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Abstract. We extend an inequality proved by Rao & Šikić [5] to the class of naturally defined
convex functions and derive some related inequalities. Using exponential convexity, we refine
the Friedrichs-type inequality proved by Rao & Šikić [5].
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1. Introduction

One of the results Rao & Šikić [5] obtained was the following inequality for a class
of convex functions (inequality (65), pg 122)

Theorem 1. Let Φ : (0, +∞) → (0,+∞) be a convex function for which a positive
Borel σ-finite measure η exists such that

Φ(τ) =
∫ τ

0

ϕ(t)dt, for every τ ∈ (0, +∞),

where

ϕ(t) = η([0, t]), for every t ∈ (0, +∞).

Furthermore, let Ω be a bounded, open and connected set in Rn and let f ∈ C1(Ω) be
such that supp(f) ⊂ Ω. Then

Φ
(|f(x)|) ≤ 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy,

where ∇f = (∂f/∂x1, ..., ∂f/∂xn) and ωn is the area of the surface of the unit sphere
Sn−1 in Rn.

Furthermore, using Theorem 1, Rao & Šikić proved Friedrichs-type inequality
∫

Ω

|f(x)|pdx ≤ C

∫

Ω

‖∇f(x)‖pdx,

with constant C = p · diam(Ω).
The goal of this paper is to extend the inequality from Theorem 1 to the class of

all convex functions on (0, +∞) and, by using exponential convexity, to refine the
Friedrichs-type inequality.
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2. Main results

We will use the following lemma proved by Rao & Šikić [5]

Lemma 2. Let Ω be a bounded, open and connected set in Rn and let f ∈ C1(Ω) be
such that supp(f) ⊂ Ω. Then, for every x ∈ Rn and u ≥ 0 the following inequality
holds

|f(x)| ≤ u +
1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

1{|f(y)|≥u} dy.

The following theorem states the main result

Theorem 3. Let Ω and f be as in Lemma 2, let R = supx∈Ω |f(x)| and let Φ(0, R] →
R be a convex function with ϕ denoting the right-continuous version of its derivative.
Let z > 0 and x ∈ Bz, where

Bz = {y ∈ Ω : |f(y)| ≥ z}.
Then the following inequality holds

Φ
(|f(x)|)− Φ(z) ≤ 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy

+ ϕ(z)
(
|f(x)| − 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
− zϕ(z).

If Φ is a concave function, then the above inequality is reversed.

Proof. Integration by parts gives

Φ(|f(x)|)− Φ(z) =
∫ |f(x)|

z

ϕ(u)du = uϕ(u)
∣∣∣
|f(x)|

z
−

∫ |f(x)|

z

udϕ(u)

= |f(x)|ϕ(|f(x)|)− zϕ(z)−
∫ |f(x)|

z

(u± |f(x)|)dϕ(u)

=
∫ |f(x)|

z

(|f(x)| − u)dϕ(u) + ϕ(z)(|f(x)| − z)

Since dϕ is a positive measure, using Lemma 2 we get

Φ
(|f(x)|)− Φ(z) ≤ 1

ωn

∫ |f(x)|

z

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

1{|f(y)|≥u} dy dϕ(u)

+ ϕ(z)(|f(x)| − z). (1)

Using Fubini’s theorem and nonnegativity of the integrand, we further get

1
ωn

∫ |f(x)|

z

∫

Ω

|∇f(y) · (x− y)|
|x− y‖n

1{|f(y)|≥u} dy dϕ(u) =

=
∫

Ω

[
|∇f(y) · (x− y)|

‖x− y‖n

∫ |f(x)|

z

1{|f(y)|≥u} dϕ(u)

]
dy

≤
∫

Ω

[
|∇f(y) · (x− y)|

‖x− y‖n

∫ +∞

z

1{|f(y)|≥u} dϕ(u)

]
dy

=
∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

[
ϕ(|f(y)|)− ϕ(z)

]
1Bz (y) dy

=
1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy − ϕ(z)

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

dy.
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Plugging the last inequality in (1) and rearranging finishes the proof. ¤
The following corollary gives the integral version of the inequality

Corollary 4. Let B =
⋃

z↘0 Bz = {y ∈ Ω : f(y) 6= 0}, C ⊂ B and z : C → (0, +∞).
If x ∈ Bz(x) for every x ∈ C, then for a finite measure µ on C the following inequality
holds∫

C

(
Φ

(|f(x)|)− Φ(z(x))
)
µ(dx) ≤

1
ωn

∫

C

∫

Bz(x)

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy µ(dx)

−
∫

C

ϕ(z(x))
(
|f(x)| − 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
µ(dx)−

∫

C

z(x)ϕ(z(x))µ(dx).

In particular, for C = Bz and z(x) ≡ z the following inequality holds
∫

Bz

Φ
(|f(x)|)µ(dx)− Φ(z)µ(Bz) ≤

1
ωn

∫

Bz

ϕ
(|f(x)|)

( ∫

Bz

|∇f(x) · (y − x)|
‖y − x‖n

µ(dy)
)

dx

+ ϕ(z)
∫

Bz

(
|f(x)| − 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
µ(dx)− zϕ(z)µ(Bz).

Proof. The first inequality of the corollary follows by integrating the inequality from
Theorem 3 with respect to the measure µ.

The second inequality follows by taking C = Bz and z(x) ≡ z in the first inequality
and applying Fubini’s theorem on the first integral of the right-hand side. ¤
Corollary 5. Under the assumptions of Corollary 4, for p ∈ R\{0, 1} the following
inequality holds

1
p(p− 1)

∫

Bz

|f(x)|pµ(dx) ≤

1
(p− 1)ωn

∫

Bz

|f(x)|p−1

( ∫

Bz

|∇f(x) · (y − x)|
‖y − x‖n

µ(dy)
)

dx

+
zp−1

p− 1

∫

Bz

(
|f(x)| − 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
µ(dx)− zpµ(Bz)

p
.

Proof. The inequality follows by applying Corollary 4 to the function Φ(τ) = τp

p(p−1) .
¤

The following corollary takes into account properties of the second term on the
right-hand side of the inequality from Theorem 3

Corollary 6. Under the assumptions of Theorem 3, if ϕ(z) is nonnegative, then the
following inequality holds

Φ
(|f(x)|)− Φ(z) ≤ 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy − zϕ(z).

Proof. For functions f that satisfy the assumptions of the corollary, the well-known
formula

f(x) =
1

ωn

∫

Ω

∇f(y) · (x− y)
‖x− y‖n

dy
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holds, so

|f(x)| ≤ 1
ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

dy.

Since ϕ(z) ≥ 0, the second term on the right-hand side of the inequality from Theorem
3 is nonpositive, so the claim of the corollary follows. ¤

If Theorem 3 holds for some z > 0, then it holds for every z′, 0 < z′ ≤ z. Letting
z′ → 0, we can get further inequalities.

In the proof of the following corollary we will use the fact that for a bounded and
connected open set Ω the following inequality holds

1
ωn

∫

Ω

dx

‖x− y‖n−1
≤ diam(Ω)

2
(2)

Theorem 7. Under the assumptions of Theorem 3, if ϕ(0+) is finite, then the fol-
lowing inequality holds

Φ
(|f(x)|)− Φ(0+) ≤ 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy

+ ϕ(0+)
(
|f(x)| − 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
.

Furthermore, for a finite measure µ on Ω the following inequality holds
∫

Ω

Φ
(|f(x)|)µ(dx)− Φ(0+)µ(Ω) ≤

1
ωn

∫

Ω

ϕ
(|f(x)|)

( ∫

Ω

|∇f(x) · (y − x)|
‖y − x‖n

µ(dy)
)

dx

+ ϕ(0+)
∫

Ω

(
|f(x)| − 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
µ(dx).

Proof. Since ϕ(0+) is finite, we have limz→0 zϕ(z) = 0, so the last term on the right-
hand side of the inequality from Theorem 3 vanishes as z → 0.

Since f ∈ C1(Ω) has a compact support ϕ(0+) is finite, both functions ∇f and
ϕ(|f |) are bounded. Therefore

∣∣∣ 1
ωn

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|)

∣∣∣∣ ≤
1

ωn

‖∇f(y)‖
‖x− y‖n−1

∣∣ϕ(|f(y))
∣∣

≤ ‖∇f‖L∞‖ϕ(|f |)‖L∞
1

ωn‖x− y‖n−1
.

Taking into account (2), we see that the integrand in the first integral of the
inequality from Theorem 3 is dominated by an integrable function. Similarly, the
integrand in the second integral is dominated as well, so by the dominated convergence
theorem the right-hand side of the inequality from Theorem 3 converges to

1
ωn

∫

B

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy

+ ϕ(0+)
(
|f(x)| − 1

ωn

∫

B

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
.

as z → 0, where B =
⋃

z↘0 Bz = {y ∈ Ω : f(y) 6= 0}. Since ∇f = 0 on the set
Bc = {f = 0}, the integrals over B can be replaced with integrals over Ω, which
proves the first inequality.
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The second inequality follows from the first by integrating with respect to the
measure µ and applying Fubini’s theorem on the first integral on the right-hand
side. ¤

Corollary 8. Under the assumptions of Theorem 7, for p > 1 the following inequality
holds ∫

Ω

|f(x)|pµ(dx) ≤ p

ωn

∫

Ω

|f(x)|p−1

( ∫

Ω

|∇f(x) · (y − x)|
‖y − x‖n

µ(dy)
)

dx.

Proof. The inequality follows by applying Theorem 7 to the function Φ(τ) = τp. ¤

Taking use of inequality (2), we can state the following corollary

Corollary 9. Under the assumptions of Theorem 7, if µ(dx) = dx is the Lebesgue
measure and ϕ is nonnegative, then the following inequality holds

∫

Ω

Φ
(|f(x)|) dx− Φ(0+)µ(Ω) ≤ diam(Ω)

2

∫

Ω

ϕ
(|f(x)|)‖∇f(x)‖ dx

+ ϕ(0+)
∫

Ω

(
|f(x)| − 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
dx.

Proof. Since ϕ is nonnegative, we have

1
ωn

∫

Ω

ϕ
(|f(x)|)

( ∫

Ω

|∇f(x) · (y − x)|
‖y − x‖n

dy

)
dx

≤ 1
ωn

∫

Ω

ϕ
(|f(x)|)‖∇f(x)‖

( ∫

Ω

dy

‖y − x‖n−1

)
dx

≤ diam(Ω)
2

∫

Ω

ϕ
(|f(x)|)‖∇f(x)‖ dx,

and the claim of the corollary follows from the second inequality of Theorem 7. ¤

Corollary 10. Under the assumptions of Corollary 9, for p > 1 the following two
inequalities hold:

∫

Ω

|f(x)|p dx ≤ p · diam(Ω)
2

∫

Ω

|f(x)|p−1‖∇f(x)‖ dx

and [ ∫

Ω

|f(x)|p dx

] 1
p

≤ p · diam(Ω)
2

[ ∫

Ω

‖∇f(x)‖p dx

] 1
p

.

Proof. The first inequalities follows from Corollary 9 applied to the function Φ(τ) =
τp.

The second inequality follows by applying Hölder’s inequality on the right-hand
side integral of the first inequality. ¤

The second inequality from the last corollary can be restated as

‖f‖Lp(Ω) ≤
p · diam(Ω)

2
‖∇f‖Lp(Ω) (3)

and represents a Friedrichs-type inequality in which the Lp norm of a function is
bounded by the Lp norm of its gradient. Inequality (3) is a special case of inequality
proven by Friedrichs [2], which in turn is a special case of Sobolev inequality (see [3]).
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3. Exponential convexity

In this section we will use well known results from exponential convexity to derive
new inequalities and refine some inequalities from the previous section (see [1]). We
will also prove mean value theorems and generate Cauchy-type means and prove their
monotonicity.

Let Ω, f , x, z, µ and C be as in Theorem 3 or Corollary 4 and let us define the
following four linear functionals: Ak = Ak;Ω,f,x,z,µ,C with

A1(Φ) =
1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy − Φ

(|f(x)|) + Φ(z)

+ ϕ(z)
(
|f(x)| − 1

ωn

∫

Bz

|∇f(y) · x− y)|
‖x− y‖n

dy
)
− zϕ(z),

A2(Φ) =
1

ωn

∫

C

∫

Bz(x)

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy µ(dx)

−
∫

C

ϕ(z(x))
(
|f(x)| − 1

ωn

∫

Bz

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
µ(dx)

−
∫

C

z(x)ϕ(z(x))µ(dx)−
∫

C

(
Φ

(|f(x)|)− Φ(z(x))
)
µ(dx),

A3(Φ) =
1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

ϕ
(|f(y)|) dy − Φ

(|f(x)|) + Φ(0+)

+ ϕ(0+)
(
|f(x)| − 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

dy
)

A4(Φ) =
1

ωn

∫

Ω

ϕ
(|f(x)|)

( ∫

Ω

|∇f(x) · (y − x)|
‖y − x‖n

µ(dy)
)

dx

+ ϕ(0+)
∫

Ω

(
|f(x)| − 1

ωn

∫

Ω

|∇f(y) · (x− y)|
‖x− y‖n

dy
)
µ(dx)

−
∫

Ω

Φ
(|f(x)|)µ(dx) + Φ(0+)µ(Ω).

Linear functional Ak, k = 1, ..., 4, depend on the choices of Ω, f , x, z, µ and C,
but if they are clear from the context, we will omit them from the notation.

Let us denote by Φp the following class of functions

Φp(τ) =





τp

p(p−1) , p 6= 0, 1
− log τ, p = 0
τ log τ, p = 1

(4)

and let us define functions ψk : Ik → R+ by

ψk(p) = Ak(Φp) (5)

with I1 = I2 = R and I3 = I4 = (1,+∞). Notice that Φ′′p(τ) = τp−2, so the functions
Φp are convex. By Theorems 3 and 7 and Corollaries 4 and 8, the functions ψk are,
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indeed, well-defined and nonnegative. It is straightforward to check that all of the
functions ψk are continuous.

Lemma 11. For each k ∈ {1, 2, ..., 4}, the function ψk is exponentially convex.

Proof. Let n ∈ N, ξi ∈ R and pi ∈ Ik, 1 ≤ i ≤ n, be arbitrary. Define the function Φ
by

Φ(τ) =
n∑

i,j=1

ξiξjΦ pi+pj
2

(τ).

Since

Φ′′(τ) =
n∑

i,j=1

ξiξjτ
pi+pj

2 −2 =
( n∑

i=1

ξiτ
pi
2 −1

)2

≥ 0,

the function Φ is convex.
Furthermore, if k = 3 or 4, we have

ϕ(0+) =
∣∣∣

n∑

i,j=1

ξiξjϕ pi+pj
2

(0+)
∣∣∣ < +∞,

so Φ satisfies the assumptions of Theorem 7. Hence, by Theorems 3 and 7 and
Corollaries 4 and 8, for each k we have

0 ≤ Ak(Φ) =
n∑

i,j=1

ξiξjAk

(
Φ pi+pj

2

)
=

n∑

i,j=1

ξiξjψk

(pi + pj

2

)
.

Since ψk are continuous in addition to satisfying the above condition, it follows that
ψk are exponentially convex functions. ¤

Due to the properties of exponentially convex functions, the following corollary is
a direct consequence of the previous lemma

Corollary 12. For ψk, k = 1, ..., 4, defined by (5) the following statements hold
(i) For all n ∈ N and pi ∈ Ik, 1 ≤ i ≤ n the matrix [ψk(pi+pj

2 )]ni,j=1 is positive
semidefinite, so

det
[
ψk

(pi + pj

2

)]n

i,j=1
≥ 0.

(ii) For p, s, t ∈ Ik we have

ψk(p) ≥ [
ψk(s)

] t−p
t−s

[
ψk(t)

] p−s
t−s if p < s < t or s < t < p

ψk(p) ≤ [
ψk(s)

] t−p
t−s

[
ψk(t)

] p−s
t−s if s < p < t.

Notice that the first set of inequalities in Corollary 12(ii) are refinements of the
inequalities in Corollaries 5 and 8. Indeed, the latter inequalities, in the notation
introduced in this section, are

0 ≤ ψk(p), k = 2, 4, p ∈ Ik\{0, 1},
while the right-hand sides of inequalities in Corollary 12(ii) are nonnegative.

Furthermore, inequalities from Corollary 12(ii) are refinements of the Friedrichs-
type inequality from Corollary 10. Indeed, we have the following result
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Corollary 13. Let ψ4 be defined by (5) and let Ω and f be as in Theorem 3. Then,
for 1 < p < s < t or 1 < s < t < p the following inequality holds

p(p− 1)
[
ψ4(s)

] t−p
t−s

[
ψ4(t)

] p−s
t−s

[ ∫

Ω

|f(x)|p dx

] 1−p
p

≤

p · diam(Ω)
2

[ ∫

Ω

‖∇f(x)‖p dx

] 1
p

−
[ ∫

Ω

|f(x)|p dx

] 1
p

.

Proof. As in the proof of Corollary 9, one can show that

1
ωn

∫

Ω

|f(x)|p−1

( ∫

Ω

|∇f(x) · (y − x)|
‖y − x‖n

dy

)
dx ≤

diam(Ω)
2

∫

Ω

|f(x)|p−1‖∇f(x)‖ dx

Therefore

p(p− 1)ψ4(p) ≤ p · diam(Ω)
2

∫

Ω

|f(x)|p−1‖∇f(x)‖ dx−
∫

Ω

|f(x)|p dx.

Applying Hölder’s inequality on the first integral of the right-hand side and mul-
tiplying the inequality by

[ ∫
Ω
|f(x)|p dx

](1−p)/p, while taking into account the first
inequality from Corollary 12(ii), we get the claim of the corollary. ¤

Next, we will state and prove Lagrange- and Cauchy-type mean value results.

Lemma 14. Let k ∈ {1, ..., 4}, let Ω, f and R be as in Theorem 3 and let Ψ ∈
C2((0, R]). If Ak(Ψ) is finite, Ak(Φ2) 6= 0 and the function Ψ, when k = 3 or 4,
satisfies the same limiting assumptions at zero as the function Φ in Theorem 7, then
there exists ξk ∈ [0, R] (provided Ψ′′(0) = limz→0 Ψ′′(z) exists when ξk = 0) such that

Ak(Ψ) = Ψ′′(ξk)Ak(Φ2).

Proof. Since Φ2 is a convex function, when Ak(Φ2) 6= 0 by Theorems 3 and 7 and
Corollary 4, we have Ak(Φ2) > 0, k = 1, ..., 4. Let

m = inf
τ∈(0,+∞)

Ψ′′(τ) and M = sup
τ∈(0,+∞)

Ψ′′(τ).

If M < +∞, then the function MΦ2 −Ψ is convex since

d2

dτ2

(
M

τ2

2
−Ψ(τ)

)
= M −Ψ′′(τ) ≥ 0.

By the assumptions of the lemma, the assumptions of Theorems 3 and 7 and Corollary
4 are satisfied and, hence,

0 ≤ Ak

(
MΦ2 −Ψ

)
, k = 1, ..., 4,

i. e.
Ak(Ψ) ≤ MAk(Φ2), k = 1, ..., 4. (6)

If M = +∞, then inequality (6) holds trivially. Similarly, for a finite m the inequality

mAk(Φ2) ≤ Ak(Ψ), k = 1, ..., 4 (7)

holds since Ψ−mΦ2 is convex, while for m = −∞ inequality (7) holds trivially.
Finally, the existence of ξk, k = 1, ..., 4, follows from (6), (7) and continuity of

Ψ′′. ¤
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Lemma 15. Let k ∈ {1, ...4}. If Ψ and Ψ̃ satisfy the assumptions of Lemma 14 and
if Ak(Φ2) 6= 0, then there exists ξk ∈ [0, R] such that

Ψ′′(ξk)

Ψ̃′′(ξk)
=

Ak(Ψ)

Ak(Ψ̃)
, (8)

provided that the denominators are nonzero.

Proof. Let us define a function φ by

φ(τ) = Ψ(τ)Ak(Ψ̃)− Ψ̃(τ)Ak(Ψ).

The function φ also satisfies Lemma 14 and, hence, there exists ξk ∈ [0, R] such that
Ak(φ) = φ′′(ξk)Ak(Φ2). Since Ak(φ) = 0 and φ′′(ξk) = Ψ′′(ξk)Ak(Ψ̃)− Ψ̃′′(ξk)Ak(Ψ),
equality (8) follows. ¤

Equality (8) allows us to define various means. Indeed, if Ψ′′/Ψ̃′′ is an invertible
function for functions Ψ and Ψ̃ that satisfy the assumptions of Lemma 15,

ξk =
(Ψ′′

Ψ̃′′

)−1
(

Ak(Ψ)

Ak(Ψ̃)

)

is a well-defined mean provided ξk > 0. In particular, for Ψ = Φp and Ψ̃ = Φq,
recalling the definitions (4) and (5) of functions Φp and ψk, we can define means Ek

p,q

by

Ek
p,q =

(
Ak(Φp)
Ak(Φq)

) 1
p−q

=

(
ψk(p)
ψk(q)

) 1
p−q

for p, q ∈ Ik, p 6= q. Moreover, we can continuously extend these means to cover the
case p = q as well by calculating the limits limp→q Ek

p,q. For k = 1 or 2 we get

Ek
p,q =





(
Ak(Φp)
Ak(Φq)

) 1
p−q

, p 6= q

exp
{

1−2p
p(p−1) −

Ak(Φ0Φp)
Ak(Φp)

}
, p = q 6= 0, 1

exp
{
− 1− Ak(Φ0Φ1)

2Ak(Φ1)

}
, p = q = 1

exp
{

1− Ak(Φ2
0)

2Ak(Φ0)

}
, p = q = 0

(9)

The means Ek
p,q for k = 3 and k = 4 have the same form, but are defined only for

p > 1 and q > 1.

Corollary 16. Let k ∈ {1, 2, 3, 4} and p, q, r, s ∈ Ik be such that p ≤ r and q ≤ s.
Then

Ek
p,q ≤ Ek

r,s.

Proof. Since the functions ψk are exponentially convex by Lemma 11, they are also
log-convex.

Now, the inequality of the corollary follows directly from log-convexity of the func-
tions ψk and continuity of the means Ek. ¤
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[1] M. Anwar, J. Jakšetić, J. Pečarić, Exponential convexity, positive semi-definite matrices and
fundamental inequalities, J. Math. Inequal. 4 (2010), no. 2, 171-189.

[2] K. O. Friedrichs, Die Rand- und Eigenwertprobleme aus der Theorie der elastischen Platten
(Anwendung der direkten Methoden der Variationsrechnung), Math. Ann. 98 (1928), 205-247.

[3] V. Maz’ya, Sobolev spaces, Springer-Verlag, Berlin-Heidelberg, 1985.
[4] M. Rao, Brownian Motion and Classical Potential Theory, Lecture Notes Series No. 47, Aarhus

University, 1977.
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