Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 40(2), 2013, Pages 128-139
ISSN: 1223-6934

Fuzzy deductive systems in BE-semigroups

A. H. HANDAM

ABSTRACT. In this paper, we introduce the notion of fuzzy deductive systems and inves-
tigate some of their properties. Also we give the construction of quotient self-distributive
BE-semigroup X/u induced by a fuzzy deductive system p and discuss their interesting pro—
perties.
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1. Introduction

Imai and Iséki introduced two classes of abstract algebras, namely, BCK-algebras
and BCl-algebras [5], [6]. It is known that the class of BCK-algebras is a proper
subclass of the class of BCI-algebras. In [11], Neggers and Kim introduced the notion
of d-algebras which is a generalization of BCK-algebras. Moreover, Jun et al. [7]
introduced a new notion, called a BH-algebra, which is a generalization of BCK/BCI-
algebras. Recently, as another generalization of BCK-algebras, the notion of a BE-
algebra was introduced by Kim and Kim [9]. They provided an equivalent condition
of the filters in BE-algebras using the notion of upper sets. In [2], [3], Ahn and So
introduced the notion of ideals in BE-algebras and proved several characterizations
of such ideals. In [1], Ahn and Kim combined BE-algebras and semigroups and
introduced the notion of BE-semigroups. Also, congruences and BE-Relations in BE-
Algebras was studied by Yon et al. [15]. Recently, Handam introduced the notion of
BE-homomorphisms between BE-semigroups [4].

The theory of fuzzy sets was first developed by Zadeh [16] and has been applied
to many branches in mathematics. The fuzzification of algebraic structures was ini-
tiated by Rosenfeld [13] and he introduced the notion of fuzzy subgroups. In 1975,
Zadeh [17] introduced the concept of interval valued fuzzy subset, where the values
of the membership functions are intervals of numbers instead of the numbers. Later
on, Song et al. [14] introduced the concept of a fuzzy ideals in BE-algebras. Re-
cently, Rezaei and Saeid [12] introduced the concepts of fuzzy BE-subalgebras and
fuzzy topological BE-algebras. In this paper, we introduce the concept of fuzzy de-
ductive systems and investigate some of their properties. We give the construction
of quotient self-distributive BE-semigroup X/u via a fuzzy deductive system p. In
addition, we establish a generalization of fundamental BE-homomorphism theorem in
self-distributive BE-semigroups by using fuzzy deductive systems.
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2. Preliminaries

In this section we cite some elementary aspects that will be used in the sequel of
this paper.

Definition 2.1. [9]. An algebra (X, x, 1) of type (2,0) is called a BE-algebra if
(BEl) xxx=1forall z € X,

(BE2) x+1=1forall z € X,

(BE3) 1xx =z forall z € X,

(BE4) zx (y+z) =yx (xxz) for all x,y,z € X.

Example 2.1. [9]. Let X = {1,a,b,c,d,0} be a set with the following table:

10 a b ¢ d O
0|1 a b ¢ d O
all 1 a ¢ ¢ d
b1l 1 1 ¢ ¢ c
c|l a b 1 a b
d|{l 1 a 1 1 a
oj(1 1 1 1 1 1

Then (X;*,1) is a BE-algebra.

We can define a relation ” < ”7on X by x < y if and only if z xy = 1.
In an BE-algebra, the following identities are true (see [9]):
(al) z* (yxz) = 1.
(a2) z* ((z*xy)*xy)) = 1.
Definition 2.2. [9]. A BE-algebra (X, *,1) is said to be self-distributive if xx(y*z) =
(xxy)* (z*z) for all z,y,z € X.

Example 2.2. [9]. Let X = {1,a,b,c,d} be a set with the following table:

*x|1 a b ¢ d
0|1 a b ¢ d
all 1 b ¢ d
bll a 1 ¢ c
c|ll 1 b 1 b
dil1 1 1 11

Then it is easy to see that X is a self-distributive BE-algebra.

Definition 2.3. [1]. An algebraic system (X;®,*,1) is called a BE-semigroup if it
satisfies the following:

(1) (X;®) is a semigroup,

(i) (X;*,1) is a BE-algebra,

(7i7) the operation “®” is distributive (on both sides) over the operation “«”, that is,

2O W*2)=(x0y)*x(z®z)and (xxy)Oz=(x®2)*(y©z2) forall z,y,z€ X.

Example 2.3. [1]. Define two operations “©” and “+” on a set X = {1,a,b,c} as
follows:

®l1l a b c *x|1 a b c
01 1 1 1 0|1 a b ¢
al|ll 1 1 1 all 1 b ¢
b |1 1 1 1 bll a 1 ¢
c |l a b c cl|1l 1 1 ¢
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It is easy to see that (X;®,*,1) is a BE-semigroup.

Definition 2.4. [4]. A BE-semigroup (X;®, x, 1) is said to be self-distributive BE-
semigroup if X is self-distributive BE-algebra.

Proposition 2.1. [1]. Let (X;®,*,1) be a BE-semigroup. Then
(i) VzeX)(loz=201=1),
(1) (v,y,2€ X)) (z<y=202<y0z,2z0zx<2z0vY).

Definition 2.5. [1]. Let (X;®,%,1) be a BE-semigroup. A nonempty subset D of
X is called a left (resp., right) deductive system if it satisfies:

(dsl) X ®D C D (resp. (D©® X C D)),

(ds2) (Vae D) (Ve e X) (axz e D=uzeD).

Both left and right deductive system is a two sided deductive system or simply de-
ductive system.

Example 2.4. [1]. Let X = {z,y, 2,1} be a set with the following Cayley tables:

Ol z y =z *x |1 x y =z
11 1 1 1 111 =z y =z
z |1 o 1 1 z|ll 1 y =z
y |1 1 y =z y|1l 1 1 =z
z |1 1 2z vy z|1 1 1 1
It is easy to show that (X;®,*,1) is a BE-semigroup and D = {1,z} is an left

deductive system of X.

Definition 2.6. [4]. Let X and Y be two BE-semigroups. A mapping ¢ : X — Y is
called a BE-homomorphism if for all a,b € X, ¢¥(a*b) = ¢(a) *(b) and ¥(a © b) =

P(a) © p(b).

Proposition 2.2. [4]. Suppose that ¢ : X — Y is a BE-homomorphism of BE-
semigroups. Then (1) = 1.

A BE-homomorphism ¢ is called a BE-monomorphism (resp. BE-epimorphism)
if it is injective (resp. surjective). A bijective BE-homomorphism is called a BE-
isomorphism. For any BE-homomorphism ¢ : X — Y, the set {z € X | ¢(z) = 1}
is called the kernel of v, denoted by Ker(¢) and the set {¢(z) | z € X} is called
the image of ¢, denoted by Im(y). We denote by Hom(X,Y) the set of all BE-
homomorphisms of BE-semigroups from X to Y.

We now review some fuzzy logic concepts. The readers are referred to [10] for
some basic definitions and results on fuzzy sets and fuzzy algebras, not given in this
paper. Let X be a set. A fuzzy set A in X is characterized by a membership function
pa: X —[0,1]. For any ¢ € [0,1], the set U(u,t) = {z € A: p(z) >t} is called level
subset of . Let £ be a mapping from the set X to the set Y and let B be a fuzzy set
in Y with membership function pp. The inverse image of B, denoted £¢~1(B), is the
fuzzy set in X with membership function p¢-1(p) defined by pe-1(p)(z) = up(£(z))
for all z € X. Conversely, let A be a fuzzy set in X with membership function pa
Then the image of A, denoted by £ (A), is the fuzzy set in Y such that:

sup pa(z), if §71(y) ={z: (@) =y} #0,

teay(y) = ¢ =€)
0, otherwise.
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A fuzzy set A in a BE-semigroup X with the membership function p4 is said to
have the sup property if for any subset T' C X there exists x¢ € T such that
pa(o) = sup pa(t).
teT

3. Fuzzy deductive systems

In what follows, X denotes a BE-semigroup, A or p4 denotes a fuzzy set A in X.

Definition 3.1. A fuzzy set p in X is called a fuzzy deductive system of X if it
satisfies the following conditions:

(FD1) u(z ©y) > ply) for all z,y € X,

(FD2) p(x ©y) > p(x) for all z,y € X,

(FD3) p(xz) > min{u(y), u(y * )} for all z,y € X.

Note that p is a fuzzy left deductive system of X if it satisfies (F'D1) and (F'D3),
and p is a fuzzy right deductive system of X if it satisfies (F'D2) and (F'D3).

Example 3.1. Let X = {1,z,y, z} be the set with the following Cayley tables:

@‘1xyz *‘1xyz
171 1 11 111 =z y =z
z |1 = 1 1 z|1 1 y =z
y |1 1 vy =z y|l1l 1 1 =z
z |1 1 2z y z|1 1 1 1

Then (X;®,*,1) is a BE-semigroup (see [1]). Let p be a fuzzy set in X defined by
(1) = to, p(x) = t1, u(y) = p(z) = ta, where to > t1 >tz in [0, 1]. Then p is a fuzzy
deductive system of X.

Lemma 3.1. If D is a fuzzy left (resp. right) deductive system of X, then for all
reX

up(1) = pp(x).
Proof. Let € X. Since D is a fuzzy left (resp. right) deductive system of X, it
follows that pup(1) = up(1 ©z) > up(z) (resp. pp(l) = pup(x ® 1) > pp(x)). O

Theorem 3.2. Let D be a fuzzy left (resp. right) deductive system of X. If there
exists a sequence {x,} in X such that lim pp(x,) =1, then up(l) = 1.
n—oo

Proof. By Lemma 3.1, we have up(1l) > pp(x) for x € X. Consider 1 > pup(1) >
lim pp(z,) = 1. Therefore, up(1l) = 1. O
n—oo

Theorem 3.3. Let p be a fuzzy left (resp. right) deductive system of X. Then the
set X, = {x e X | pulx)=p(1)} is a left (resp. right) deductive system of X.

Proof. Let p be a fuzzy left deductive system of X. Let X, = {z € X | p(x) = p(1)}.
If x € X and y € X, then p(y) = p(1). Since p(z ®y) > p(y) = p(1), it follows
that  ©y € X, so that X ® X,, C X,. Now let z,y € X be such that y € X,, and
y*x € X,. Then p(x) > min {u(y), u(y * z)} = min{p(1), x(1)} = w(1), and thus
x € X,. Therefore, X, is a left deductive system of X. Similarly we have the desired
result for the right case. o

Corollary 3.4. If p is a fuzzy deductive system of X, then the set X, = {x € X |
w(x) = p(1)} is a deductive system of X.
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Theorem 3.5. Let p be a fuzzy set in X. Then p is a fuzzy deductive system of X if
and only if the nonempty level subset U(u,t), t € Im(u) is a deductive system of X.

Proof. Let u be a fuzzy deductive system of X and the level subset U(u,t) = {x € A :
wu(x) >t} of p. Let x € X and y € U(p,t). Then pu(y) > t. Since p(x ©@y) > uly) > t,
it follows that z©y € U(u,t) so that X OU (u,t) C U(u,t). Let y € X and z € U(u, t).
Then p(x) > t. Since p(x © y) > p(x) > t, it follows that x @y € U(p,t) so that
U(p,t) ©X CU(u,t). Now, let z,y € X be such that y € U(u,t) and yxx € U(u,t).
Then p(xz) > min{u(y), u(yxx)} > t, and thus « € U(u,t). Therefore, U(u,t) a
deductive system of X.

Conversely, assume that the nonempty level set U(u,t) of u is a deductive system
of X for every t € [0,1]. If u(zo ® yo) < p(yo) for some zg,yo € X, then by taking
to = 5(pu(xo © yo) + p(yo)) we have pu(zo © yo) < to < pu(yo). Thus yo € U(p, to) and
2o @ yo ¢ U(w,to), a contradiction and so u(xg @ yo) > p(yo) for all xg,yg € X. If
p(z1 © y1) < p(z1) for some z1,y; € X, then by taking t1 = (u(z1 © y1) + p(z1))
we have p(r1 © 11) < t1 < p(zr1). Thus 1 € U(p,t1) and 21 © y1 ¢ Uy, t1),
which is also a contradiction and so u(z; ® y1) > u(xy) for all 21,y € X. Next, if
p(w2) < min {u(y2), u(y2 * x2)} for some z2,y, € X, then by taking t = 1 (p(z2) +
min {/u(y2), u(y2 * v2)}) we have p(x2) < t2 < min{u(y2), u(y2 * x2)} . Thus ya,ys *
x2 € U(u,tz) and xo ¢ U(u,tz), which is again a contradiction and so p(za) >
min {u(ya), u(yz2 * x2)} for all z9,y2 € X. This completes the proof. O

Theorem 3.6. Let p be a fuzzy deductive system of X. Then
(Va,b € X) (a<b= p(a) < (b))
Proof. Let a,b € X be such that a < b. Then a *b = 1. It follows from (FD3)

and Lemma 3.1 that p(b) > min {u(a), u(a *b)} = min{u(a), u(1)} = u(a). Hence
(@) < pu(b). O

Definition 3.2. For a family of fuzzy sets {y; | € I} in a BE-semigroup X, define
the joint \/ u; and meet AN p; of {u; | i € I} as follows:

(\/ m) (z) = sup{ui(x) [ i € I}, (/\ m) () = inf {pi(x) | i € I},

for all x € X, where I is any index set.

Consider two fuzzy sets A and B in X. Zadeh [16] gave a definition of fuzzy set
inclusion with: A C B <= pa(x) < pp(z), Vo € X.

Theorem 3.7. The family of fuzzy deductive systems of X is a completely distributive
lattice under the ordering of fuzzy set inclusion C.

Proof. Let {u; | i € I} be a family of fuzzy deductive systems of X. Since [0,1] is a
completely distributive lattice with respect to the usual ordering in [0, 1], it is sufficient

to show that A p; is a fuzzy deductive systems of X. For any z,y € X, we have
il

(/\ uz) (xOy) =inf {p(a O y) |i € I} > inf {ui(e) | i € I} = (/\ m) (2).

i€l i€l

(/\Nz) (xoy) =inf{p(r©y)|ie I} >inf{u(y)|[icl} = (/\Mi) (),

icl i€l
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(/\m) @ = i) i)
icl

inf {min {1 (), pa(y + 2)} | € I}

min {inf {u;(y) |« € I}, inf {u;(y xx) | i € I}}

= min{ </€\1u) (), (/G\Iu> (y*x)}

Hence A p; is a fuzzy deductive system of X, completing the proof. O
iel

Theorem 3.8. Let D be a subset of X. Suppose that p is a fuzzy set in X defined by

| a ifxeD,
plz) = { B otherwise,

where o > B in [0,1]. Then p is a fuzzy deductive system if and only if D is a deductive
system of X. Moreover, X,, = D.

Proof. Let u be a fuzzy deductive system. Let x € D and y € X. Then u(z ©y) >
wz) =aand so x @y € D, that is, D® X C D. Let y € D and z € X. Then
wxoy) > ply) =aand soz @y € D, that is, X © D C D. Now let a,z € X be such
that @ € D and a *x € D. Then pu(xz) > min{pu(a), u(a * )} = min {a,a} = a and
so x € D. Thus D is a deductive system of X.

Conversely, suppose that D is a deductive system of X. Let x,y € X. If at least one
ofx,y € D, then pu(z@y) =a > u(y) and p(r Oy) =a > p(z). fx ¢ Dand y ¢ D,
then p(x @ y) > B = p(x) = u(y). In order to prove u(z) > min {u(y), u(y *x x)}, we
consider two cases:

(1) If € D, then the inequality is obvious.

(2) If z ¢ D implies that y ¢ D or y xx ¢ D, so that u(y) = 3 or u(y * ) = B which
implies p(z) > 8 = min{u(y), u(y *xx)} and hence p is a fuzzy deductive system.
Moreover, we have

X, = {r € X | plx) = p(1)} = {o € X | p() = a} = D.
O

Corollary 3.9. Let X be a BE-semigroup and xp be the characteristic function of
a subset D C X. Then xp is a fuzzy deductive system if and only if D is a deductive
system.

Definition 3.3. Let £ : X — Y be a mapping of BE-semigroups. If p is a fuzzy
set of Y, then the fuzzy subset v = po & in X (i.e. the fuzzy subset defined by
pé(z) = v(x) = p(é(x)) for all z € X) is called the preimage of i under €.

Theorem 3.10. Let £ : X — Y be a BE-homomorphism of BE-semigroups. If u is
a fuzzy deductive system of Y, then ué is a fuzzy deductive system of X.

Proof. Let x,y € X. Then we have
1oz O y) = ulé(z 0y)) = u(E(x) © E(y) = () =
1oz Oy) = plE(z 0y)) = u(E(x) ©€(y) > 1
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and
pi(z) = pe))
> min{u(§(y)), nE(y) (@)}
= min{u((y)), u(€(y * )}
= min {#*(y), u*(y *x2) } .
Therefore, ;€ is a fuzzy deductive system of X. ]

Theorem 3.11. Let i be a fuzzy set of Y and let € : X — Y be a BE-epimorphism
of BE-semigroups. If i is a fuzzy deductive system of X, then p is a fuzzy deductive
system of Y.

Proof. For any z,y € Y, there exist a,b € X such that z = £(a) and y = £(b). Tt
follows that

iz ©y) = pé(a) D)) = p(éla®b)) = pcla®b) > ut
p(z ©y) = p(E(a) ©€(0) = péla®b) = p*(a©b) > uf(b) = p((b) = u(y),

and
pe) = pEla) = pu(a)
min {,ug(b), 18 (b a)}
= min{u(&(b)), n(&(bxa))}
= min{u(&(b)), u(§(b) * £(a))}
= min {u(y), p(y *2)}.
Hence p is a fuzzy deductive system of Y. (I

v

I
7
Y

Definition 3.4. A BE-semigroup X is said to satisfy the ascending (resp. descend-
ing) chain condition if for every ascending (resp. descending) sequence 4; C As C
As... (resp. Ay D Ay D As...) of deductive systems of X, there exists a natural num-
ber n such that A, = Ay for all n > k. If X satisfies the ascending chain condition,
we say X is a Noetherian BE-semigroup.

Theorem 3.12. Let X be a BE-semigroup. If every fuzzy deductive system of X has
finite number of values, then X is Noetherian.

Proof. Suppose that X is not Noetherian. Then, there exists a strictly descending
chain X = A; D As D As... of deductive systems of X. Define a fuzzy set p in X by

Til ifx e An — An+17

M =91 itre () A,
n=1
for all x € X. We prove that p is a fuzzy deductive system. Let z,y € X.
Ifx©ye [ An, then obviously u(z ©®y) =1 > min {pu(x), u(y)} .

n=1

Ifxoy ¢ () Ap, then x ©y € Ay — Apyq for some t € N*. If z € () A, or
n=1

n=1
y€ [ An, then z ®y € [ Ay, a contradiction. Hence x ¢ (| A, and y ¢ [ A,.

n=1 n=1 n=1 n=1
Sox € Ay, — A1 and y € Aj — Aj4q for some m, j € N*. Without loss of generality,
we assume that m < j. Then clearly, y € A,,. It follows that z ©y € A,,. If t < m,
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then A,, C At+1 C At and so x @ y € A¢y1, a contradiction. Hence m < t. Thus

plr ©y) = ¢ > min {u(z), p(y)} = 25
Let x,y € X. Suppose that yxx € Ay — Agy1 and y € A, — A,y for some k,r € N*.
Without loss of generality, we assume that k& < r. Then clearly y € Aj. Hence p(z) >

Tt = min {ju(y * ), ()}
Ifysxxz,ye ﬂ Ay, then z € ﬂ Ap. Thus p(z) =1 > min {u(y *x), u(y)} -

= n=1

Ifyxx ¢ ﬂ A, andy € ﬂ A,,, then there exists k € N* such that yxz € Ay —Agy1.
It follows that x € Ay and so we have p(z) > kL_H =min{p(y * x), u(y)} .
Ifyxx € ﬂ A, and y ¢ ﬂ A, then there exists i € N* such that y € A; —

Aipr. It follows that x € A;. Hence pu(x) > m = min {u(y * z), u(y)} . Therefore,
u is a fuzzy deductive system and has infinite number of different values, which is a
contradiction. O

Definition 3.5. Let p1, ys, ..., ttn, be n fuzzy subsets of BE-semigroups X1, Xo, ..., X,
respectively. Then the direct product of finite fuzzy subsets of BE-semigroup is de-
noted by g1 X pig X ... X pip, and is defined as pg X pro X ... X fip, 1 X1 x Xo X ... x X, — [0, 1]
by (11 X pr2 X oo X f1n)(81, 82, vy Sp) = min{p1(s1), p2(52), o, fin(5n) }-

Theorem 3.13. Let p1, pio, ..., tn, be n fuzzy left (resp, right) deductive systems of
BE-semigroups X1, Xo,..., Xy, respectively. Then py X po X ... X l, 18 a fuzzy left
(resp, right) deductive system of BE-semigroup X1 X Xo X ... X X,,.

Proof. Let u1, pi2, ---, tin, be n fuzzy left deductive systems of BE-semigroups X7, Xo,...,
X, respectively and let (1,22, ..., Zn), (Y1, Y2, s Un) € X1 X Xo X ... X X,,. Then

(1 X g X oo X i) (21, T2, s Tn) © (Y15 Y25 -3 Yn))

(1 X p2 X oo X 1) (1 © Y1, T2 O Y2, o0y Ty © Yir)

= min {1 (21 © Y1), p2(22 © Y2), o tn(Tn O Yn)}

> min {p1(y1), p2(y2), -, fin(Yn)}

= (p1 X p2 X oo X 1) (Y1, Y2, 0 Yn),s
and

(1 X po.. X ) (21, T2, ooy Tny)

= min {1 (21), p2(22), .o; pn ()}

min {min {1 (y1), p1(yr * x1) }y ooy min {gn (Yn )y pon (Yn * n) }}

= min{min {u1(y1), -, in(Yn) b, min {p1 (Y1 * 1), o pin (yn * 0) 1}

= min{(p1 X oo X ) (Y1,Y2; s Yn), (1 X oo X i) (Y1 * T1, Y2 * T,y ooy Y * T }

= min{(p1 X .. X ) W1, 92, -y Yn)s (1 X oo X o) (Y1, Y2y ooy Yn) * (T1, T2y ooy T )) } -

Consequently, p1 X o X ... X uy is a fuzzy left deductive system of BE-semigroup
X7 X X5 X ... x X,,. Similarly we have the desired result for the right case. O

Y

Definition 3.6. A fuzzy deductive system p of X is said to be normal if there exists
x € X such that p(x) = 1.

Let ©(X) denote the set of all normal fuzzy deductive system of X.

Theorem 3.14. Let i be a fuzzy deductive system of X and let u+ be a fuzzy set in
X defined by put(z) = p(z) + 1 — p(1) for allz € X. Then p* € D(X) and p C u™.
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Proof. Clearly, p™(1) = 1. Let 2,y € X. Then u(z ®y) = u(x

plzoy) +1—-pl) >
pT (y). Similarly, we have that u™(z ® y) > u™(x)

p(y) +1— pu(1) . Let z,w € X.
Then
pr(z) = plz)+1-p(1)
> min {p(w), p(w*z)} +1 - p(1)
= min{p(w) +1—p(1), p(w=2) +1—p(1)}
= min{p"(w), pt(w=2z)}.
Therefore, u™ € D(X), and obviously pu C put. O

Corollary 3.15. If i is a fuzzy deductive system of X satisfying u*(s) = 0 for some
s € X, then p(s) =0.

Theorem 3.16. Let p € D(X) be non-constant such that is a mazimal element of
the poset (D(X),C). Then u takes only the values 0 and 1.

Proof. Since p is normal, we have p(1) = 1. Let € X be such that u(z) # 1. We
have to prove that p(z) = 0. If not, then there exists a € X such that 0 < pu(a) < 1.
Define a fuzzy set v in X by v(z) = M, for all z € X. Clearly, v is well-defined.
Let z,y € X. Then

vizoy) =
>

= vy
In a similar way we get v(z ©y) > v(x). Let z € X. Then
pu(z) + p(a)
W) = M
min {p(y), p(y * )} + p(a)
2
i { p(y) + pla) ply*x) + p(a) }
2 ’ 2
= min{v(y),v(y*x)}.

Hence v is a fuzzy deductive system of X. By Theorem 3.14 v € D(X), where v is
defined by v*(x) = v(z) + 1 — v(1), for all z € X. Note that

vta) = v(a)+1-v(1)
_ platple) o p()+ pa)
2 2
p(a) + p(a) 1+ p(a)
= 5 +1-—
_ pula) +1
2
> p(a),

and v (a) <1 =v7(1). It follows that v is non-constant, and u is not a maximal
element of (D(X),C). This is a contradiction. O
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4. Quotient self-distributive BE-semigroups induced by fuzzy deductive
system

Let D be a deductive system of a self-distributive BE-semigroup X. We define a
relation ” ~p 7 on X as follows:

r~pyifandonlyif x xy € D and y*xx € D.

Then ~p is an equivalence relation on X (see [4]). We denote the equivalence class
containing x by D, and the set of all equivalence classes in X by X/D, that is,
D,={ye X |y~pua}and X/D ={D, | z € X}. Define binary operations ® and
« on X/D by D, ® D, = Do, and D, ¥ D, = D,,, for all D,,D, €X/D.
Then (X/D,®', %, Dy) is a self-distributive BE-semigroup (see [4]). Let x be a non-
constant fuzzy deductive system of a self-distributive BE-semigroup X and define a
binary relation, denoted by x ~, y, on X as follows:

x ~, yif and only if p(x *y) = p(1) and p(y * z) = p(1),
for every z,y € X.

Lemma 4.1. ~, is an equivalence relation of a self-distributive BE-semigroup X .

Proof. For any x € X, we have pu(z * ) = pu(1). Hence  ~, x. The symmetry of ~,
follows directly from the definition. For any z,y,z € X, if x ~, y and y ~, 2, then
plexy) = plyxx) = ply*z) = pz*y) = p(l) and so xxy, y*x,y*z, z*xy € X,,. Since
p((y*2)*((x*xy)*(x*z))) = u(l), by Corollary 3.4, we have (z*y)* (z*z) € X, and
so xxz € X, that is, u(z * z) = p(1). Similarly, we have p(z * ) = p(1). Therefore,
~, is an equivalence relation on X. O

Theorem 4.2. ~,, is a congruence relation on a self-distributive BE-semigroup X.

We denote p, = {y € X | y ~, «} the equivalence class containing z and X/p =
{po | © € X} the set of all equivalence classes of X. Define binary operations ® and
® on X/ by pg © fty = fgey and gy ® fiy = [lzwy. Note that p, = p, if and only if
T~y Y.

Theorem 4.3. If p is a fuzzy deductive system of a self-distributive BE-semigroup
X, then (X/u, ®,®, 1) is a self-distributive BE-semigroup.

Proof. Clearly (X/p, ®, p1) is a BE-algebra. Let p, = g, and p,, = pt,,. Then xsy, y*
x,ukv,v¥u € X,,. Since X, is a deductive system, we have (zOu)*(z0v) = 2O(uxv) €
Xy, and (zOv)* (20 u) =20 (v*u) € X,. Thus (2 ©®u) ~, (x ®v). On the other
hand, (z®v)*(yOv) = (z*xy)Ov € X, and (yOv)*(xOv) = (y*x)©v € X,,. Hence
(xOV) ~, (Y©Ow), and 80 lyeu = tyey- This shows that © is well-defined. Therefore,
it is easy to prove that (X/u, ®) is a semigroup. Moreover, for any fig, fy, 1t € X/,
we obtainl iz © (fy ® p1z) = fo @ flysz = Hao (yez) = H(zoy)x(z02) = Maoy) ® Haoz) =
(Ha @ py) @ (pz © pz). Similarly, (pe ® p1y) © prz = (pz © p2) ® (py © p1). Thus, X/pis
a BE-semigroup. Let fiq, pty, 12 € X/p. Then po ® (fy ® 1) = pa ® flyse = Pas(yuz) =
W(asy)s(zxz) = Hary ® Haxz = (IU'CE ® Ny) @ (N’I ® ,Ufz)' Therefore, (X/N“’ ©, ®a/~L1) is a
self-distributive BE-semigroup. (I

Theorem 4.4. (BE-Homomorphism Theorem) Let X and Y be self-distributive BE-
semigroups, £ : X — Y a BE-epimorphism and p a fuzzy deductive system. Then

X/(po§) =Y/p.
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Proof. By Theorem 3.10 we have that u o £ is a fuzzy deductive system. Then, by
Theorem 4.3, (X/(pn0&),®,®, (no&)1) and (Y/u,® ,®, p1) are self-distributive BE-
semigroups. Define ¢ : X/(po&) — Y/u by

V(o &)a) = Hea)-

o), we have

(o&)(zxy) = (no&)(y*z)=(nof)1)

p(&(@+y)) = p(&(y = )) ( (1))

n(é(@) = &£(y)) = nE(y)

He(z) = Heé(y)

Hence 1) is well-defined and injective. For all (ro§)s,(po&)y, € X/(pnof), we get
Yoz @ (uol)y) = Y((1o&)axy)

= He(zxy)

= Hez)xe(y)

= @) ® Hey)

= D((1o8)a) ® U((no8)y),

For any (50 &), (10)y € X/(
(no&)z=(nof),

/\

8

*
/—\
\/
~—

I
=
—~

—
~—

t o0

and

V((po&e@(nol)y) = v((nodaoy)

= He(zoy)

= He(@)0k()

= e @ fegy)

= P((108)s) @ P((1o8)y).

So v is a BE-homomorphism of self-distributive BE-semigroups. Let p, € Y/u. Since
¢ is a BE-epimorphism, there exists € X such that {(z) = 2. So Y((no&),) =
fe(z) = p=- Hence ¢ is a BE-epimorphism. Therefore, X/(po &) =2Y/pu. O
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