On a Friedrichs-type inequality

Neven Elezović, Josip Pečarić, and Marjan Praljak

Abstract

We extend an inequality proved by Rao \& Šikić [5] to the class of naturally defined convex functions and derive some related inequalities. Using exponential convexity, we refine the Friedrichs-type inequality proved by Rao \& Šikić [5].

2010 Mathematics Subject Classification. 26D15. Key words and phrases. Friedrichs inequality, convex function.

1. Introduction

One of the results Rao \& Šikić [5] obtained was the following inequality for a class of convex functions (inequality (65), pg 122)

Theorem 1. Let $\Phi:(0,+\infty) \rightarrow(0,+\infty)$ be a convex function for which a positive Borel σ-finite measure η exists such that

$$
\Phi(\tau)=\int_{0}^{\tau} \varphi(t) d t, \quad \text { for every } \tau \in(0,+\infty)
$$

where

$$
\varphi(t)=\eta([0, t]), \quad \text { for every } t \in(0,+\infty)
$$

Furthermore, let Ω be a bounded, open and connected set in \mathbb{R}^{n} and let $f \in C^{1}(\Omega)$ be such that $\operatorname{supp}(f) \subset \Omega$. Then

$$
\Phi(|f(x)|) \leq \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y
$$

where $\nabla f=\left(\partial f / \partial x_{1}, \ldots, \partial f / \partial x_{n}\right)$ and ω_{n} is the area of the surface of the unit sphere S^{n-1} in \mathbb{R}^{n}.

Furthermore, using Theorem 1, Rao \& Šikić proved Friedrichs-type inequality

$$
\int_{\Omega}|f(x)|^{p} d x \leq C \int_{\Omega}\|\nabla f(x)\|^{p} d x
$$

with constant $C=p \cdot \operatorname{diam}(\Omega)$.
The goal of this paper is to extend the inequality from Theorem 1 to the class of all convex functions on $(0,+\infty)$ and, by using exponential convexity, to refine the Friedrichs-type inequality.

2. Main results

We will use the following lemma proved by Rao \& Šikić [5]
Lemma 2. Let Ω be a bounded, open and connected set in \mathbb{R}^{n} and let $f \in C^{1}(\Omega)$ be such that $\operatorname{supp}(f) \subset \Omega$. Then, for every $x \in \mathbb{R}^{n}$ and $u \geq 0$ the following inequality holds

$$
|f(x)| \leq u+\frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \mathbf{1}_{\{|f(y)| \geq u\}} d y
$$

The following theorem states the main result
Theorem 3. Let Ω and f be as in Lemma 2, let $R=\sup _{x \in \Omega}|f(x)|$ and let $\Phi(0, R] \rightarrow$ \mathbb{R} be a convex function with φ denoting the right-continuous version of its derivative. Let $z>0$ and $x \in B_{z}$, where

$$
B_{z}=\{y \in \Omega:|f(y)| \geq z\}
$$

Then the following inequality holds

$$
\begin{aligned}
\Phi(|f(x)|)-\Phi(z) \leq \frac{1}{\omega_{n}} \int_{B_{z}} & \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y \\
& +\varphi(z)\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right)-z \varphi(z) .
\end{aligned}
$$

If Φ is a concave function, then the above inequality is reversed.
Proof. Integration by parts gives

$$
\begin{aligned}
\Phi(|f(x)|)-\Phi(z) & =\int_{z}^{|f(x)|} \varphi(u) d u=\left.u \varphi(u)\right|_{z} ^{|f(x)|}-\int_{z}^{|f(x)|} u d \varphi(u) \\
& =|f(x)| \varphi(|f(x)|)-z \varphi(z)-\int_{z}^{|f(x)|}(u \pm|f(x)|) d \varphi(u) \\
& =\int_{z}^{|f(x)|}(|f(x)|-u) d \varphi(u)+\varphi(z)(|f(x)|-z)
\end{aligned}
$$

Since $d \varphi$ is a positive measure, using Lemma 2 we get

$$
\begin{align*}
& \Phi(|f(x)|)-\Phi(z) \leq \frac{1}{\omega_{n}} \int_{z}^{|f(x)|} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \mathbf{1}_{\{|f(y)| \geq u\}} d y d \varphi(u) \\
&+\varphi(z)(|f(x)|-z) \tag{1}
\end{align*}
$$

Using Fubini's theorem and nonnegativity of the integrand, we further get

$$
\begin{aligned}
& \frac{1}{\omega_{n}} \int_{z}^{|f(x)|} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\mid x-y \|^{n}} \mathbf{1}_{\{|f(y)| \geq u\}} d y d \varphi(u)= \\
& \quad=\int_{\Omega}\left[\frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \int_{z}^{|f(x)|} \mathbf{1}_{\{|f(y)| \geq u\}} d \varphi(u)\right] d y \\
& \quad \leq \int_{\Omega}\left[\frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \int_{z}^{+\infty} \mathbf{1}_{\{|f(y)| \geq u\}} d \varphi(u)\right] d y \\
& \quad=\int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}}[\varphi(|f(y)|)-\varphi(z)] \mathbf{1}_{B_{z}}(y) d y \\
& \quad=\frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y-\frac{\varphi(z)}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y
\end{aligned}
$$

Plugging the last inequality in (1) and rearranging finishes the proof.
The following corollary gives the integral version of the inequality
Corollary 4. Let $B=\bigcup_{z \backslash 0} B_{z}=\{y \in \Omega: f(y) \neq 0\}, C \subset B$ and $z: C \rightarrow(0,+\infty)$. If $x \in B_{z(x)}$ for every $x \in C$, then for a finite measure μ on C the following inequality holds

$$
\begin{aligned}
& \int_{C}(\Phi(|f(x)|)-\Phi(z(x))) \mu(d x) \leq \\
& \quad \frac{1}{\omega_{n}} \int_{C} \int_{B_{z(x)}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y \mu(d x) \\
& -\int_{C} \varphi(z(x))\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \mu(d x)-\int_{C} z(x) \varphi(z(x)) \mu(d x) .
\end{aligned}
$$

In particular, for $C=B_{z}$ and $z(x) \equiv z$ the following inequality holds

$$
\begin{aligned}
& \int_{B_{z}} \Phi(|f(x)|) \mu(d x)-\Phi(z) \mu\left(B_{z}\right) \leq \\
& \quad \frac{1}{\omega_{n}} \int_{B_{z}} \varphi(|f(x)|)\left(\int_{B_{z}} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} \mu(d y)\right) d x \\
& \quad+\varphi(z) \int_{B_{z}}\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \mu(d x)-z \varphi(z) \mu\left(B_{z}\right) .
\end{aligned}
$$

Proof. The first inequality of the corollary follows by integrating the inequality from Theorem 3 with respect to the measure μ.

The second inequality follows by taking $C=B_{z}$ and $z(x) \equiv z$ in the first inequality and applying Fubini's theorem on the first integral of the right-hand side.
Corollary 5. Under the assumptions of Corollary 4, for $p \in \mathbb{R} \backslash\{0,1\}$ the following inequality holds

$$
\begin{aligned}
& \frac{1}{p(p-1)} \int_{B_{z}}|f(x)|^{p} \mu(d x) \leq \\
& \\
& \quad \frac{1}{(p-1) \omega_{n}} \int_{B_{z}}|f(x)|^{p-1}\left(\int_{B_{z}} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} \mu(d y)\right) d x \\
& \quad+\frac{z^{p-1}}{p-1} \int_{B_{z}}\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \mu(d x)-\frac{z^{p} \mu\left(B_{z}\right)}{p} .
\end{aligned}
$$

Proof. The inequality follows by applying Corollary 4 to the function $\Phi(\tau)=\frac{\tau^{p}}{p(p-1)}$.
The following corollary takes into account properties of the second term on the right-hand side of the inequality from Theorem 3
Corollary 6. Under the assumptions of Theorem 3, if $\varphi(z)$ is nonnegative, then the following inequality holds

$$
\Phi(|f(x)|)-\Phi(z) \leq \frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y-z \varphi(z)
$$

Proof. For functions f that satisfy the assumptions of the corollary, the well-known formula

$$
f(x)=\frac{1}{\omega_{n}} \int_{\Omega} \frac{\nabla f(y) \cdot(x-y)}{\|x-y\|^{n}} d y
$$

holds, so

$$
|f(x)| \leq \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y
$$

Since $\varphi(z) \geq 0$, the second term on the right-hand side of the inequality from Theorem 3 is nonpositive, so the claim of the corollary follows.

If Theorem 3 holds for some $z>0$, then it holds for every $z^{\prime}, 0<z^{\prime} \leq z$. Letting $z^{\prime} \rightarrow 0$, we can get further inequalities.

In the proof of the following corollary we will use the fact that for a bounded and connected open set Ω the following inequality holds

$$
\begin{equation*}
\frac{1}{\omega_{n}} \int_{\Omega} \frac{d x}{\|x-y\|^{n-1}} \leq \frac{\operatorname{diam}(\Omega)}{2} \tag{2}
\end{equation*}
$$

Theorem 7. Under the assumptions of Theorem 3, if $\varphi(0+)$ is finite, then the following inequality holds

$$
\begin{aligned}
& \Phi(|f(x)|)-\Phi(0+) \leq \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|} \begin{array}{l}
\mid x-y \|^{n}
\end{array}(|f(y)|) d y \\
& \quad+\varphi(0+)\left(|f(x)|-\frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right)
\end{aligned}
$$

Furthermore, for a finite measure μ on Ω the following inequality holds

$$
\begin{aligned}
& \int_{\Omega} \Phi(|f(x)|) \mu(d x)-\Phi(0+) \mu(\Omega) \leq \\
& \qquad \begin{aligned}
\frac{1}{\omega_{n}} \int_{\Omega} \varphi & (|f(x)|)\left(\int_{\Omega} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} \mu(d y)\right) d x \\
& +\varphi(0+) \int_{\Omega}\left(|f(x)|-\frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \mu(d x)
\end{aligned}
\end{aligned}
$$

Proof. Since $\varphi(0+)$ is finite, we have $\lim _{z \rightarrow 0} z \varphi(z)=0$, so the last term on the righthand side of the inequality from Theorem 3 vanishes as $z \rightarrow 0$.

Since $f \in C^{1}(\Omega)$ has a compact support $\varphi(0+)$ is finite, both functions ∇f and $\varphi(|f|)$ are bounded. Therefore

$$
\begin{aligned}
&\left|\frac{1}{\omega_{n}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|)\right| \leq \frac{1}{\omega_{n}} \frac{\|\nabla f(y)\|}{\|x-y\|^{n-1}}|\varphi(\mid f(y))| \\
& \leq\|\nabla f\|_{L^{\infty}}\|\varphi(|f|)\|_{L^{\infty}} \frac{1}{\omega_{n}\|x-y\|^{n-1}}
\end{aligned}
$$

Taking into account (2), we see that the integrand in the first integral of the inequality from Theorem 3 is dominated by an integrable function. Similarly, the integrand in the second integral is dominated as well, so by the dominated convergence theorem the right-hand side of the inequality from Theorem 3 converges to

$$
\begin{aligned}
\frac{1}{\omega_{n}} \int_{B} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) & d y \\
& +\varphi(0+)\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right)
\end{aligned}
$$

as $z \rightarrow 0$, where $B=\bigcup_{z \backslash 0} B_{z}=\{y \in \Omega: f(y) \neq 0\}$. Since $\nabla f=0$ on the set $B^{c}=\{f=0\}$, the integrals over B can be replaced with integrals over Ω, which proves the first inequality.

The second inequality follows from the first by integrating with respect to the measure μ and applying Fubini's theorem on the first integral on the right-hand side.

Corollary 8. Under the assumptions of Theorem 7, for $p>1$ the following inequality holds

$$
\int_{\Omega}|f(x)|^{p} \mu(d x) \leq \frac{p}{\omega_{n}} \int_{\Omega}|f(x)|^{p-1}\left(\int_{\Omega} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} \mu(d y)\right) d x
$$

Proof. The inequality follows by applying Theorem 7 to the function $\Phi(\tau)=\tau^{p}$.
Taking use of inequality (2), we can state the following corollary
Corollary 9. Under the assumptions of Theorem 7, if $\mu(d x)=d x$ is the Lebesgue measure and φ is nonnegative, then the following inequality holds

$$
\begin{aligned}
\int_{\Omega} \Phi(|f(x)|) d x-\Phi(0+) \mu(\Omega) & \leq \frac{\operatorname{diam}(\Omega)}{2} \int_{\Omega} \varphi(|f(x)|)\|\nabla f(x)\| d x \\
& +\varphi(0+) \int_{\Omega}\left(|f(x)|-\frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) d x
\end{aligned}
$$

Proof. Since φ is nonnegative, we have

$$
\begin{aligned}
\frac{1}{\omega_{n}} \int_{\Omega} \varphi(|f(x)|) & \left(\int_{\Omega} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} d y\right) d x \\
& \leq \frac{1}{\omega_{n}} \int_{\Omega} \varphi(|f(x)|)\|\nabla f(x)\|\left(\int_{\Omega} \frac{d y}{\|y-x\|^{n-1}}\right) d x \\
& \leq \frac{\operatorname{diam}(\Omega)}{2} \int_{\Omega} \varphi(|f(x)|)\|\nabla f(x)\| d x
\end{aligned}
$$

and the claim of the corollary follows from the second inequality of Theorem 7.
Corollary 10. Under the assumptions of Corollary 9, for $p>1$ the following two inequalities hold:

$$
\int_{\Omega}|f(x)|^{p} d x \leq \frac{p \cdot \operatorname{diam}(\Omega)}{2} \int_{\Omega}|f(x)|^{p-1}\|\nabla f(x)\| d x
$$

and

$$
\left[\int_{\Omega}|f(x)|^{p} d x\right]^{\frac{1}{p}} \leq \frac{p \cdot \operatorname{diam}(\Omega)}{2}\left[\int_{\Omega}\|\nabla f(x)\|^{p} d x\right]^{\frac{1}{p}}
$$

Proof. The first inequalities follows from Corollary 9 applied to the function $\Phi(\tau)=$ τ^{p}.

The second inequality follows by applying Hölder's inequality on the right-hand side integral of the first inequality.

The second inequality from the last corollary can be restated as

$$
\begin{equation*}
\|f\|_{L^{p}(\Omega)} \leq \frac{p \cdot \operatorname{diam}(\Omega)}{2}\|\nabla f\|_{L^{p}(\Omega)} \tag{3}
\end{equation*}
$$

and represents a Friedrichs-type inequality in which the L^{p} norm of a function is bounded by the L^{p} norm of its gradient. Inequality (3) is a special case of inequality proven by Friedrichs [2], which in turn is a special case of Sobolev inequality (see [3]).

3. Exponential convexity

In this section we will use well known results from exponential convexity to derive new inequalities and refine some inequalities from the previous section (see [1]). We will also prove mean value theorems and generate Cauchy-type means and prove their monotonicity.

Let Ω, f, x, z, μ and C be as in Theorem 3 or Corollary 4 and let us define the following four linear functionals: $A_{k}=A_{k ; \Omega, f, x, z, \mu, C}$ with

$$
\begin{aligned}
A_{1}(\Phi)= & \frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y-\Phi(|f(x)|)+\Phi(z) \\
& +\varphi(z)\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B_{z}} \frac{\mid \nabla f(y) \cdot x-y) \mid}{\|x-y\|^{n}} d y\right)-z \varphi(z), \\
A_{2}(\Phi)= & \frac{1}{\omega_{n}} \int_{C} \int_{B_{z}(x)} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y \mu(d x) \\
& -\int_{C} \varphi(z(x))\left(|f(x)|-\frac{1}{\omega_{n}} \int_{B_{z}} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \mu(d x) \\
- & \int_{C} z(x) \varphi(z(x)) \mu(d x)-\int_{C}(\Phi(|f(x)|)-\Phi(z(x))) \mu(d x), \\
A_{3}(\Phi)= & \frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} \varphi(|f(y)|) d y-\Phi(|f(x)|)+\Phi(0+) \\
+ & \varphi(0+)\left(|f(x)|-\frac{1}{\omega_{n}} \int_{\Omega} \frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \\
A_{4}(\Phi)= & \frac{1}{\omega_{n}} \int_{\Omega} \varphi(|f(x)|)\left(\int_{\Omega} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} \mu(d y)\right) d x \\
& +\varphi(0+) \int_{\Omega}\left(|f(x)|-\frac{1}{\omega_{n}} \int_{\Omega}^{\left.\frac{|\nabla f(y) \cdot(x-y)|}{\|x-y\|^{n}} d y\right) \mu(d x)}\right. \\
& -\int_{\Omega} \Phi(|f(x)|) \mu(d x)+\Phi(0+) \mu(\Omega) .
\end{aligned}
$$

Linear functional $A_{k}, k=1, \ldots, 4$, depend on the choices of Ω, f, x, z, μ and C, but if they are clear from the context, we will omit them from the notation.

Let us denote by Φ_{p} the following class of functions

$$
\Phi_{p}(\tau)= \begin{cases}\frac{\tau^{p}}{p(p-1)}, & p \neq 0,1 \tag{4}\\ -\log \tau, & p=0 \\ \tau \log \tau, & p=1\end{cases}
$$

and let us define functions $\psi_{k}: I_{k} \rightarrow \mathbb{R}_{+}$by

$$
\begin{equation*}
\psi_{k}(p)=A_{k}\left(\Phi_{p}\right) \tag{5}
\end{equation*}
$$

with $I_{1}=I_{2}=\mathbb{R}$ and $I_{3}=I_{4}=(1,+\infty)$. Notice that $\Phi_{p}^{\prime \prime}(\tau)=\tau^{p-2}$, so the functions Φ_{p} are convex. By Theorems 3 and 7 and Corollaries 4 and 8 , the functions ψ_{k} are,
indeed, well-defined and nonnegative. It is straightforward to check that all of the functions ψ_{k} are continuous.

Lemma 11. For each $k \in\{1,2, \ldots, 4\}$, the function ψ_{k} is exponentially convex.
Proof. Let $n \in \mathbb{N}, \xi_{i} \in \mathbb{R}$ and $p_{i} \in I_{k}, 1 \leq i \leq n$, be arbitrary. Define the function Φ by

$$
\Phi(\tau)=\sum_{i, j=1}^{n} \xi_{i} \xi_{j} \Phi_{\frac{p_{i}+p_{j}}{2}}(\tau) .
$$

Since

$$
\Phi^{\prime \prime}(\tau)=\sum_{i, j=1}^{n} \xi_{i} \xi_{j} \tau^{\frac{p_{i}+p_{j}}{2}-2}=\left(\sum_{i=1}^{n} \xi_{i} \tau^{\frac{p_{i}}{2}-1}\right)^{2} \geq 0
$$

the function Φ is convex.
Furthermore, if $k=3$ or 4 , we have

$$
\varphi(0+)=\left|\sum_{i, j=1}^{n} \xi_{i} \xi_{j} \varphi_{\frac{p_{i}+p_{j}}{2}}(0+)\right|<+\infty
$$

so Φ satisfies the assumptions of Theorem 7. Hence, by Theorems 3 and 7 and Corollaries 4 and 8 , for each k we have

$$
0 \leq A_{k}(\Phi)=\sum_{i, j=1}^{n} \xi_{i} \xi_{j} A_{k}\left(\Phi_{\frac{p_{i}+p_{j}}{2}}\right)=\sum_{i, j=1}^{n} \xi_{i} \xi_{j} \psi_{k}\left(\frac{p_{i}+p_{j}}{2}\right)
$$

Since ψ_{k} are continuous in addition to satisfying the above condition, it follows that ψ_{k} are exponentially convex functions.

Due to the properties of exponentially convex functions, the following corollary is a direct consequence of the previous lemma

Corollary 12. For $\psi_{k}, k=1, \ldots, 4$, defined by (5) the following statements hold
(i) For all $n \in \mathbb{N}$ and $p_{i} \in I_{k}, 1 \leq i \leq n$ the matrix $\left[\psi_{k}\left(\frac{p_{i}+p_{j}}{2}\right)\right]_{i, j=1}^{n}$ is positive semidefinite, so

$$
\operatorname{det}\left[\psi_{k}\left(\frac{p_{i}+p_{j}}{2}\right)\right]_{i, j=1}^{n} \geq 0
$$

(ii) For $p, s, t \in I_{k}$ we have

$$
\begin{array}{lc}
\psi_{k}(p) \geq\left[\psi_{k}(s)\right]^{\frac{t-p}{t-s}}\left[\psi_{k}(t)\right]^{\frac{p-s}{t-s}} & \text { if } p<s<t \quad \text { or } \quad s<t<p \\
\psi_{k}(p) \leq\left[\psi_{k}(s)\right]^{\frac{t-p}{t-s}}\left[\psi_{k}(t)\right]^{\frac{p-s}{t-s}} & \text { if } s<p<t
\end{array}
$$

Notice that the first set of inequalities in Corollary $12(i i)$ are refinements of the inequalities in Corollaries 5 and 8. Indeed, the latter inequalities, in the notation introduced in this section, are

$$
0 \leq \psi_{k}(p), \quad k=2,4, p \in I_{k} \backslash\{0,1\},
$$

while the right-hand sides of inequalities in Corollary 12(ii) are nonnegative.
Furthermore, inequalities from Corollary $12(i i)$ are refinements of the Friedrichstype inequality from Corollary 10. Indeed, we have the following result

Corollary 13. Let ψ_{4} be defined by (5) and let Ω and f be as in Theorem 3. Then, for $1<p<s<t$ or $1<s<t<p$ the following inequality holds

$$
\begin{aligned}
& p(p-1)\left[\psi_{4}(s)\right]^{\frac{t-p}{t-s}}\left[\psi_{4}(t)\right]^{\frac{p-s}{t-s}}\left[\int_{\Omega}|f(x)|^{p} d x\right]^{\frac{1-p}{p}} \leq \\
& \frac{p \cdot \operatorname{diam}(\Omega)}{2}\left[\int_{\Omega}\|\nabla f(x)\|^{p} d x\right]^{\frac{1}{p}}-\left[\int_{\Omega}|f(x)|^{p} d x\right]^{\frac{1}{p}}
\end{aligned}
$$

Proof. As in the proof of Corollary 9, one can show that

$$
\begin{aligned}
& \frac{1}{\omega_{n}} \int_{\Omega}|f(x)|^{p-1}\left(\int_{\Omega} \frac{|\nabla f(x) \cdot(y-x)|}{\|y-x\|^{n}} d y\right) d x \leq \\
& \frac{\operatorname{diam}(\Omega)}{2} \int_{\Omega}|f(x)|^{p-1}\|\nabla f(x)\| d x
\end{aligned}
$$

Therefore

$$
p(p-1) \psi_{4}(p) \leq \frac{p \cdot \operatorname{diam}(\Omega)}{2} \int_{\Omega}|f(x)|^{p-1}\|\nabla f(x)\| d x-\int_{\Omega}|f(x)|^{p} d x
$$

Applying Hölder's inequality on the first integral of the right-hand side and multiplying the inequality by $\left[\int_{\Omega}|f(x)|^{p} d x\right]^{(1-p) / p}$, while taking into account the first inequality from Corollary $12($ ii $)$, we get the claim of the corollary.

Next, we will state and prove Lagrange- and Cauchy-type mean value results.
Lemma 14. Let $k \in\{1, \ldots, 4\}$, let Ω, f and R be as in Theorem 3 and let $\Psi \in$ $C^{2}((0, R])$. If $A_{k}(\Psi)$ is finite, $A_{k}\left(\Phi_{2}\right) \neq 0$ and the function Ψ, when $k=3$ or 4 , satisfies the same limiting assumptions at zero as the function Φ in Theorem 7, then there exists $\xi_{k} \in[0, R]$ (provided $\Psi^{\prime \prime}(0)=\lim _{z \rightarrow 0} \Psi^{\prime \prime}(z)$ exists when $\xi_{k}=0$) such that

$$
A_{k}(\Psi)=\Psi^{\prime \prime}\left(\xi_{k}\right) A_{k}\left(\Phi_{2}\right)
$$

Proof. Since Φ_{2} is a convex function, when $A_{k}\left(\Phi_{2}\right) \neq 0$ by Theorems 3 and 7 and Corollary 4, we have $A_{k}\left(\Phi_{2}\right)>0, k=1, \ldots, 4$. Let

$$
m=\inf _{\tau \in(0,+\infty)} \Psi^{\prime \prime}(\tau) \quad \text { and } \quad M=\sup _{\tau \in(0,+\infty)} \Psi^{\prime \prime}(\tau)
$$

If $M<+\infty$, then the function $M \Phi_{2}-\Psi$ is convex since

$$
\frac{d^{2}}{d \tau^{2}}\left(M \frac{\tau^{2}}{2}-\Psi(\tau)\right)=M-\Psi^{\prime \prime}(\tau) \geq 0
$$

By the assumptions of the lemma, the assumptions of Theorems 3 and 7 and Corollary 4 are satisfied and, hence,

$$
0 \leq A_{k}\left(M \Phi_{2}-\Psi\right), \quad k=1, \ldots, 4
$$

i. e.

$$
\begin{equation*}
A_{k}(\Psi) \leq M A_{k}\left(\Phi_{2}\right), \quad k=1, \ldots, 4 \tag{6}
\end{equation*}
$$

If $M=+\infty$, then inequality (6) holds trivially. Similarly, for a finite m the inequality

$$
\begin{equation*}
m A_{k}\left(\Phi_{2}\right) \leq A_{k}(\Psi), \quad k=1, \ldots, 4 \tag{7}
\end{equation*}
$$

holds since $\Psi-m \Phi_{2}$ is convex, while for $m=-\infty$ inequality (7) holds trivially.
Finally, the existence of $\xi_{k}, k=1, \ldots, 4$, follows from (6), (7) and continuity of $\Psi^{\prime \prime}$.

Lemma 15. Let $k \in\{1, \ldots 4\}$. If Ψ and $\widetilde{\Psi}$ satisfy the assumptions of Lemma 14 and if $A_{k}\left(\Phi_{2}\right) \neq 0$, then there exists $\xi_{k} \in[0, R]$ such that

$$
\begin{equation*}
\frac{\Psi^{\prime \prime}\left(\xi_{k}\right)}{\widetilde{\Psi}^{\prime \prime}\left(\xi_{k}\right)}=\frac{A_{k}(\Psi)}{A_{k}(\widetilde{\Psi})} \tag{8}
\end{equation*}
$$

provided that the denominators are nonzero.
Proof. Let us define a function ϕ by

$$
\phi(\tau)=\Psi(\tau) A_{k}(\widetilde{\Psi})-\widetilde{\Psi}(\tau) A_{k}(\Psi)
$$

The function ϕ also satisfies Lemma 14 and, hence, there exists $\xi_{k} \in[0, R]$ such that $A_{k}(\phi)=\phi^{\prime \prime}\left(\xi_{k}\right) A_{k}\left(\Phi_{2}\right)$. Since $A_{k}(\phi)=0$ and $\phi^{\prime \prime}\left(\xi_{k}\right)=\Psi^{\prime \prime}\left(\xi_{k}\right) A_{k}(\widetilde{\Psi})-\widetilde{\Psi}^{\prime \prime}\left(\xi_{k}\right) A_{k}(\Psi)$, equality (8) follows.

Equality (8) allows us to define various means. Indeed, if $\Psi^{\prime \prime} / \widetilde{\Psi}^{\prime \prime}$ is an invertible function for functions Ψ and $\widetilde{\Psi}$ that satisfy the assumptions of Lemma 15,

$$
\xi_{k}=\left(\frac{\Psi^{\prime \prime}}{\widetilde{\Psi}^{\prime \prime}}\right)^{-1}\left(\frac{A_{k}(\Psi)}{A_{k}(\widetilde{\Psi})}\right)
$$

is a well-defined mean provided $\xi_{k}>0$. In particular, for $\Psi=\Phi_{p}$ and $\widetilde{\Psi}=\Phi_{q}$, recalling the definitions (4) and (5) of functions Φ_{p} and ψ_{k}, we can define means $E_{p, q}^{k}$ by

$$
E_{p, q}^{k}=\left(\frac{A_{k}\left(\Phi_{p}\right)}{A_{k}\left(\Phi_{q}\right)}\right)^{\frac{1}{p-q}}=\left(\frac{\psi_{k}(p)}{\psi_{k}(q)}\right)^{\frac{1}{p-q}}
$$

for $p, q \in I_{k}, p \neq q$. Moreover, we can continuously extend these means to cover the case $p=q$ as well by calculating the $\operatorname{limits} \lim _{p \rightarrow q} E_{p, q}^{k}$. For $k=1$ or 2 we get

$$
E_{p, q}^{k}= \begin{cases}\left(\frac{A_{k}\left(\Phi_{p}\right)}{A_{k}\left(\Phi_{q}\right)}\right)^{\frac{1}{p-q}}, & p \neq q \tag{9}\\ \exp \left\{\frac{1-2 p}{p(p-1)}-\frac{A_{k}\left(\Phi_{0} \Phi_{p}\right)}{A_{k}\left(\Phi_{p}\right)}\right\}, & p=q \neq 0,1 \\ \exp \left\{-1-\frac{A_{k}\left(\Phi_{0}\right)}{2 A_{k}\left(\Phi_{1}\right)}\right\}, & p=q=1 \\ \exp \left\{1-\frac{A_{k}\left(\Phi_{0}^{2}\right)}{2 A_{k}\left(\Phi_{0}\right)}\right\}, & p=q=0\end{cases}
$$

The means $E_{p, q}^{k}$ for $k=3$ and $k=4$ have the same form, but are defined only for $p>1$ and $q>1$.

Corollary 16. Let $k \in\{1,2,3,4\}$ and $p, q, r, s \in I_{k}$ be such that $p \leq r$ and $q \leq s$. Then

$$
E_{p, q}^{k} \leq E_{r, s}^{k}
$$

Proof. Since the functions ψ_{k} are exponentially convex by Lemma 11, they are also log-convex.

Now, the inequality of the corollary follows directly from log-convexity of the functions ψ_{k} and continuity of the means E^{k}.

References

[1] M. Anwar, J. Jakšetić, J. Pečarić, Exponential convexity, positive semi-definite matrices and fundamental inequalities, J. Math. Inequal. 4 (2010), no. 2, 171-189.
[2] K. O. Friedrichs, Die Rand- und Eigenwertprobleme aus der Theorie der elastischen Platten (Anwendung der direkten Methoden der Variationsrechnung), Math. Ann. 98 (1928), 205-247.
[3] V. Maz'ya, Sobolev spaces, Springer-Verlag, Berlin-Heidelberg, 1985.
[4] M. Rao, Brownian Motion and Classical Potential Theory, Lecture Notes Series No. 47, Aarhus University, 1977.
[5] M. Rao, H. Šikić, Potential Inequality, Israel Journal of Mathematics 83 (1993), 97-127.
(Neven Elezović) Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
E-mail address: neven.elez@fer.hr
(Josip Pečarić) Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28A, 10000 Zagreb, Croatia
E-mail address: pecaric@element.hr
(Marjan Praljak) Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
E-mail address: mpraljak@pbf.hr

