Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(1), 2012, Pages 55–64 ISSN: 1223-6934

On a Friedrichs-type inequality

NEVEN ELEZOVIĆ, JOSIP PEČARIĆ, AND MARJAN PRALJAK

ABSTRACT. We extend an inequality proved by Rao & Šikić [5] to the class of naturally defined convex functions and derive some related inequalities. Using exponential convexity, we refine the Friedrichs-type inequality proved by Rao & Šikić [5].

2010 Mathematics Subject Classification. 26D15. Key words and phrases. Friedrichs inequality, convex function.

1. Introduction

One of the results Rao & Šikić [5] obtained was the following inequality for a class of convex functions (inequality (65), pg 122)

Theorem 1. Let $\Phi : (0, +\infty) \to (0, +\infty)$ be a convex function for which a positive Borel σ -finite measure η exists such that

$$\Phi(\tau) = \int_0^\tau \varphi(t) dt$$
, for every $\tau \in (0, +\infty)$,

where

$$\varphi(t) = \eta([0, t]), \text{ for every } t \in (0, +\infty).$$

Furthermore, let Ω be a bounded, open and connected set in \mathbb{R}^n and let $f \in C^1(\Omega)$ be such that $\operatorname{supp}(f) \subset \Omega$. Then

$$\Phi(|f(x)|) \le \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi(|f(y)|) \, dy,$$

where $\nabla f = (\partial f / \partial x_1, ..., \partial f / \partial x_n)$ and ω_n is the area of the surface of the unit sphere S^{n-1} in \mathbb{R}^n .

Furthermore, using Theorem 1, Rao & Šikić proved Friedrichs-type inequality

$$\int_{\Omega} |f(x)|^p dx \le C \int_{\Omega} \|\nabla f(x)\|^p dx,$$

with constant $C = p \cdot \operatorname{diam}(\Omega)$.

The goal of this paper is to extend the inequality from Theorem 1 to the class of all convex functions on $(0, +\infty)$ and, by using exponential convexity, to refine the Friedrichs-type inequality.

Received February 16, 2012.

2. Main results

We will use the following lemma proved by Rao & Šikić [5]

Lemma 2. Let Ω be a bounded, open and connected set in \mathbb{R}^n and let $f \in C^1(\Omega)$ be such that $\operatorname{supp}(f) \subset \Omega$. Then, for every $x \in \mathbb{R}^n$ and $u \ge 0$ the following inequality holds

$$|f(x)| \le u + \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \mathbf{1}_{\{|f(y)| \ge u\}} \, dy.$$

The following theorem states the main result

Theorem 3. Let Ω and f be as in Lemma 2, let $R = \sup_{x \in \Omega} |f(x)|$ and let $\Phi(0, R] \to \mathbb{R}$ be a convex function with φ denoting the right-continuous version of its derivative. Let z > 0 and $x \in B_z$, where

$$B_z = \{ y \in \Omega : |f(y)| \ge z \}.$$

Then the following inequality holds

$$\begin{split} \Phi\big(|f(x)|\big) - \Phi(z) &\leq \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi\big(|f(y)|\big) \, dy \\ &+ \varphi(z)\Big(|f(x)| - \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \, dy\Big) - z\varphi(z). \end{split}$$

If Φ is a concave function, then the above inequality is reversed. Proof. Integration by parts gives

$$\begin{split} \Phi(|f(x)|) - \Phi(z) &= \int_{z}^{|f(x)|} \varphi(u) du = u\varphi(u) \Big|_{z}^{|f(x)|} - \int_{z}^{|f(x)|} u d\varphi(u) \\ &= |f(x)|\varphi(|f(x)|) - z\varphi(z) - \int_{z}^{|f(x)|} (u \pm |f(x)|) d\varphi(u) \\ &= \int_{z}^{|f(x)|} (|f(x)| - u) d\varphi(u) + \varphi(z)(|f(x)| - z) \end{split}$$

Since $d\varphi$ is a positive measure, using Lemma 2 we get

$$\Phi(|f(x)|) - \Phi(z) \le \frac{1}{\omega_n} \int_{z}^{|f(x)|} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \mathbf{1}_{\{|f(y)| \ge u\}} \, dy \, d\varphi(u) + \varphi(z)(|f(x)| - z).$$
(1)

Using Fubini's theorem and nonnegativity of the integrand, we further get

$$\begin{split} \frac{1}{\omega_n} \int_z^{|f(x)|} \int_\Omega \frac{|\nabla f(y) \cdot (x-y)|}{|x-y||^n} \mathbf{1}_{\{|f(y)| \ge u\}} \, dy \, d\varphi(u) = \\ &= \int_\Omega \left[\frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^n} \int_z^{|f(x)|} \mathbf{1}_{\{|f(y)| \ge u\}} \, d\varphi(u) \right] dy \\ &\leq \int_\Omega \left[\frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^n} \int_z^{+\infty} \mathbf{1}_{\{|f(y)| \ge u\}} \, d\varphi(u) \right] dy \\ &= \int_\Omega \frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^n} [\varphi(|f(y)|) - \varphi(z)] \mathbf{1}_{B_z}(y) \, dy \\ &= \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^n} \varphi(|f(y)|) \, dy - \frac{\varphi(z)}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^n} \, dy. \end{split}$$

Plugging the last inequality in (1) and rearranging finishes the proof.

The following corollary gives the integral version of the inequality

Corollary 4. Let $B = \bigcup_{z \searrow 0} B_z = \{y \in \Omega : f(y) \neq 0\}, C \subset B \text{ and } z : C \to (0, +\infty).$ If $x \in B_{z(x)}$ for every $x \in C$, then for a finite measure μ on C the following inequality holds

$$\begin{split} \int_{C} \Big(\Phi \big(|f(x)| \big) - \Phi(z(x)) \Big) \mu(dx) &\leq \\ & \frac{1}{\omega_{n}} \int_{C} \int_{B_{z(x)}} \frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^{n}} \varphi \big(|f(y)| \big) \, dy \, \mu(dx) \\ & - \int_{C} \varphi(z(x)) \Big(|f(x)| - \frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot (x-y)|}{||x-y||^{n}} \, dy \Big) \mu(dx) - \int_{C} z(x) \varphi(z(x)) \mu(dx). \\ & \text{In particular, for } C = B_{z} \text{ and } z(x) \equiv z \text{ the following inequality holds} \end{split}$$

$$\begin{split} \int_{B_z} \Phi(|f(x)|)\mu(dx) - \Phi(z)\mu(B_z) &\leq \\ & \frac{1}{\omega_n} \int_{B_z} \varphi(|f(x)|) \left(\int_{B_z} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^n} \, \mu(dy) \right) dx \\ & + \varphi(z) \int_{B_z} \left(|f(x)| - \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \, dy \right) \mu(dx) - z\varphi(z)\mu(B_z). \end{split}$$

Proof. The first inequality of the corollary follows by integrating the inequality from Theorem 3 with respect to the measure μ .

The second inequality follows by taking $C = B_z$ and $z(x) \equiv z$ in the first inequality and applying Fubini's theorem on the first integral of the right-hand side.

Corollary 5. Under the assumptions of Corollary 4, for $p \in \mathbb{R} \setminus \{0, 1\}$ the following inequality holds

$$\begin{aligned} \frac{1}{p(p-1)} \int_{B_z} |f(x)|^p \mu(dx) &\leq \\ & \frac{1}{(p-1)\omega_n} \int_{B_z} |f(x)|^{p-1} \bigg(\int_{B_z} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^n} \, \mu(dy) \bigg) \, dx \\ & + \frac{z^{p-1}}{p-1} \int_{B_z} \Big(|f(x)| - \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \, dy \Big) \mu(dx) - \frac{z^p \mu(B_z)}{p}. \end{aligned}$$

Proof. The inequality follows by applying Corollary 4 to the function $\Phi(\tau) = \frac{\tau^p}{p(p-1)}$.

The following corollary takes into account properties of the second term on the right-hand side of the inequality from Theorem 3 $\,$

Corollary 6. Under the assumptions of Theorem 3, if $\varphi(z)$ is nonnegative, then the following inequality holds

$$\Phi\big(|f(x)|\big) - \Phi(z) \le \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi\big(|f(y)|\big) \, dy - z\varphi(z).$$

Proof. For functions f that satisfy the assumptions of the corollary, the well-known formula

$$f(x) = \frac{1}{\omega_n} \int_{\Omega} \frac{\nabla f(y) \cdot (x - y)}{\|x - y\|^n} dy$$

holds, so

$$|f(x)| \le \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} dy.$$

Since $\varphi(z) \ge 0$, the second term on the right-hand side of the inequality from Theorem 3 is nonpositive, so the claim of the corollary follows.

If Theorem 3 holds for some z > 0, then it holds for every z', $0 < z' \le z$. Letting $z' \to 0$, we can get further inequalities.

In the proof of the following corollary we will use the fact that for a bounded and connected open set Ω the following inequality holds

$$\frac{1}{\omega_n} \int_{\Omega} \frac{dx}{\|x - y\|^{n-1}} \le \frac{\operatorname{diam}(\Omega)}{2} \tag{2}$$

Theorem 7. Under the assumptions of Theorem 3, if $\varphi(0+)$ is finite, then the following inequality holds

$$\begin{split} \Phi\big(|f(x)|\big) - \Phi(0+) &\leq \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi\big(|f(y)|\big) \, dy \\ &+ \varphi(0+) \Big(|f(x)| - \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \, dy \Big). \end{split}$$

Furthermore, for a finite measure μ on Ω the following inequality holds

$$\begin{split} \int_{\Omega} \Phi\big(|f(x)|\big)\mu(dx) &- \Phi(0+)\mu(\Omega) \leq \\ & \frac{1}{\omega_n} \int_{\Omega} \varphi\big(|f(x)|\big) \bigg(\int_{\Omega} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^n} \,\mu(dy) \bigg) \, dx \\ &+ \varphi(0+) \int_{\Omega} \Big(|f(x)| - \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \, dy \Big) \mu(dx). \end{split}$$

Proof. Since $\varphi(0+)$ is finite, we have $\lim_{z\to 0} z\varphi(z) = 0$, so the last term on the righthand side of the inequality from Theorem 3 vanishes as $z \to 0$.

Since $f \in C^1(\Omega)$ has a compact support $\varphi(0+)$ is finite, both functions ∇f and $\varphi(|f|)$ are bounded. Therefore

$$\begin{aligned} \left| \frac{1}{\omega_n} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi (|f(y)|) \right| &\leq \frac{1}{\omega_n} \frac{\|\nabla f(y)\|}{\|x-y\|^{n-1}} |\varphi (|f(y))| \\ &\leq \|\nabla f\|_{L^{\infty}} \|\varphi (|f|)\|_{L^{\infty}} \frac{1}{\omega_n \|x-y\|^{n-1}}. \end{aligned}$$

Taking into account (2), we see that the integrand in the first integral of the inequality from Theorem 3 is dominated by an integrable function. Similarly, the integrand in the second integral is dominated as well, so by the dominated convergence theorem the right-hand side of the inequality from Theorem 3 converges to

$$\begin{aligned} \frac{1}{\omega_n} \int_B \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi \left(|f(y)|\right) dy \\ &+ \varphi(0+) \left(|f(x)| - \frac{1}{\omega_n} \int_B \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \, dy\right). \end{aligned}$$

as $z \to 0$, where $B = \bigcup_{z \searrow 0} B_z = \{y \in \Omega : f(y) \neq 0\}$. Since $\nabla f = 0$ on the set $B^c = \{f = 0\}$, the integrals over B can be replaced with integrals over Ω , which proves the first inequality.

The second inequality follows from the first by integrating with respect to the measure μ and applying Fubini's theorem on the first integral on the right-hand side.

Corollary 8. Under the assumptions of Theorem 7, for p > 1 the following inequality holds

$$\int_{\Omega} |f(x)|^p \mu(dx) \le \frac{p}{\omega_n} \int_{\Omega} |f(x)|^{p-1} \left(\int_{\Omega} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^n} \, \mu(dy) \right) dx.$$

Proof. The inequality follows by applying Theorem 7 to the function $\Phi(\tau) = \tau^p$. \Box

Taking use of inequality (2), we can state the following corollary

Corollary 9. Under the assumptions of Theorem 7, if $\mu(dx) = dx$ is the Lebesgue measure and φ is nonnegative, then the following inequality holds

$$\int_{\Omega} \Phi(|f(x)|) dx - \Phi(0+)\mu(\Omega) \le \frac{\operatorname{diam}(\Omega)}{2} \int_{\Omega} \varphi(|f(x)|) \|\nabla f(x)\| dx + \varphi(0+) \int_{\Omega} \left(|f(x)| - \frac{1}{\omega_n} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} dy\right) dx.$$

Proof. Since φ is nonnegative, we have

$$\frac{1}{\omega_n} \int_{\Omega} \varphi \left(|f(x)| \right) \left(\int_{\Omega} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^n} \, dy \right) dx$$

$$\leq \frac{1}{\omega_n} \int_{\Omega} \varphi \left(|f(x)| \right) \|\nabla f(x)\| \left(\int_{\Omega} \frac{dy}{\|y-x\|^{n-1}} \right) dx$$

$$\leq \frac{\operatorname{diam}(\Omega)}{2} \int_{\Omega} \varphi \left(|f(x)| \right) \|\nabla f(x)\| \, dx,$$

and the claim of the corollary follows from the second inequality of Theorem 7. \Box

Corollary 10. Under the assumptions of Corollary 9, for p > 1 the following two inequalities hold:

$$\int_{\Omega} |f(x)|^p \, dx \le \frac{p \cdot \operatorname{diam}(\Omega)}{2} \int_{\Omega} |f(x)|^{p-1} \|\nabla f(x)\| \, dx$$

and

$$\left[\int_{\Omega} |f(x)|^p \, dx\right]^{\frac{1}{p}} \le \frac{p \cdot \operatorname{diam}(\Omega)}{2} \left[\int_{\Omega} \|\nabla f(x)\|^p \, dx\right]^{\frac{1}{p}}.$$

Proof. The first inequalities follows from Corollary 9 applied to the function $\Phi(\tau) = \tau^p$.

The second inequality follows by applying Hölder's inequality on the right-hand side integral of the first inequality. $\hfill \square$

The second inequality from the last corollary can be restated as

$$\|f\|_{L^{p}(\Omega)} \leq \frac{p \cdot \operatorname{diam}(\Omega)}{2} \|\nabla f\|_{L^{p}(\Omega)}$$
(3)

and represents a Friedrichs-type inequality in which the L^p norm of a function is bounded by the L^p norm of its gradient. Inequality (3) is a special case of inequality proven by Friedrichs [2], which in turn is a special case of Sobolev inequality (see [3]).

3. Exponential convexity

In this section we will use well known results from exponential convexity to derive new inequalities and refine some inequalities from the previous section (see [1]). We will also prove mean value theorems and generate Cauchy-type means and prove their monotonicity.

Let Ω , f, x, z, μ and C be as in Theorem 3 or Corollary 4 and let us define the following four linear functionals: $A_k = A_{k;\Omega,f,x,z,\mu,C}$ with

$$\begin{split} A_1(\Phi) &= \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^n} \varphi\big(|f(y)|\big) \, dy - \Phi\big(|f(x)|\big) + \Phi(z) \\ &+ \varphi(z) \Big(|f(x)| - \frac{1}{\omega_n} \int_{B_z} \frac{|\nabla f(y) \cdot x - y||}{\|x-y\|^n} \, dy\Big) - z\varphi(z), \end{split}$$

$$A_{2}(\Phi) = \frac{1}{\omega_{n}} \int_{C} \int_{B_{z(x)}} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) \, dy \, \mu(dx)$$

$$- \int_{C} \varphi(z(x)) \Big(|f(x)| - \frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^{n}} \, dy \Big) \mu(dx)$$

$$- \int_{C} z(x) \varphi(z(x)) \mu(dx) - \int_{C} \Big(\Phi(|f(x)|) - \Phi(z(x)) \Big) \mu(dx),$$

$$\begin{split} A_{3}(\Phi) &= \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^{n}} \varphi \left(|f(y)|\right) dy - \Phi \left(|f(x)|\right) + \Phi(0+) \\ &+ \varphi(0+) \left(|f(x)| - \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^{n}} dy\right) \\ A_{4}(\Phi) &= \frac{1}{\omega_{n}} \int_{\Omega} \varphi \left(|f(x)|\right) \left(\int_{\Omega} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^{n}} \mu(dy)\right) dx \\ &+ \varphi(0+) \int_{\Omega} \left(|f(x)| - \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot (x-y)|}{\|x-y\|^{n}} dy\right) \mu(dx) \\ &- \int_{\Omega} \Phi \left(|f(x)|\right) \mu(dx) + \Phi(0+) \mu(\Omega). \end{split}$$

Linear functional A_k , k = 1, ..., 4, depend on the choices of Ω , f, x, z, μ and C, but if they are clear from the context, we will omit them from the notation.

Let us denote by Φ_p the following class of functions

$$\Phi_{p}(\tau) = \begin{cases} \frac{\tau^{p}}{p(p-1)}, & p \neq 0, 1\\ -\log \tau, & p = 0\\ \tau \log \tau, & p = 1 \end{cases}$$
(4)

and let us define functions $\psi_k: I_k \to \mathbb{R}_+$ by

$$\psi_k(p) = A_k(\Phi_p) \tag{5}$$

with $I_1 = I_2 = \mathbb{R}$ and $I_3 = I_4 = (1, +\infty)$. Notice that $\Phi_p''(\tau) = \tau^{p-2}$, so the functions Φ_p are convex. By Theorems 3 and 7 and Corollaries 4 and 8, the functions ψ_k are,

indeed, well-defined and nonnegative. It is straightforward to check that all of the functions ψ_k are continuous.

Lemma 11. For each $k \in \{1, 2, ..., 4\}$, the function ψ_k is exponentially convex.

Proof. Let $n \in \mathbb{N}$, $\xi_i \in \mathbb{R}$ and $p_i \in I_k$, $1 \le i \le n$, be arbitrary. Define the function Φ by

$$\Phi(\tau) = \sum_{i,j=1}^{n} \xi_i \xi_j \Phi_{\frac{p_i + p_j}{2}}(\tau).$$

Since

$$\Phi''(\tau) = \sum_{i,j=1}^{n} \xi_i \xi_j \tau^{\frac{p_i + p_j}{2} - 2} = \left(\sum_{i=1}^{n} \xi_i \tau^{\frac{p_i}{2} - 1}\right)^2 \ge 0,$$

the function Φ is convex.

Furthermore, if k = 3 or 4, we have

$$\varphi(0+) = \left|\sum_{i,j=1}^{n} \xi_i \xi_j \varphi_{\frac{p_i+p_j}{2}}(0+)\right| < +\infty,$$

so Φ satisfies the assumptions of Theorem 7. Hence, by Theorems 3 and 7 and Corollaries 4 and 8, for each k we have

$$0 \le A_k(\Phi) = \sum_{i,j=1}^n \xi_i \xi_j A_k\left(\Phi_{\frac{p_i + p_j}{2}}\right) = \sum_{i,j=1}^n \xi_i \xi_j \psi_k\left(\frac{p_i + p_j}{2}\right).$$

Since ψ_k are continuous in addition to satisfying the above condition, it follows that ψ_k are exponentially convex functions.

Due to the properties of exponentially convex functions, the following corollary is a direct consequence of the previous lemma

Corollary 12. For ψ_k , k = 1, ..., 4, defined by (5) the following statements hold

(i) For all $n \in \mathbb{N}$ and $p_i \in I_k$, $1 \leq i \leq n$ the matrix $[\psi_k(\frac{p_i+p_j}{2})]_{i,j=1}^n$ is positive semidefinite, so

$$\det\left[\psi_k\left(\frac{p_i+p_j}{2}\right)\right]_{i,j=1}^n \ge 0.$$

(ii) For $p, s, t \in I_k$ we have

$$\begin{aligned} \psi_k(p) &\geq \left[\psi_k(s)\right]^{\frac{t-p}{t-s}} \left[\psi_k(t)\right]^{\frac{p-s}{t-s}} & \text{if } p < s < t \text{ or } s < t < p \\ \psi_k(p) &\leq \left[\psi_k(s)\right]^{\frac{t-p}{t-s}} \left[\psi_k(t)\right]^{\frac{p-s}{t-s}} & \text{if } s < p < t. \end{aligned}$$

Notice that the first set of inequalities in Corollary 12(ii) are refinements of the inequalities in Corollaries 5 and 8. Indeed, the latter inequalities, in the notation introduced in this section, are

$$0 \le \psi_k(p), \qquad k = 2, 4, p \in I_k \setminus \{0, 1\},$$

while the right-hand sides of inequalities in Corollary 12(ii) are nonnegative.

Furthermore, inequalities from Corollary 12(ii) are refinements of the Friedrichstype inequality from Corollary 10. Indeed, we have the following result **Corollary 13.** Let ψ_4 be defined by (5) and let Ω and f be as in Theorem 3. Then, for 1 or <math>1 < s < t < p the following inequality holds

$$p(p-1)\left[\psi_4(s)\right]^{\frac{t-p}{t-s}} \left[\psi_4(t)\right]^{\frac{p-s}{t-s}} \left[\int_{\Omega} |f(x)|^p dx\right]^{\frac{1-p}{p}} \le \frac{p \cdot \operatorname{diam}(\Omega)}{2} \left[\int_{\Omega} \|\nabla f(x)\|^p dx\right]^{\frac{1}{p}} - \left[\int_{\Omega} |f(x)|^p dx\right]^{\frac{1}{p}}.$$

Proof. As in the proof of Corollary 9, one can show that

$$\frac{1}{\omega_n} \int_{\Omega} |f(x)|^{p-1} \left(\int_{\Omega} \frac{|\nabla f(x) \cdot (y-x)|}{\|y-x\|^n} \, dy \right) dx \le \frac{\operatorname{diam}(\Omega)}{2} \int_{\Omega} |f(x)|^{p-1} \|\nabla f(x)\| \, dx$$

Therefore

$$p(p-1)\psi_4(p) \le \frac{p \cdot \operatorname{diam}(\Omega)}{2} \int_{\Omega} |f(x)|^{p-1} \|\nabla f(x)\| \, dx - \int_{\Omega} |f(x)|^p \, dx.$$

Applying Hölder's inequality on the first integral of the right-hand side and multiplying the inequality by $\left[\int_{\Omega} |f(x)|^p dx\right]^{(1-p)/p}$, while taking into account the first inequality from Corollary 12(*ii*), we get the claim of the corollary.

Next, we will state and prove Lagrange- and Cauchy-type mean value results.

Lemma 14. Let $k \in \{1, ..., 4\}$, let Ω , f and R be as in Theorem 3 and let $\Psi \in C^2((0, R])$. If $A_k(\Psi)$ is finite, $A_k(\Phi_2) \neq 0$ and the function Ψ , when k = 3 or 4, satisfies the same limiting assumptions at zero as the function Φ in Theorem 7, then there exists $\xi_k \in [0, R]$ (provided $\Psi''(0) = \lim_{z \to 0} \Psi''(z)$ exists when $\xi_k = 0$) such that $A_k(\Psi) = \Psi''(\xi_k)A_k(\Phi_2)$.

Proof. Since
$$\Phi_2$$
 is a convex function, when $A_k(\Phi_2) \neq 0$ by Theorems 3 and 7 and Corollary 4, we have $A_k(\Phi_2) > 0$, $k = 1, ..., 4$. Let

$$m = \inf_{\tau \in (0,+\infty)} \Psi''(\tau) \quad \text{and} \quad M = \sup_{\tau \in (0,+\infty)} \Psi''(\tau).$$

If $M < +\infty$, then the function $M\Phi_2 - \Psi$ is convex since

$$\frac{d^2}{d\tau^2} \left(M \frac{\tau^2}{2} - \Psi(\tau) \right) = M - \Psi''(\tau) \ge 0.$$

By the assumptions of the lemma, the assumptions of Theorems 3 and 7 and Corollary 4 are satisfied and, hence,

$$0 \le A_k \Big(M\Phi_2 - \Psi \Big), \qquad k = 1, \dots, 4,$$

i. e.

$$A_k(\Psi) \le M A_k(\Phi_2), \qquad k = 1, ..., 4.$$
 (6)

If $M = +\infty$, then inequality (6) holds trivially. Similarly, for a finite m the inequality

$$mA_k(\Phi_2) \le A_k(\Psi), \qquad k = 1, ..., 4$$
 (7)

holds since $\Psi - m\Phi_2$ is convex, while for $m = -\infty$ inequality (7) holds trivially.

Finally, the existence of ξ_k , k = 1, ..., 4, follows from (6), (7) and continuity of Ψ'' .

Lemma 15. Let $k \in \{1, ...4\}$. If Ψ and $\widetilde{\Psi}$ satisfy the assumptions of Lemma 14 and if $A_k(\Phi_2) \neq 0$, then there exists $\xi_k \in [0, R]$ such that

$$\frac{\Psi''(\xi_k)}{\widetilde{\Psi}''(\xi_k)} = \frac{A_k(\Psi)}{A_k(\widetilde{\Psi})},\tag{8}$$

provided that the denominators are nonzero.

Proof. Let us define a function ϕ by

$$\phi(\tau) = \Psi(\tau) A_k(\Psi) - \Psi(\tau) A_k(\Psi).$$

The function ϕ also satisfies Lemma 14 and, hence, there exists $\xi_k \in [0, R]$ such that $A_k(\phi) = \phi''(\xi_k)A_k(\Phi_2)$. Since $A_k(\phi) = 0$ and $\phi''(\xi_k) = \Psi''(\xi_k)A_k(\widetilde{\Psi}) - \widetilde{\Psi}''(\xi_k)A_k(\Psi)$, equality (8) follows.

Equality (8) allows us to define various means. Indeed, if $\Psi''/\widetilde{\Psi}''$ is an invertible function for functions Ψ and $\widetilde{\Psi}$ that satisfy the assumptions of Lemma 15,

$$\xi_k = \left(\frac{\Psi''}{\widetilde{\Psi}''}\right)^{-1} \left(\frac{A_k(\Psi)}{A_k(\widetilde{\Psi})}\right)$$

is a well-defined mean provided $\xi_k > 0$. In particular, for $\Psi = \Phi_p$ and $\Psi = \Phi_q$, recalling the definitions (4) and (5) of functions Φ_p and ψ_k , we can define means $E_{p,q}^k$ by

$$E_{p,q}^{k} = \left(\frac{A_k(\Phi_p)}{A_k(\Phi_q)}\right)^{\frac{1}{p-q}} = \left(\frac{\psi_k(p)}{\psi_k(q)}\right)^{\frac{1}{p-q}}$$

for $p, q \in I_k$, $p \neq q$. Moreover, we can continuously extend these means to cover the case p = q as well by calculating the limits $\lim_{p \to q} E_{p,q}^k$. For k = 1 or 2 we get

$$E_{p,q}^{k} = \begin{cases} \left(\frac{A_{k}(\Phi_{p})}{A_{k}(\Phi_{q})}\right)^{\frac{1}{p-q}}, & p \neq q \\ \exp\left\{\frac{1-2p}{p(p-1)} - \frac{A_{k}(\Phi_{0}\Phi_{p})}{A_{k}(\Phi_{p})}\right\}, & p = q \neq 0, 1 \\ \exp\left\{-1 - \frac{A_{k}(\Phi_{0}\Phi_{1})}{2A_{k}(\Phi_{1})}\right\}, & p = q = 1 \\ \exp\left\{1 - \frac{A_{k}(\Phi_{0}^{2})}{2A_{k}(\Phi_{0})}\right\}, & p = q = 0 \end{cases}$$
(9)

The means $E_{p,q}^k$ for k = 3 and k = 4 have the same form, but are defined only for p > 1 and q > 1.

Corollary 16. Let $k \in \{1, 2, 3, 4\}$ and $p, q, r, s \in I_k$ be such that $p \leq r$ and $q \leq s$. Then

$$E_{p,q}^k \le E_{r,s}^k$$

Proof. Since the functions ψ_k are exponentially convex by Lemma 11, they are also log-convex.

Now, the inequality of the corollary follows directly from log-convexity of the functions ψ_k and continuity of the means E^k .

References

- M. Anwar, J. Jakšetić, J. Pečarić, Exponential convexity, positive semi-definite matrices and fundamental inequalities, J. Math. Inequal. 4 (2010), no. 2, 171-189.
- [2] K. O. Friedrichs, Die Rand- und Eigenwertprobleme aus der Theorie der elastischen Platten (Anwendung der direkten Methoden der Variationsrechnung), Math. Ann. 98 (1928), 205-247.
 [3] V. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin-Heidelberg, 1985.
- [4] M. Rao, Brownian Motion and Classical Potential Theory, Lecture Notes Series No. 47, Aarhus University, 1977.
- [5] M. Rao, H. Šikić, Potential Inequality, Israel Journal of Mathematics 83 (1993), 97-127.

(Neven Elezović) FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING, UNIVERSITY OF ZAGREB, UNSKA 3, 10000 ZAGREB, CROATIA *E-mail address*: neven.elez@fer.hr

(Josip Pečarić) Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia *E-mail address*: pecaric@element.hr

(Marjan Praljak) Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia $E\text{-}mail\ address:\ mpraljak@pbf.hr$