ξ(b) ∗ ξ(a))}
= min {µ(y), µ(y ∗ x)} .

Hence µ is a fuzzy deductive system of Y . �

Definition 3.4. A BE-semigroup X is said to satisfy the ascending ( resp. descend-
ing) chain condition if for every ascending (resp. descending) sequence A1 ⊆ A2 ⊆
A3... (resp. A1 ⊇ A2 ⊇ A3...) of deductive systems of X, there exists a natural num-
ber n such that An = Ak for all n ≥ k. If X satisfies the ascending chain condition,
we say X is a Noetherian BE-semigroup.

Theorem 3.12. Let X be a BE-semigroup. If every fuzzy deductive system of X has
finite number of values, then X is Noetherian.

Proof. Suppose that X is not Noetherian. Then, there exists a strictly descending
chain X = A1 ⊃ A2 ⊃ A3... of deductive systems of X. Define a fuzzy set µ in X by

µ(x) =


n

n+1 if x ∈ An −An+1,

1, if x ∈
∞∩

n=1
An,

for all x ∈ X. We prove that µ is a fuzzy deductive system. Let x, y ∈ X.

If x⊙ y ∈
∞∩

n=1
An, then obviously µ(x⊙ y) = 1 ≥ min {µ(x), µ(y)} .

If x ⊙ y /∈
∞∩

n=1
An, then x ⊙ y ∈ At − At+1 for some t ∈ N∗. If x ∈

∞∩
n=1

An or

y ∈
∞∩

n=1
An, then x⊙ y ∈

∞∩
n=1

An, a contradiction. Hence x /∈
∞∩

n=1
An and y /∈

∞∩
n=1

An.

So x ∈ Am−Am+1 and y ∈ Aj−Aj+1 for some m, j ∈ N∗.Without loss of generality,
we assume that m ≤ j. Then clearly, y ∈ Am. It follows that x ⊙ y ∈ Am. If t < m,
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then Am ⊆ At+1 ⊂ At and so x ⊙ y ∈ At+1, a contradiction. Hence m ≤ t. Thus
µ(x⊙ y) = t

t+1 ≥ min {µ(x), µ(y)} = m
m+1 .

Let x, y ∈ X. Suppose that y ∗ x ∈ Ak −Ak+1 and y ∈ Ar −Ar+1 for some k, r ∈ N∗.
Without loss of generality, we assume that k ≤ r. Then clearly y ∈ Ak. Hence µ(x) ≥
k

k+1 = min {µ(y ∗ x), µ(y)} .

If y ∗ x, y ∈
∞∩

n=1
An, then x ∈

∞∩
n=1

An. Thus µ(x) = 1 ≥ min {µ(y ∗ x), µ(y)} .

If y∗x /∈
∞∩

n=1
An and y ∈

∞∩
n=1

An, then there exists k ∈ N∗ such that y∗x ∈ Ak−Ak+1.

It follows that x ∈ Ak and so we have µ(x) ≥ k
k+1 = min {µ(y ∗ x), µ(y)} .

If y ∗ x ∈
∞∩

n=1
An and y /∈

∞∩
n=1

An, then there exists i ∈ N∗ such that y ∈ Ai −

Ai+1. It follows that x ∈ Ai. Hence µ(x) ≥ i
i+1 = min {µ(y ∗ x), µ(y)} . Therefore,

µ is a fuzzy deductive system and has infinite number of different values, which is a
contradiction. �
Definition 3.5. Let µ1, µ2, ..., µn be n fuzzy subsets of BE-semigroupsX1, X2, ..., Xn,
respectively. Then the direct product of finite fuzzy subsets of BE-semigroup is de-
noted by µ1×µ2×...×µn and is defined as µ1×µ2×...×µn : X1×X2×...×Xn → [0, 1]
by (µ1 × µ2 × ...× µn)(s1, s2, ..., sn) = min{µ1(s1), µ2(s2), ..., µn(sn)}.

Theorem 3.13. Let µ1, µ2, ..., µn be n fuzzy left (resp, right) deductive systems of
BE-semigroups X1, X2,..., Xn, respectively. Then µ1 × µ2 × ... × µn is a fuzzy left
(resp, right) deductive system of BE-semigroup X1 ×X2 × ...×Xn.

Proof. Let µ1, µ2, ..., µn be n fuzzy left deductive systems of BE-semigroupsX1,X2,...,
Xn, respectively and let (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ X1 ×X2 × ...×Xn. Then

(µ1 × µ2 × ...× µn)((x1, x2, ..., xn)⊙ (y1, y2, ..., yn))

= (µ1 × µ2 × ...× µn)(x1 ⊙ y1, x2 ⊙ y2, ..., xn ⊙ yn)

= min {µ1(x1 ⊙ y1), µ2(x2 ⊙ y2), ..., µn(xn ⊙ yn)}
≥ min {µ1(y1), µ2(y2), ..., µn(yn)}
= (µ1 × µ2 × ...× µn)(y1, y2, ..., yn),

and

(µ1 × µ2...× µn)(x1, x2, ..., xn)

= min {µ1(x1), µ2(x2), ..., µn(xn)}
≥ min {min {µ1(y1), µ1(y1 ∗ x1)} , ...,min {µn(yn), µn(yn ∗ xn)}}
= min {min {µ1(y1), ..., µn(yn)} ,min {µ1(y1 ∗ x1), ..., µn(yn ∗ xn)}}
= min {(µ1 × ...× µn)(y1, y2, ..., yn), (µ1 × ...× µn)(y1 ∗ x1, y2 ∗ x2, ..., yn ∗ xn)}
= min {(µ1 × ...× µn)(y1, y2, ..., yn), (µ1 × ...× µn)((y1, y2, ..., yn) ∗ (x1, x2, ..., xn))} .

Consequently, µ1 × µ2 × ... × µn is a fuzzy left deductive system of BE-semigroup
X1 ×X2 × ...×Xn. Similarly we have the desired result for the right case. �
Definition 3.6. A fuzzy deductive system µ of X is said to be normal if there exists
x ∈ X such that µ(x) = 1.

Let D(X) denote the set of all normal fuzzy deductive system of X.

Theorem 3.14. Let µ be a fuzzy deductive system of X and let µ+ be a fuzzy set in
X defined by µ+(x) = µ(x) + 1− µ(1) for all x ∈ X. Then µ+ ∈ D(X) and µ ⊆ µ+.
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Proof. Clearly, µ+(1) = 1. Let x, y ∈ X. Then µ+(x ⊙ y) = µ(x ⊙ y) + 1 − µ(1) ≥
µ(y) + 1 − µ(1) = µ+(y). Similarly, we have that µ+(x ⊙ y) ≥ µ+(x). Let z, w ∈ X.
Then

µ+(z) = µ(z) + 1− µ(1)

≥ min {µ(w), µ(w ∗ z)}+ 1− µ(1)

= min {µ(w) + 1− µ(1), µ(w ∗ z) + 1− µ(1)}
= min

{
µ+(w), µ+(w ∗ z)

}
.

Therefore, µ+ ∈ D(X), and obviously µ ⊆ µ+. �

Corollary 3.15. If µ is a fuzzy deductive system of X satisfying µ+(s) = 0 for some
s ∈ X, then µ(s) = 0.

Theorem 3.16. Let µ ∈ D(X) be non-constant such that is a maximal element of
the poset (D(X),⊆). Then µ takes only the values 0 and 1.

Proof. Since µ is normal, we have µ(1) = 1. Let x ∈ X be such that µ(x) ̸= 1. We
have to prove that µ(x) = 0. If not, then there exists a ∈ X such that 0 < µ(a) < 1.

Define a fuzzy set ν in X by ν(x) = µ(x)+µ(a)
2 , for all x ∈ X. Clearly, ν is well-defined.

Let x, y ∈ X. Then

ν(x⊙ y) =
µ(x⊙ y) + µ(a)

2

≥ µ(y) + µ(a)

2
= ν(y).

In a similar way we get ν(x⊙ y) ≥ ν(x). Let x ∈ X. Then

ν(x) =
µ(x) + µ(a)

2

≥ min {µ(y), µ(y ∗ x)}+ µ(a)

2

= min

{
µ(y) + µ(a)

2
,
µ(y ∗ x) + µ(a)

2

}
= min {ν(y), ν(y ∗ x)} .

Hence ν is a fuzzy deductive system of X. By Theorem 3.14 ν+ ∈ D(X), where ν+ is
defined by ν+(x) = ν(x) + 1− ν(1), for all x ∈ X. Note that

ν+(a) = ν(a) + 1− ν(1)

=
µ(a) + µ(a)

2
+ 1− µ(1) + µ(a)

2

=
µ(a) + µ(a)

2
+ 1− 1 + µ(a)

2

=
µ(a) + 1

2
> µ(a),

and ν+(a) < 1 = ν+(1). It follows that ν+ is non-constant, and µ is not a maximal
element of (D(X),⊆). This is a contradiction. �
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4. Quotient self-distributive BE-semigroups induced by fuzzy deductive
system

Let D be a deductive system of a self-distributive BE-semigroup X. We define a
relation ” ∼D ” on X as follows:

x ∼D y if and only if x ∗ y ∈ D and y ∗ x ∈ D.

Then ∼D is an equivalence relation on X (see [4]). We denote the equivalence class
containing x by Dx and the set of all equivalence classes in X by X/D, that is,

Dx = {y ∈ X | y ∼D x} and X/D = {Dx | x ∈ X} . Define binary operations ⊙′
and

∗˜ on X/D by Dx ⊙′
Dy = Dx⊙y and Dx ∗˜ Dy = Dx∗y for all Dx, Dy ∈X/D.

Then (X/D,⊙′
, ∗˜, D1) is a self-distributive BE-semigroup (see [4]). Let µ be a non-

constant fuzzy deductive system of a self-distributive BE-semigroup X and define a
binary relation, denoted by x ∼µ y, on X as follows:

x ∼µ y if and only if µ(x ∗ y) = µ(1) and µ(y ∗ x) = µ(1),

for every x, y ∈ X.

Lemma 4.1. ∼µ is an equivalence relation of a self-distributive BE-semigroup X.

Proof. For any x ∈ X, we have µ(x ∗ x) = µ(1). Hence x ∼µ x. The symmetry of ∼µ

follows directly from the definition. For any x, y, z ∈ X, if x ∼µ y and y ∼µ z, then
µ(x∗y) = µ(y∗x) = µ(y∗z) = µ(z∗y) = µ(1) and so x∗y, y∗x, y∗z, z∗y ∈ Xµ. Since
µ((y ∗z)∗ ((x∗y)∗ (x∗z))) = µ(1), by Corollary 3.4, we have (x∗y)∗ (x∗z) ∈ Xµ and
so x ∗ z ∈ Xµ, that is, µ(x ∗ z) = µ(1). Similarly, we have µ(z ∗ x) = µ(1). Therefore,
∼µ is an equivalence relation on X. �

Theorem 4.2. ∼µ is a congruence relation on a self-distributive BE-semigroup X.

We denote µx = {y ∈ X | y ∼µ x} the equivalence class containing x and X/µ =
{µx | x ∈ X} the set of all equivalence classes of X. Define binary operations } and
~ on X/µ by µx } µy = µx⊙y and µx ~ µy = µx∗y. Note that µx = µy if and only if
x ∼µ y.

Theorem 4.3. If µ is a fuzzy deductive system of a self-distributive BE-semigroup
X, then (X/µ,},~, µ1) is a self-distributive BE-semigroup.

Proof. Clearly (X/µ,~, µ1) is a BE-algebra. Let µx = µy and µu = µv. Then x∗y, y∗
x, u∗v, v∗u ∈ Xµ. SinceXµ is a deductive system, we have (x⊙u)∗(x⊙v) = x⊙(u∗v) ∈
Xµ and (x⊙ v) ∗ (x⊙ u) = x⊙ (v ∗ u) ∈ Xµ. Thus (x⊙ u) ∼µ (x⊙ v). On the other
hand, (x⊙v)∗(y⊙v) = (x∗y)⊙v ∈ Xµ and (y⊙v)∗(x⊙v) = (y∗x)⊙v ∈ Xµ. Hence
(x⊙v) ∼µ (y⊙v), and so µx⊙u = µy⊙v. This shows that } is well-defined. Therefore,
it is easy to prove that (X/µ,}) is a semigroup. Moreover, for any µx, µy, µz ∈ X/µ,
we obtain µx } (µy ~µz) = µx }µy∗z = µx⊙(y∗z) = µ(x⊙y)∗(x⊙z) = µ(x⊙y) ~µ(x⊙z) =
(µx}µy)~ (µx}µz). Similarly, (µx~µy)}µz = (µx}µz)~ (µy }µz). Thus, X/µ is
a BE-semigroup. Let µx, µy, µz ∈ X/µ. Then µx~(µy~µz) = µx~µy∗z = µx∗(y∗z) =
µ(x∗y)∗(x∗z) = µx∗y ~ µx∗z = (µx ~ µy) ~ (µx ~ µz). Therefore, (X/µ,},~, µ1) is a
self-distributive BE-semigroup. �

Theorem 4.4. (BE-Homomorphism Theorem) Let X and Y be self-distributive BE-
semigroups, ξ : X → Y a BE-epimorphism and µ a fuzzy deductive system. Then
X/(µ ◦ ξ) ∼= Y/µ.
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Proof. By Theorem 3.10 we have that µ ◦ ξ is a fuzzy deductive system. Then, by
Theorem 4.3, (X/(µ ◦ ξ),~,}, (µ ◦ ξ)1) and (Y/µ,~′

,}′
, µ1) are self-distributive BE-

semigroups. Define ψ : X/(µ ◦ ξ) → Y/µ by

ψ((µ ◦ ξ)x) = µξ(x).

For any (µ ◦ ξ)x, (µ ◦ ξ)y ∈ X/(µ ◦ ξ), we have

(µ ◦ ξ)x = (µ ◦ ξ)y ⇔ (µ ◦ ξ)(x ∗ y) = (µ ◦ ξ)(y ∗ x) = (µ ◦ ξ)(1)
⇔ µ(ξ(x ∗ y)) = µ(ξ(y ∗ x)) = µ(ξ(1))

⇔ µ(ξ(x) ∗ ξ(y)) = µ(ξ(y) ∗ ξ(x)) = µ(1)

⇔ µξ(x) = µξ(y)

Hence ψ is well-defined and injective. For all (µ ◦ ξ)x, (µ ◦ ξ)y ∈ X/(µ ◦ ξ), we get

ψ((µ ◦ ξ)x ~ (µ ◦ ξ)y) = ψ((µ ◦ ξ)x∗y)
= µξ(x∗y)

= µξ(x)∗ξ(y)

= µξ(x) ~
′
µξ(y)

= ψ((µ ◦ ξ)x)~
′
ψ((µ ◦ ξ)y),

and

ψ((µ ◦ ξ)x } (µ ◦ ξ)y) = ψ((µ ◦ ξ)x⊙y)

= µξ(x⊙y)

= µξ(x)⊙ξ(y)

= µξ(x) }
′
µξ(y)

= ψ((µ ◦ ξ)x)}
′
ψ((µ ◦ ξ)y).

So ψ is a BE-homomorphism of self-distributive BE-semigroups. Let µz ∈ Y/µ. Since
ξ is a BE-epimorphism, there exists x ∈ X such that ξ(x) = z. So ψ((µ ◦ ξ)x) =
µξ(x) = µz. Hence ψ is a BE-epimorphism. Therefore, X/(µ ◦ ξ) ∼= Y/µ. �
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