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Exact parametric solutions of the nonlinear Riccati ODE as
well as of some relative classes of linear second order ODEs of
variable coefficients
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Abstract. We present a methodology for constructing the exact parametric solutions of the
nonlinear first order Riccati ordinary differential equation (ODE) and of some other equivalent
classes of second order linear ODEs with variable coefficients. For illustration purposes we
extract the general solutions of the strongly nonlinear first order kinematic Eulers ODEs
describing the dynamics of a rigid body free to rotate about a fixed point.
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1. Introduction

The vast majority of the problems in mathematical physics and nonlinear mechanics
whose dynamics can be described by nonlinear ordinary differential equations (ODEs),
do not admit general exact solutions in terms of known (tabulated) functions. Closed
form analytical solutions can only be obtained under certain restrictions and assump-
tions [1-7] that may impose both quantitative and qualitative biases. A celebrated
representative of this class of equations is the Riccati equation. This is a first order
ODE, reading

y
′
x = f2(x)y2 + f1(x)y + f0(x), f2(x) 6= 0.

Generally speaking, the term ”Riccati equation” refers to matrix equations with an
analogous quadratic term in both continuous and discrete-time systems. These equa-
tions play a key role in many areas of engineering and science especially in control,
optimization and systems theory [8, 21-23].

It is well known, since 1700, that in order to construct solutions of a Riccati equa-
tion [8, 11], one has to solve an equivalent (through admissible functional transforma-
tions) second order linear homogeneous ODE of variable coefficients of the following
form

z
′′
xx + f2(x)z

′
x + f1(x)z = 0, f1(x) 6= 0, f2(x) 6= 0.

Here, we construct the exact parametric solution of a first order nonlinear Riccati
ODE based on the work presented in [6,14]. Introducing a series of Theorems, Propo-
sitions, Corollaries and Lemmas, several of which are new, we construct the analytical
solutions (without any restrictive assumptions), not only for the Riccati equation, but
also for the equivalent classes of linear second order ODEs of variable coefficients. The
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main contribution of the current work is the introduction of several convenient func-
tional transformations which allow us to define the solution of the Riccati equation
through the construction of particular solutions of the Emden-Fowler linear type ODE
[4]

y
′′
xx = −f(x)y, f(x) = arbitrary 6= 0.

To demonstrate our approach we extract the analytical solution of the well known
three, first order, strongly nonlinear Euler kinematic equations [12-20] describing the
dynamics of a rigid body which is free to rotate about a fixed point. Through a
convenient decoupling procedure the above system of three equations results to a first
order Riccati nonlinear ODE.

2. Some Basic Results

2.1. The first order nonlinear Riccati ODE [4, 9]. The general form of a first
order Riccati ODE reads

y
′
x = f2(x)y2 + f1(x)y + f0(x) (2.1)

where, if f2 = 0, one obtains a first order linear ODE, while if f0 = 0, one derives a
first order Bernoulli equation.

The symbols d( )/ dx = ( )
′
x, d2( )/ dx2 = ( )

′′
xx, . . . are used to denote total

derivatives.
We state the following [3,4]:

Theorem 2.1. (a) Given a particular solution y0 = y0(x) of the Riccati equation
(2.1), the general solution can be written as

y(x) = y0(x) + Φ(x)
[
C −

∫
Φ(x)f2(x) dx

]−1

, (2.2)

where

Φ(x) = exp
{∫

[2f2(x)y0(x) + f1(x)] dx

}
, C = integration constant.

To the particular solution y0(x) corresponds C = ∞.
(b) Using the admissible functional transformation

y(x) = E(x)u(x), E(x) = exp
(∫

f1(x) dx

)
,

the Riccati equation (2.1) becomes of the normal type

u
′
x = f2(x)E(x)u2(x) +

f0(x)
E(x)

.

(c) The substitution

u(x) = exp
(
−

∫
f2(x)y dx

)
,

reduces the general Riccati equation to a second linear homogenous ODE

f2(x)u
′′
xx + [f2(x)− f

′
2x

(x)− f1(x)f2(x)]u
′
x + f0(x)f2

2 (x)u = 0.
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2.2. The first-order nonlinear Abel ODE of the second kind [3, 4, 5]. Con-
sider an Abel nonlinear ODE of the second kind with the general form

[y + g(x)]y
′
x = f2(x)y2 + f1(x)y + f0(x), fi 6= 0, (i = 0, 1, 2), g 6= 0. (2.3)

Proposition 2.1. If the variable coefficients of equation (2.3) satisfy the functional
relation [3]

f1(x) = 2f2(x)g(x)− g
′
x(x),

then a solution of this equation reads

y = −g(x) + E(x)
{

2
∫

[f0(x) + g(x)g
′
x(x)− f2(x)g2(x)]E−2(x) dx

}2

,

where
E(x) = exp

∫
f2(x) dx.

Now, consider an Abel nonlinear ODE of the second kind with general form

[g1(x)y + g0(x)]y
′
x = f2(x)y2 + f1(x)y + f0(x). (2.4)

Then the following proposition holds:

Proposition 2.2. If the variable coefficients of equation (2.4) satisfy the functional
relation [3,12]

g0(x)[2f2(x) + g
′
1x

(x)] = g1(x)[f1(x) + g
′
0x

(x)],
then its general solution is given by the formula

g1(x)y2 + 2g0(x)y
g1(x)I(x)

= 2
∫

f0(x)
g1(x)I(x)

dx + C,

where C is an integration constant, while I(x) is the integrating factor

I(x) = exp
(∫

2f2(x)
g1(x)

dx

)
.

Referring now to the Abel equation (2.3), the following lemmas hold (see [3]).

Lemma 2.1. The admissible transformation

y + g(x) = u−1(x), y + g(x) 6= 0,

reduces (2.3) to the equation

u
′
x = [f2(x)g2(x)−f1(x)g(x)+f0(x)]u3 +[f1(x)−2f2(x)g(x)+g

′
x(x)]u2 +f2(x)u = 0,

that is to an Abel ODE of the first kind of the form

y
′
x = f3(x)y3 + f2(x)y2 + f1(x)y + f0(x),

in which the free term f0(x) is missing.

Lemma 2.2. The admissible functional transformation

y = un(ξ), ξ =
∫

uf2(x) dx, u = exp
(∫

f1(x) dx

)
,

reduces the Abel equation

f
′
x = f3(x)y3 + f2(x)y2 + f1(x)y

to the degenerate incomplete Abel equation of the first order

n
′
ξ = g(ξ)n3 + n2, g(ξ) = u(x)

f3(x)
f2(x)

.
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Furthermore, substituting [3]

ξ
′
t = − 1

tn(ξ)
, ξ

′′
tt =

1
t2

+
n
′
ξ

t2n2
,

the above mentioned incomplete Abel equation becomes a second order nonlinear ODE
of the Emden-Fowler type [3], namely

ξ
′′
tt = −t2g(ξ).

2.3. Linear ODEs of the second order [4]. A homogeneous linear ODE of the
second order has the form

f2(x)y
′′
xx + f1(x)y

′
x + f0(x)y = 0. (2.5)

Let f0 = y0(x) be a nontrivial particular solution of this equation. Then, the general
solution of (2.5) is given by the formula [4]:

y = y0(x)
[
C1 + C2

∫
exp(−F (x))

y2
0(x)

dx

]
, F (x) =

∫
f1(x)
f2(x)

dx, (2.6)

C1, C2 = integration constants.

Proposition 2.3. The substitution u(x) =
y
′
x(x)
y(x)

brings equation (2.5) to the Riccati

equation
f2(x)u

′
x + f2(x)u2 + f1(x)u + f0(x) = 0.

Proposition 2.4. Assuming

y(x) = u(x) exp
[
−1

2

∫
f1(x)
f2(x)

dx

]
,

(2.5) results to the normal form [4, 9]

u
′′
xx + f(x)u = 0, f(x) =

f0(x)
f2(x)

− 1
4

[
f1(x)
f2(x)

]2

− 1
2

[
f1(x)
f2(x)

]′

x

.

A nonhomogeneous linear ODE of the second order has the general form

f2(x)y
′′
xx + f1(x)y

′
x + f0(x) = g(x). (2.7)

Let y1(x) and y2(x) be two nontrivial linearly independent (i.e.
y1(x)
y2(x)

6= const.)

solutions of the corresponding homogeneous ODE (g = 0). Then, the general solution
of (2.7) (by using the Lagrange method) is given by

y = C1y1(x) + C2y2(x) + y2(x)
∫

y1(x)g(x)
f2(x)W (x)

dx− y1(x)
∫

y2(x)g(x)
f2(x)W (x)

dx, (2.8)

where W (x) is the Wronskian determinant, namely

W (x) =
∣∣∣∣

y1(x) y2(x)
y
′
1x

(x) y
′
2x

(x)

∣∣∣∣ = y1(x)y
′
2x

(x)− y2(x)y
′
1x

(x) 6= 0. (2.9)

We state the following proposition.

Proposition 2.5. Given a nontrivial solution t1(x) 6= 0 of (2.5), formula (2.8) can be
used for the construction of the general solution of the complete ODE (2.7) (g(x) 6= 0)
with the second linearly independent solution y2(x) given by [4]:

y2 = y1

∫
exp[−F (x)]

y2
1(x)

dx, F (x) =
∫

f1(x)
f2(x)

dx, W (x) = exp[−F (x)].
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2.4. The nonlinear second order Emden-Fowler and generalized Emden-
Fowler ODEs [4, 6]. For the sake of presentation we use the symbolic notation
{n,m}, {n, m, l} to denote the Emden-Fowler and the generalized Emden-Fowler
nonlinear ODEs respectively, that is

y
′′
xx = Axnym, y

′′
xx = Axnym(y

′
x)l. (2.10)

In the above equations the symbolic notations {n,m}, {n,m, l} are rational numbers.
We state the following:

Proposition 2.6. With m 6= 1, m 6= −2n− 3, the admissible functional transforma-
tion [4, 6]:

ξ =
2n + m + 3

m− 1
x

n+2
m−1 y, u = x

n+2
m−1

(
xy

′
x +

n + 2
m− 1

y

)
,

reduces the Emden-Fowler equation y
′′
xx = Axnym to the Abel equation of the second

kind of the normal form

uu
′
ξ − u = − (n + 2)(n−m + 1)

(2n + m− 1)2
ξ + A

(
m− 1

2n + m + 3

)2

ξm.

We omit the proof of this proposition, because it is included in [4, p. 303], and we
continue with the setup of the following results.

Lemma 2.3. Assuming y as the independent and x as the dependent variable in
(2.10), we obtain the generalized Emden-Fowler equation x(y) [3,6]

x
′′
yy = −Aymxn(x

′
y)3−l.

Denote this transformation as F and represent it as

{n,m, l} F←→ {m,n, 3− l}
The twofold transformation F yields the original equation y

′′
xx = Axnym(y

′
x)l.

Consider now a second order nonlinear ODE of the generalized Emden-Fowler type

y
′′
xx = fn(x)ym(y

′
x)l, m 6= −l + 1, (2.11)

where f(x) is a known smooth function of the independent variable x.
We state the following proposition.

Proposition 2.7. For a given nonlinear ODE of the generalized Emden - Fowler type
(2.11) there exist admissible functional transformations that lead to the construction
of exact parametric solutions for this equation.

Proof. We introduce the admissible functional transformation

U = fn−l+2ym+l−1, z =
f

y
y
′
x, y 6= 0,

−∞ < x < +∞, −∞ < z < +∞, m + l − 1 6= 0.
(2.12)

The total differential of the first of these equations is

dU =
U

f
[(n− l + 2)f

′
x + (m + l − 1)z] dx, (2.13)
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while the total differential of the second one is given by

dz =




f

y
y
′′
xx +

f
′
x −

f

y
y
′
x

y
y
′
x


 dx. (2.14)

Rewriting the first of (2.12) as U = fnymf−l+2yl−1, and using also the second of
them, the initial equation (2.11) becomes

y
′′
xx =

y

f2
zlU ⇔ f

y
y
′′
xx =

1
f

zlU.

Taking into account the second equation appearing in (2.12), the total differential dz
in (2.14) reads

dz =

(
U

f
zl +

f
′
x − z

f
z

)
dx,

while dividing both expressions for dU, dz by parts one obtains

U
′
z =

U [(n− l + 2)f
′
x + (m + l − 1)z]

Uzl + (f ′z − z)z
, Uzl + (f

′
x − z)z 6= 0. (2.15)

At this point we introduce the ad hoc functional relation

g(z) = f
′
x(x) = f

′
zz
′
x, (2.16)

where g(z) is a function of the independent variable z which must be determined.
Thus U(z) is obtained by solving the Abel ODE of the second kind, that is

(Uz
′
+ [g(z)− z]z)U

′
z = U [(n− l + 2)g(z) + (m + l − 1)z]. (2.17)

Making use of Proposition 2.2, one obtains the following solution for g(z)

g(z) = z−n+2l−3

(−m− 2l + 3
n− 2l + 4

zn−2l+3 + λ

)
, λ = first constant, (2.18)

and then, the general solution of (2.17) becomes

U(z) = −g(z)− z

zl−1
±

√(
g(z)− z

zl−1

)2

+ µ,

µ = second constant.
(2.19)

Finally, based on (2.16), equation (2.18) reads

g(z) =
−m− 2l + 3
n− 2l + 4

+ λz−n+2l−3 = f
′
x(x), (2.20)

that constitutes a functional relation between z and x. Since f(x) is a known function,
this relation provides the parametric expression x = x(z, C1).

Using equations (2.16), (2.20) we derive

g
′
x = g

′
zz
′
x = f

′′
xx(x) ⇔ z

′
x =

f
′′
xx

g′z
, (2.21)

or equivalently

z
′
x =

f
′′
xx

λ(−n + 2l − 3)z−n+2l−4
. (2.22)
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Thus, from (2.20) the independent variable x is expressed parametrically in terms of
z, (x = x(z, λ)). The parametric expression of y can be extracted by (2.12) and (2.13)
through the formulae

y
′
x =

z

f(x)
y,

U
′
x = U

′
zz
′
x = (n− l + 2)fn−l+1f

′
xym+l−1 + (m + l − 1)fn−l+2ym+l−2y

′
x.

(2.23)

In fact, inserting the first of these equations into the second one, one gets

U
′
z

[(n− l + 2)f ′x + (m + l − 1)z]fn−l+1
z
′
x = yn+l−1, (2.24)

where z
′
x, x = x(z, λ) are estimated through (2.22), (2.20),(2.19), while, by means of

(2.19), one finds

U
′
z =

(g
′
z − 1)− (l − 1)(g − z)

zl−1



−1±

g − z

zl−1√(
g − z

zl−1

)2

+ µ




, (2.25)

where
g
′
z = (n− 2l + 3)λz−n+2l−4,

x = x(z, λ), λ, µ = constant parameters.
(2.26)

Equations (2.19), (2.20), (2.24) to (2.26) provide the exact parametric solutions of
the ODE

y
′′
xx = fn(x)ym(y

′
x)l.

The above construction completes the proof of Proposition 2.7. ¤

3. Exact parametric solutions of some unsolvable classes of first and second
order nonlinear and linear ODEs

In this section we attempt to construct the exact parametric solutions for some unsolv-
able classes of the first and second order nonlinear and linear ODEs in mathematical
physics and applied mathematics. We now state an analogous of Proposition 2.7.

Proposition 3.1. The linear ODE

y
′′
xx = f(x)y,

with f(x) a given smooth function,admits always a nontrivial particular exact para-
metric solution.

Proof. In the degenerate case when n = m = 1, l = 0 the generalized Emden-
Fowler ODE (2.11) becomes a linear one of variable coefficients, while the coordinate
transformation (2.12) is reduced to

U = f3(x), z =
f(x)

y
y
′
z, (y 6= 0), (3.1)

Thus, equation (2.24) is verified, while equation (2.17) is degenerated to the new Abel
second kind type

(U + [g(z)− z]z)U
′
z = 3Uz, g(z) = f

′
(x). (3.2)
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Therefore, the functional relation between the variable coefficients of the last equation
(Proposition 2.2), performs the quintic equation

2z5 − 5f
′
x(x)z4 + 5λ = 0, λ = constant, (3.3)

that furnishes

f
′
x(x) =

2z5 + 5λ

5z4
, λ 6= 0, (3.4)

or

z = F [f
′
x(x), λ], λ 6= 0, (3.5)

where F [f
′
x(x), λ] is a known function (solution of the above mentioned quintic equa-

tion for z). Using now the second equation of (3.1) together with (3.4) and (3.5), one
gets the following nontrivial particular parametric solution of the given second order
linear ODE:

x = f
′−1
x

(
2
5z + λ

z4

)
= F

(
2
5z + λ

z4

)
,

y = exp

[
∫ (

2
5z − 4λ

z4

)
F
′
n

F (
2
5z + λ

z4

) dz

]
,

n = n(z) = 2
5z + λ

z4 , λ = constant, −∞ < z = parameter < +∞,

(3.6)

in which

F ≡ f
′−1
x , F ≡ f

′−1
x ◦ f,

are known smooth functions since f is a given smooth function, while

F
′
n

dF

dn
=

d(f
′−1
x )

dn
= Ω(n),

is also known function of its argument n = 2
5z + λ

z4 . Moreover λ is a constant and
−∞ < z < +∞ is the basic parameter. ¤

One can establish the following:

Theorem 3.1. For a second order linear ODE, y
′′
xx+f(x)y = 0, where f(x) is a given

smooth function, the exact parametric solution including two arbitrary integration
constants, can be constructed.

Proof. Combining the results of Propositions 2.4 and 2.5, together with those of
Proposition 3.1, one extracts the following exact parametric solution for the given
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linear ODE.

F = (f
′
x)−1 = known smooth function

Ω(n) =
dF

dn
, n = − (

2
5z − λ

z4

)
;

F ≡ f
′−1
x ◦ f = known smooth function;

x = f
′−1
x

[− (
2
5z + λ

z4

)]
= F

[− (
2
5z + λ

z4

)] ≡ F (n),

y = C1J1 + C2J2;

J1 = exp

(
−

∫ (
2
5z − 4λ

z4

)
Ω(n)

F [− (
2
5z + λ

z4

)] dz

)
;

J2 = J1

∫
(J1)−2Ω(n)

(
2
5
z − 4λ

z5

)
dz;

λ = constant parameter;
C1, C2 = integration constants;
−∞ < z = parameter < +∞.

(3.7)

¤

Theorem 3.2. The exact parametric solution of the Riccati equation of the normal
form y

′
x(x) + y2(x) + f(x) = 0, where f(x) is a given smooth function, results as

follows
F ≡ (f

′−1
x ) = known smooth function;

Ω(n) = F
′
n =

df

dn
, n = − (

2
5z + λ

z4

)
;

f
′−1
x

[− (
2
5z + λ

z4

)]
= F

[− (
2
5z + λ

z4

)] ≡ F (n);

x = f
′−1
x (n) + F (n);

y =
(J1 + CJ2)

′
z

(J1 + CJ2)
(− 2

5z + 4λ
z5

)
Ω(n)

;

J1, J2 = as in (3.7);
λ = constant parameter;
C = integration constant;

−∞ < z = parameter < +∞.

(3.8)

Proof. The prescribed parametric solution is extracted through the combination of
Theorem 3.1 with Proposition 2.3, if we set f1 ≡ 0, f0 ≡ f . ¤

4. An Application of the proposed solutions

Consider the motion of a rigid body free to rotate about a fixed point . Convenient
coordinates are the Euler angles ψ(t), θ(t), φ(t) where t is the time. If Ox1y1z1 is
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a coordinate system at rest with origin O and Oxyz is the system of principal axes
for O moving with the body, then the motion may be conceived as the result of three
rotations, that is i) precession φ, ii) nodding motion θ and iii) spin ψ. The state of
motion is a rotation with an instantaneous angular velocity ω the resultant of the
vectors of ψ

′
t, θ

′
t, φ

′
t.

The projection of the ω-vector on the Oxyz system furnishes the well known Euler
kinematic equations [18, 23] determining the position of the body at any time t, that
is

φ
′
t sin θ sin ψ + θ

′
t cos ψ = ωx,

φ
′
t sin θ cosψ − θ

′
t sin ψ = ωy,

φ
′
t cos θ + ψ

′
t = ωz.

(4.1)

Here the ωx, ωy, ωz, resultants are considered to be known through the solution of
the well known Euler dynamic equations [7, 12, 16-22].

The integration of the three nonlinear kinematic equations (4.1) in the most general
case of response, loading and geometry is a very complex mathematical problem.
Approximate analytic solutions, or analytic solutions for several special cases were
extracted in [16] to [23]. Especially in [23] a successful attempt was made concerning
the partial decoupling of the above system. It was proved [23] that equations (4.1)
are equivalent to the following second-order nonlinear ODE for the nodding motion
θ(t)

θ
′′
tt +

√
ω2 − θ

′
t
2

[
ωz −

(
ω2 − θ

′
t
2
) 1

2
cos θ

]
=

ω
′
tθ
′
t ±

√
(f2 − ω

′
t
2)(ω2 − θ

′
t
2)

ω
, (4.2)

where
θ
′
t
2 ≤ ω2 = ω2

x + ω2
y, f2 ≥ ω

′
xt

2 + ω
′
yt

2

By means of several ad hoc assumptions the authors constructed approximate analytic
solutions of equations (4.2) and thus of system (4.1). Quantitative and qualitative
analysis coexist with the above constructions [12, 16, 23].

In what follows we will provide the general decoupling procedure concerning system
(4.1). In addition, making use of convenient admissible functional transformations we
will prove that system (4.1) results in the integration of a Riccati equation with
respect to the spin ψ(t).

For the main interval ψ ∈ [
0, π

2

)
multiplying the two first of equations (4.1) sepa-

rately by sin ψ and cos ψ and adding the new resulting equations, one obtains

φ
′
t sin θ = ωx sinψ + ωy cosψ. (4.3)

Similarly, multiplying the two first of (4.1) by cos ψ and sin ψ respectively and sub-
stituting the results, we extract

θ
′
t = ωx cosψ − ωy sinψ. (4.4)

Thus, initial system (4.1) is equivalent to the following one

φ
′
t sin θ = ωx sinψ + ωy cosψ, (4.5)

θ
′
t = ωx cosψ + ωy sinψ, (4.6)

φ
′
t cos θ + ψ

′
t = ωz. (4.7)
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On the other hand, combination of (4.5) and (4.7) results in

tan θ =
ωx sin ψ + ωy cosψ

ωz − ψ
′
t

, (4.8)

so that the system (4.5), (4.6), (4.7) becomes equivalent to the new one

φ
′
t sin θ = ωx sinψ + ωy cosψ, (4.9)

θ
′
t = ωx cosψ − ωy sinψ, (4.10)

tan θ =
ωx sin ψ + ωy cosψ

ωz − ψ
′
t

. (4.11)

Making use of the substitution

tan
ψ

2
= u ⇔ 1

cos2
(

ψ
2

) ψ
′
t

2
= u

′
t, (4.12)

and setting
ωx sinψ + ωy cosψ

ωz − ψ
′
t

= tan θ = µ;

0 ≤ µ = parameter < +∞,

(4.13)

equation (4.11) becomes

µωz − µ
2u

′
t

1 + u2
= ωx

2u

1 + u2
+ ωy

1− u2

1 + u2
,

that finally reads the following Riccati equation

u
′
t =

1
2

(
ωz +

ωy

µ

)
u2 − ωx

µ
u +

1
2

(
ωz +

ωy

µ

)
. (4.14)

Thus, we have already proved that the problem under consideration, that is to say
the decoupling and the solution of these three kinematic Euler equations (4.1), leads
to the solution of the Riccati equation (4.14). We underline that the relative problem
concerning the solution of the three dynamic Euler equations result in the solution of
the three Abel equations of the second kind [7].

It is well known that for a given particular solution u0(t) of the Riccati equation
(4.14) the general solution can be written as (Theorem 2.1a)

u(t) = u0(t) + Φ(t)


C −

∫
Φ(t)

ωz +
ωy

µ

2
dt




−1

where

Φ(t) = exp
{∫ [(

ωz +
ωy

µ

)
u0(t)− ωx

µ

]
dt

}
.

In addition, the substitution (Theorem 2.1c)

p(y) = exp


−

∫ ωz +
ωy

µ

2
u dt


 , (4.15)
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reduces the Riccati equation (4.14) to the following second order linear homogeneous
ODE

(
ωz +

ωy

µ

)
p
′′
tt −

{(
ωz +

ωy

µ

)′

t

−
(

ωz +
ωy

µ

)
ωx

µ

}
p
′
t+

+
1
4

(
ωz +

ωy

µ

)2 (
ωz − ωy

µ

)
p = 0.

(4.16)

From now on, substituting

F1(t) =
(

ωz +
ωy

µ

)′

t

−
(

ωz +
ωy

µ

)
ωx

µ
,

F2(t) =
(

ωz +
ωy

µ

)
,

F0(t) =
1
4

(
ωz +

ωy

µ

)2 (
ωz − ωy

µ

)
,

(4.17)

the second order linear homogeneous ODE (4.16) becomes

F2(t)p
′′
tt + F1(t)p

′
t + F0(t)p = 0, (4.18)

while using Proposition 2.4, that is using the transformation

p(t) = r(t) exp
(
−1

2

∫
F1

F2
dt

)
= r(t)

(
ωz +

ωy

µ

)− 1
2

exp
(
−1

2

∫
ωx

µ
dt

)
, (4.19)

one extracts the following degenerate linear ODE corresponding to the ODE (4.18)

r
′′
tt + F (t)r(t) = 0, (4.20)

where

F (t) =
1
4

[
ω2

z −
(

ωy

µ

)2
]
−1

4

[(
ln

∣∣∣∣ωz +
ωy

µ

∣∣∣∣
)′

t

− ωx

µ

]2

−1
2

[(
ln

∣∣∣∣ωz +
ωy

µ

∣∣∣∣
)′

t

− ωx

µ

]′

t

.

(4.21)
Since through the solution of the Euler dynamic equations [7], ωx(t); ωy(t); ωz(t) are
known functions of time t, F (t;λ, µ) in (4.20) is also a known function of time t by
way of substitutions (4.17) and (4.19). Therefore we are able now to construct an
exact parametric solution of the second order linear ODE (4.20) by using Theorem
3.2. In conclusion we state the following:
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Corollary 4.1. The exact parametric solution of the second order linear ODE of
variable coefficients (4.20) becomes as follows

f∗ ≡
(
F
′−1
t

)
= known smooth function;

Ω(n) = (f∗)
′
n =

df∗

dn
, n = −

(
2
5
z +

λ

z4

)
;

t = F
′−1
t

[
−

(
2
5
z +

λ

z4

)
;µ

]
= f∗

[
−

(
2
5
z +

λ

z4

)
;µ

]
≡ Ω(n);

F = F
′−1
t ◦ F ;

r = C1J1 + C2J2;

J1 = exp


−

∫
(

2
5
z − 4λ

z4

)

F
[
−

(
2
5
z +

λ

z4

)
;µ

]Ω(n) dz


 ;

J2 = J1

∫
(J1)

−2 Ω(n)
(

2
5
z − 4λ

z5

)
dz;

λ = constant parameter;

0 ≤ µ = first parameter < +∞;

C1, C2 = integration constants;

−∞ < z = parameter < +∞.

(4.22)

Proof. The proof is the results of Theorem 3.1 together with Theorem 3.2 if instead
of the independent variable x, the variable t (t is the time) is introduced. ¤

Our aim is now to define the exact parametric solution of the Riccati equation
(4.14) and thus the exact solution for the spin resultant ψ(t). For this purpose using
the expression for p among the transformations (4.15), (4.19), Corollary 4.1 and taking
into account substitutions (4.17) and (4.12), we finally extract

p = r exp
(
−1

2

∫
F1

F2
dt

)
, p = exp

(
−

∫
F2u dt

)
. (4.23)

Functional relations (4.23), after differentiation and using also (4.12) perform a unique
for the spin ψ equation, namely

tan
ψ

2
= u = − 1

F2

r
′
t

r
+

1
2

F1

F 2
2

, (4.24)

where F1, F2 as in (4.17). By now through (4.24) we finally extract the following
expression for the spin result ψ

tan
ψ

2
=

1
F2

(
1
2

F1

F2
− r

′
t

r

)
, (4.25)
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where
F1, F2 = as in equations (4.17).

We state the following Corollary, giving in exact parametric form of the spin resultant
ψ.

Corollary 4.2. The exact parametric expression for the spin resultant ψ is given by:

tan
ψ

2
=

1
F2

(
1
2

F1

F2
− r

′
t

r

)
, (4.26)

where
F1, F2 = as in equations (4.17);

r
′
t

r
=

(J1 + CJ2)
′

t

J1 + CJ2
=

(J1 + CJ2)
′

z z
′
t

J1 + CJ2
;

z
′
t =

Ω(n)
2
5
− 4λ

z5

;

Ω(n) =
(
(f∗)

′
n

)
=

df∗

dn
, n = −

(
2
5
z +

λ

z4

)
;

f∗ = (F
′−1

t ) = known smooth function;

(4.27)

F ≡ f∗ ◦ F = (F
′−1

t ) ◦ F = known smooth function;

t = F
′−1

t

[
−

(
2
5
z +

λ

z4

)
; µ

]
= f∗

[
−

(
2
5
z +

λ

z4

)
; µ

]
≡ Ω(n);

r = C1J1 + C2J2,

J1 = exp


−

∫
(

2
5
z − 4λ

z4

)

F
[
−

(
2
5
z +

λ

z4

)
;µ

]Ω(n) dz


 ,

J2 = J1

∫
(J1)

−2 Ω(n)
(

2
5
z − 4λ

z5

)
dz;

λ = constant;

C = integration constant;

0 ≤ µ = first parameter < +∞;

−∞ < z = parameter < +∞.

(4.28)

Proof. The proof results by the combination of Theorem 3.1 together with Theorem
3.2 as well as formulae (4.21) and (4.22) and (4.23).

The remaining other two component resultants, namely nodding motion θ and
precession φ are obtained parametrically, after convenient integrations of equations
(4.9) and (4.10) including suitable integration constants. ¤
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