
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 39(2), 2012, Pages 237–243
ISSN: 1223-6934

Slant submanifolds of Lorentzian almost contact manifolds
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Abstract. In this paper we study slant submanifolds of Lorentzian almost contact manifolds.
We consider the submanifold M as a space-like and define the slant angle on M and thus we
obtain some characterization results.
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1. Introduction

Slant submanifolds were introduced by B.Y. Chen in [5, 6]. These submanifolds
are the generalization of both holomorphic and totally real submanifolds of an al-
most Hermitian manifold. Since then many research articles have appeared on these
submanifolds in different known spaces. A. Lotta [7] defined and studied slant sub-
manifolds in contact geometry. Later on, J.L. Cabrerizo, A. Carriazo, L.M. Fernan-
dez and M. Fernandez studied slant submanifolds of Sasakian manifolds [4]. Recently,
Atceken [2] studied slant and semi-slant submanifolds of an almost paracontact metric
manifold.

In this paper, we study slant submanifolds of Lorentzian almost contact manifolds.
In section 2, we review some formulae for Lorentzian almost contact manifolds and
their submanifolds. In section 3, we define a slant submanifold assuming that it is
space-like except ξ. We obtain some characterization results for slant submanifolds of
a Lorentzian almost contact manifold. The section 4, has been devoted to the study
of slant submanifolds of Lorentzian Sasakian manifolds.

2. Preliminaries

Let M̄ be a (2n + 1)−dimensional manifold with an almost contact structure and
compatible Lorentzian metric, (M̄, φ, ξ, η, g) that is, φ is (1, 1) tensor field, ξ is a
structure vector field, η is 1-form and g is Lorentzian metric on M̄ satisfying [1]

φ2X = −X + η(X)ξ, η(ξ) = 1, φ(ξ) = 0, η ◦ φ = 0 (2.1)

and
g(φX, φY ) = g(X, Y ) + η(X)η(Y ), η(X) = −g(X, ξ) (2.2)

for any X, Y ∈ TM̄ , where TM̄ denotes the Lie algebra of tangent vector fields on M̄ .
An almost contact manifold with Lorentzian metric g is called a Lorentzian almost
contact manifold. From (2.2), it follows that

g(φX, Y ) = −g(X, φY ). (2.3)
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A Lorentzian almost contact manifold is Lorentzian Sasakian if [1]

(∇̄Xφ)Y = −g(X, Y )ξ − η(Y )X. (2.4)

It is easy to compute from (2.4) that

∇̄Xξ = −φX. (2.5)

Now, let M be a submanifold of M̄ , we denote the induced Lorentzian metric on M
by the same symbol g. Let ∇̄ and ∇ be the Levi-Civita connections on the ambient
manifold M̄ and the submanifold M , respectively with respect to the Lorentzian
metric g then the Gauss and Weingarten formulae are given by

∇̄XY = ∇XY + h(X, Y ) (2.6)

∇̄XV = −AV X +∇⊥XV (2.7)
for any X,Y ∈ TM and V ∈ T⊥M , where ∇⊥ is the connection on the normal bundle
T⊥M , h is the second fundamental form and AV is the Weingarten map associated
with V as

g(AV X, Y ) = g(h(X,Y ), V ). (2.8)
for any x ∈ M , X ∈ TxM and V ∈ T⊥x M , we write

φX = TX + NX (2.9)

φV = tV + nV (2.10)
where TX(resp. tV ) denotes the tangential component of φX(resp. φV ) and NX
(resp. nV ) denotes the normal component of φX (resp. φV ).

3. Slant submanifolds

Throughout, this section we consider a submanifold M of a Lorentzian manifold
M̄ such that for all X ∈ TM , g(X,X) > 0 or g(X, X) = 0 i.e., all the tangent vectors
on M are Space-like or null like, we shall call these type of submanifolds as space-like
and also we assume that the structure vector field ξ is tangent to the submanifold M .
For any x ∈ M and X ∈ TxM , if the vector field X and ξ are linearly independent
then the angle θ(X) ∈ [0, π/2] between φX and TxM is well defined, if θ(X) does not
depend on the choice of x ∈ M and X ∈ TxM , then M is slant in M̄ . The constant
angle θ(X) is then called the slant angle of M in M̄ and which in short we denote by
Sla(M). The tangent bundle TM at every point x ∈ M is decomposed as

TM = D ⊕ 〈ξ〉
where 〈ξ〉 is the one dimensional distribution orthogonal to the slant distribution D
on M and spanned by the structure vector field ξ.

For any x ∈ M and X ∈ TXM we put φX = TX + NX where TX ∈ TXM and
NX ∈ T⊥x M . Thus, there is an endomorphism T : TxM −→ TxM , whose square T 2

will be denoted by Q. Then tensor fields on M of the type (1, 1) determined by their
endomorphisms shall be denoted by same letters T and Q. It is easy to show that
for every x ∈ M and X, Y ∈ TxM, g(TX, Y ) = −g(X,TY ), which implies that Q is
symmetric. Moreover, in the following steps we can prove that the eigenvalue of Q
always belong to [−1, 0]. For any X ∈ TxM− < ξ >, we get

g(QX, X) = −‖TX‖2
but,

‖TX‖ ≤ ‖QX‖
‖TX‖ ≤ µ‖X‖, and µ ∈ [0, 1].
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Thus we obtain
g(QX,X) = −µ2(X)‖X‖2.

That is,
g(QX, X) = λ(X)‖X‖2

where −1 ≤ λ(X) ≤ 0 and λ depends on X. In other words, each eigenvalue of Q lies
in [−1, 0] and each eigenvalue has even multiplicity.

Now, we have the following theorem.

Theorem 3.1. Let x ∈ M and X ∈ TxM be an eigenvector of Q with eigenvalue
λ(X). Suppose X is linearly independent from ξx, then,

cos θ(X) =
√
−λ(X)

‖X‖
‖φX‖ . (3.1)

Proof. For any X ∈ TM we have

‖TX‖2 = g(TX, TX) = −λ(X)‖X‖2. (3.2)

On the other hand by definition of θ(X), we have

cos θ(X) =
g(φX, TX)
‖TX‖‖φX‖

=
g(TX, TX)
‖TX‖‖φX‖ = −λ(X)

‖X‖2
‖TX‖‖φX‖ =

‖TX‖2
‖φX‖ .

Again, using (3.2), we obtain

cos(θ)(X) =
√
−λ(X)

‖X‖
‖φX‖ .

This completes the proof. ¤
The following characterization theorem gives the existence of eigenvalues of the

endomorphism Q.

Theorem 3.2. Let M be a slant submanifold of a Lorentzian almost contact manifold
M̄ and θ = Sla(M) 6= π/2, then Q admits the real number − cos2 θ as the only non-
vanishing eigenvalue, for any x ∈ M . Moreover the related eigenspace H satisfies
H ⊂ D, where D = Span(ξx)⊥ ⊂ TxM .

Proof. Let x ∈ M , from equation (3.1) Ker(Q) 6= TxM , otherwise Sla(M) = π/2
which contradicts the assumption. So let λ be an arbitrary non-vanishing eigenvalue
of Q and let H be the corresponding eigenspace. Now, we have dim(D) = 2n and
dim(H) is even, which shows that dim(H ∩D) ≥ 1. Let X ∈ H ∩D is a unit vector,
then φX is also unit vector then from equation (3.1) we obtain

cos θ =
√
−λ(X),

which proves the first part. Moreover, for any X ∈ H, formula (3.1) yields ‖φX‖ =
‖X‖ which imply that g(X, ξ) = 0, hence H ⊂ D. ¤

We have noted that, invariant and anti-invariant submanifolds are slant subman-
ifolds with slant angle θ = 0 and θ = π/2, respectively. A slant submanifold which
is neither invariant nor anti-invariant is called a proper slant. In case of invariant
submanifold T = φ and so

T 2 = φ2 = −I + η ⊗ ξ.

While in case of anti-invariant submanifold, T 2 = 0. In fact, we have the following
general result which characterize slant submanifolds.
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Theorem 3.3. Let M be a submanifold of a Lorentzian almost contact manifold M̄
such that ξ ∈ TM . Then, M is slant submanifold if and only if there exist a constant
λ ∈ [0, 1] such that

T 2 = λ(−I + η ⊗ ξ). (3.3)
Furthermore, if θ is slant angle of M , then λ = cos2 θ.

Proof. Necessary condition is obvious, we have to prove the sufficient condition. Sup-
pose that there exist a constant λ such that T 2 = λ(−I + η ⊗ ξ), then for any
X ∈ TM − 〈ξ〉, we have

cos θ(X) =
g(φX, TX)
‖TX‖‖φX‖ =

g(TX, TX)
‖TX‖‖φX‖

= − g(X, T 2X)
‖TX‖‖φX‖ = λ

‖φX‖
‖TX‖ . (3.4)

On the other hand cos θ(X) = ‖TX‖
‖φX‖ and therefore by using (3.4) we obtain that

λ = cos2 θ. Hence, θ(X) is a constant angle of M i.e, M is slant. ¤

Now, we have the following corollary, which can be easily verified.

Corollary 3.1. Let M be a slant submanifold of a Lorentzian almost contact manifold
M̄ with slant angle θ. Then for any X,Y ∈ TM , we have

g(TX, TY ) = cos2 θ(g(X, Y ) + η(X)η(Y )) (3.5)

g(NX,NY ) = sin2 θ(g(X, Y ) + η(X)η(Y )). (3.6)

Proof. For any X, Y ∈ TM , we have

g(TX, TY ) = −g(X, T 2Y ).

Then by virtue of (3.3), we obtain (3.5). The proof of (3.6) follows from (2.2) and
(2.9). ¤

4. Slant submanifolds of Lorentzian Sasakian manifolds

In this section we assume that M is a slant submanifold tangent to the structure
vector filed ξ of a Lorentzian Sasakian manifold M̄ and obtain some interesting results
using curvature tensor. First, we have the following example of a Lorentzian Sasakian
manifold.

Consider the following structure on R2n+1 :

φ0

(
n∑

i=1

Xi
∂

∂xi
+ Yi

∂

∂yi
+ Z

∂

∂z

)
=

n∑

i=1

Yi
∂

∂xi
−

n∑

i=1

Xi
∂

∂yi
+

n∑

i=1

Yiy
i ∂

∂z

ξ = 2
∂

∂z
, η =

1
2

(
dz −

n∑

i=1

yidxi

)

and

g = −η ⊗ η +
1
4

(
n∑

i=1

dxi ⊗ dxi +
n∑

i=1

dyi ⊗ dyi

)
.

Now, consider the vector fields basis on R5 as follows{
2

∂

∂y1
, 2

∂

∂y2
, 2

(
∂

∂x1
+ y1 ∂

∂z

)
, 2

(
∂

∂x2
+ y2 ∂

∂z

)
,

∂

∂z

}
.
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Then (R5, φ0, ξ, η, g) is a Lorentzian Sasakian manifold [3].
Now, we prove the following characterization theorem for a slant submanifold of

Lorentzian Sasakian manifolds.

Theorem 4.1. Let M be a slant submanifold of a Lorentzian Sasakian manifold M̄ .
Then Q is parallel if and only if M is anti-invariant.

Proof. Let θ be slant angle of M in M̄ , then for any X, Y ∈ TM by (3.3), we have

T 2Y = QY = cos2 θ(−Y + η(Y )ξ) (4.1)

and
Q∇XY = cos2 θ(−∇XY + η(∇XY )ξ). (4.2)

Taking the covariant derivative of (4.1) with respect to X ∈ TM , we get

∇XQY = cos2 θ(−∇XY + Xη(Y )ξ + η(Y )∇Xξ). (4.3)

Also, we have

Xη(Y ) = −Xg(Y, ξ) = −g(∇XY, ξ)− g(Y,∇Xξ) = η(∇XY )− g(Y,∇Xξ).

Using (2.5), (2.6), (2.9) and the above fact in (4.3), we derive

∇XQY = cos2 θ(−∇XY + η(∇XY )ξ + g(Y, TX)ξ − η(Y )TX). (4.4)

Then from (4.2) and (4.4), we obtain

(∇̄XQ)Y = ∇XQY −Q∇XY = cos2 θ(g(TX, Y )ξ − η(Y )TX). (4.5)

Thus, the assertion follows from (4.5). ¤

Now, we shall investigate the existence of a slant submanifold using curvature
tensor.

Lemma 4.1. Let M be a submanifold of Lorentzian Sasakian manifold M̄ such that
ξ is tangent to M . Then for any X, Y ∈ TM , we have

R(X, Y )ξ = (∇Y T )X − (∇XT )Y (4.6)

where R is the curvature tensor field associated to the metric induced by M̄ on M .
Moreover,

R(ξ,X)ξ = QX − (∇ξT )X (4.7)

R(X, ξ,X, ξ) = g(QX, X). (4.8)

Proof. For any X ∈ TM then from (2.5) and (2.9) we have

TX = ∇Xξ.

Using this fact in the formula (∇XT )Y = ∇XTY − T∇XY , we obtain

(∇XT )Y = −∇X∇Y ξ +∇∇XY ξ.

Similarly,
(∇Y T )X = ∇Y TX − T∇Y X = −∇Y∇Xξ +∇∇Y Xξ.

Substituting these equations in the definition of R(X,Y )ξ it is easy to get (4.6).
Rewriting (4.6) for X = ξ and Y = X, we obtain

R(ξ, X)ξ = (∇XT )ξ − (∇ξT )X = QX − (∇ξT )X

which proves (4.7). Now taking the inner product with X in (4.7), we get

R(ξ,X, ξ,X) = g(QX, X)− g((∇ξT )X, X). (4.9)
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The second term of right hand side in (4.9) will be identically zero as follows

g((∇ξT )X,X) = g(∇ξTX,X)− g(T∇ξX, X)
= −g(TX,∇ξX) + g(∇ξX,TX) = 0.

Then (4.8) follows from (4.9) using the above fact. ¤

Theorem 4.2. Let M be a submanifold of a Lorentzian Sasakian manifold M̄ such
that the characteristic vector field ξ is tangent to M . If θ ∈ (0, π/2) then the following
statements are equivalent
(i) M is slant with slant angle θ.
(ii) For any x ∈ M the sectional curvature of any 2-plane of TxM containing ξx

equals cos2 θ.

Proof. Assume that the statement (i) holds, then for any X ⊥ ξ by Theorem 3.3, we
have

QX = cos2 θX

which by virtue of (4.8) yields

R(X, ξ, X, ξ) = cos2 θ. (4.10)

Thus (ii) is proved.
Conversely, suppose that (ii) holds then for any X ∈ TM , we may write

X = Xξ + Xξ
⊥ (4.11)

where Xξ = η(X)ξ and Xξ
⊥ is the component of X perpendicular to the ξ, using

(4.10) and (4.11)

R(Xξ
⊥, ξ, Xξ

⊥, ξ)
|Xξ|2

= cos2 θ,

or,

R(Xξ
⊥, ξ,Xξ

⊥, ξ) = cos2 θ|Xξ|2. (4.12)

Let X be a unit vector filed such that QX = 0. Then from (4.8) and (4.12), we obtain

cos2 θ|Xξ
⊥|2 = 0. (4.13)

If cos θ 6= 0, then from the above equation X = Xξ. This proves that at each point
x ∈ M ,

Ker(Q) = 〈ξx〉. (4.14)

Moreover, let A be the matrix of the endomorphism Q at x ∈ M , then for a unit
vector field X on M , QX = AX, and as Q(Xξ) = 0, X = Xξ. Then by (4.8) and
(4.12)

A = cos2 θI. (4.15)

Choosing λ = cos2 θ, for any x ∈ M , the above fact together with (4.14) and Theorem
3.3, verifies that M is slant in M̄ with slant angle θ. Finally, suppose cos θ = 0 and
X is an arbitrary unit vector field such that QX = λX where λ ∈ C∞(M). Then,
from (4.8) and (4.12), we get g(QX, X) = 0 that is λ = 0 and therefore Q = 0 which
means that M is anti-invariant. ¤
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