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Hilbert’s integral inequality in whole plane with general
homogeneous kernel
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ABSTRACT. The main objective of this paper is a study of some new generalizations of Hilbert’s
and Hardy-Hilbert’s type inequalities. We build a new Hilbert’s inequality with general ho-
mogeneous functions of degree —2s, s > 0 in whole plane. Also, we obtain the best possible
constants when the parameters satisfy appropriate conditions.
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1. Introduction

Although classical, Hilbert’s inequality and its generalizations and modifications
are still of a great interest. Zheng Zeng et al. in [4] considered the Hardy-Hilbert
inequality with the integral in whole plane. They obtained the following result.
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If both functions, f(z) and g(z), are non-negative measurable functions and satisfy
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where the constant factor k is defined by (1). Inequalities (2) and (3) are equivalent,
and where the constant factors k& and kP are the best possible.

Also, very recently Dongmei Xin et al. in [3] proved Hilbert-type inequalities with
the homogeneous kernel of degree —2.

Ifp>1,1/p+1/g=1 1N <1,0< a1 < ay <m f,g >0, satisfying 0 <
JZ5 x| 7PAT P (2)da < oo and 0 < [T |y|9* 1 g9(y)dy < oo, then we have
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where the constant factors
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and kP () are the best possible. Inequalities (4) and (5) are equivalent.

In this paper a generalization of above results for a general type of homogeneous
kernels of degree of —2s, s > 0, is obtained. Recall that for a homogeneous function
K(x,y) of degree —\, A > 0, equality K(tx,ty) = t K (x,y) is satisfied for every
teR.

Few years ago, M. Krnié¢ and J. Pecarié¢ [2], provided an unified treatment of the
Hilbert and Hardy-Hilbert type inequalities in general form and extended them to
cover the case when p and g are conjugate exponents. More precisely, they obtained
the following two equivalent inequalities:

K(z,y)f(2)g(y)dpi(z)dp2(y) (6)
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where p > 1, p1, uo are positive o-finite measures, K : Q@ x Q = R, f,g,0,%: Q2 — R
are measurable, non-negative functions and
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duz(y) and G(y) = dpa (z). (8)
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The paper [2] also deals with the equality conditions in (6) and (7). More precisely,
it is shown that the equality in (6) (and analogously in (7)) holds if and only if

f(z)=Kip~%(z) and g(y) = K¢ P(y) a.e. on, (9)
for arbitrary constants K; and K.
Our results will be based on the mentioned results of Krni¢ and Pecarié¢. In what
follows, without further explanation, we assume that all integrals exist on the respec-
tive domains of their definitions.

2. Main results

In this section we develop an unified treatment of the Hilbert and Hardy-Hilbert
type inequalities with general homogeneous kernels. At the beginning, we have to
establish some basic notation and definitions.

We suppose that K : R xR — R is a non-negative homogeneous function of degree
—X, A > 0. Further, we define

oy ( / K1, )t %dt, and ks(a / K(1,—t)t=dt, (10)

defined in terms of the function K.
To obtain main results we need the following lemma.

Lemma 2.1. If A =2s, s >0, and K : R xR — R is a non-negative homogeneous
function of degree —\, then we have

| |a 1+ | |a 1+
/ ny)Tdy—kl / ny)Tdy—kg( a), x € (—00,0),
and
| |a 1+ | |a 1+X
/ K(z, y)Tdy—k‘Q / K(z, y)Tdy—k;l( a), x € (0,00).
Proof. We use the substitutions y = ux and y = —ux. The proof follows easily from
homogeneity of the function K (z,y) and the fact (—z)* = 2}, A\ = 2s. O

Utilizing the inequalities (6) and (7) we obtain the following theorem.

Theorem 2.1. Let p > 1, %—F% =1landlet \=2s,s>0. If K:RxR —=R
is mon-negative homogeneous function of degree —\, and Ay, As are real parameters
such that k;(pAs) < 00, k;i(qA1) < 0o, i = 1,2, then the inequalities

/ h / " K(e,y) f(@)g(y)dedy (1)

<o ([ e paan)” ([ o)

and
[ e s ([ ks dy
<o [ )
where -

L = (k1(pA2) + ka(pA2))? (k1(qAr) + kal(gA1))7 (13)
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hold for all non-negative functions f and g. Moreover, inequalities (11) and (12) are
equivalent. Fqualities in (11) and (12) hold if and only if f =0 or g =0 a.e. on R.
Proof. Rewrite the inequality (6) for the functions ¢(z) = |z|4t and ¥(y) = |y|42.
Let the functions F(z) and G(y) are defined by (8). By using Lemma 2.1 we have

/ " P (@) F(2) [P (2)da
0 00 90—
= [ e ([ k) s
X ieatpar—an ([T |z|pA2—1HA )p
+ [Tl ([ sy e
= (k1 (pAs) + ka(pA2) / 2| HPATA2) (), (14)
and similarly ..o
/_ W1(5)C )" (v)dy
= (ka(gAr) + ka(gAr)) / A=A ga gy (15)

Now, from (6), (14) and (15) we get the inequality (11). In the same way the inequal-
ities (12) follows directly from (7). Condition (9) immediately gives that nontrivial
case of equality in (11) and (12) leads to the divergent integrals. O

Remark 2.1. If the homogeneous kernel K : R x R — R is a symmetric function,
that is when K(z,y) = K(y,x), ¥V z,y € R, then the constant L, defined by (13),
becomes

D=
Py

L = (k’l(pAQ) + kg(pAQ)) (k‘]_(2 — )\ — qu) —|— k2(2 — )\ — qu)) .

The main idea in obtaining the best possible constant factor is a reduction of
constant L, defined by (13), in the form without exponents, by appropriate choice of
parameters A; and A,. Thus, it is natural to set the condition

pAs +qA1 =2 A, (16)

since in that setting relation k(pAs) = k(2 — A — ¢A;) holds. In such a way, the
constant factor L from Theorem 2.1 becomes

L* = kl(pAz) + kQ(pAQ). (17)
Further, under assumption (16), the inequalities (11) and (12) become
|| K@ty (18)
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Our aim is to show that the constants involved in the right-hand side of inequalities
(18) and (19) are the best possible. To obtain our main result we need the following

lemma.

Lemma 2.2. Suppose that p and q are conjugate parameters, p > 1. Let parameters A,
Ay, As fulfill conditions as in the statement of Theorem (2.1) and let pAs+qAy = 2—\.

For € > 0 define functions f, g as follows

~ —gA, 2= ~ A, 2e
f(x) = |z iy “ XR\[-1,1]» 9(y) = ly| pA2= * XR\[-1,1]-

o[ [ K@i =+ o),

holds for e — 07, where the constant L* is defined by (17).

Then the relation

(20)

Proof. Let us denote the left-hand side of relation (20) with I.. By putting the func-

tions fand g in I, we obtain

—1
IE:E/ (—z qu(/ K(z,y)g dy)d
+€/ qu1</ K(z,y)g dy)dax

1

:E(Il + 12)

Further, we obtain Iy = I + I13, where

-1

I :/ (—z T (/ K(z,y)(-y) pAas dy> dx
-1 A, 2 A, 22

I :/ (—x) ™% (/ K(x,y)y™? quy) dx.
— 00 1

By using substitutions y = zu, y = —zu, homogeneity of the function K(z,

the condition pAs + gA; = 2 — A\, we obtain the expressions

I, :/ i ( K(l,u)upAQQ;du> dz,
1 1/x

o0 o0
112:/ gl K(1, —u)u P42~ T du | da.
1 1/x

By Fubini theorem we have

1 o)
Iu:/ / r % dy K(l,u)u_pA"’_%adu
0 1/u
+ (/ x_l_Qde> / K(l,u)uprrszdu
1
1 ! Agt2e A
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(21)
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Similarly, we have

I, :/ 2|~ adi— 5 (/ K(z,y)g )dy) dr =11 + Lis.
1

Now, from (21) we get
IE :E(Il + 12)
26(2111 + 2]12)

/ K(1,u)u™ pA2+Pdu+/ K(1,u)u P42 T du
/ K(1 7PA2+%du+/ K(l,—u)uprrzngu. (22)
Ifp>1,theng>1,s0 = >0 and £ > 0. Hence, relation (22) yields

I. </ K(1,u)u~ pA2du+/ K(1,u)u"PA2du

/ K(1,—u)u _pAzdu—&—/ K(1,—u)u —PAz gy,
<]{31 pAg) 4+ k2(pA2)
Finally, by the Lebesgue control convergent theorem we obtain (20). O

Now, we are ready to state and prove the main result, concerning the best possible
constant factors in inequalities (18) and (19).

Theorem 2.2. Let p and q be conjugate exponents, p > 1, let A1 and As be real
parameters such that pAs +qA; =2 — A, and let L* = k1 (pAsz) + k2(pAs) < co. Then
the constant factor L* is the best possible in both inequalities (18) and (19).

Proof. Let the parameter € and the functions f, g as in the statement of Lemma 2.2.
If p > 1, then ¢ > 1. Suppose that the constant factor L* is not the best possible
in inequality (18). That means that there exists factor L1 < L* such that inequality
holds if we replace L* with L. We get

|| Kewiwitsa < L ( / :<—x>-1—25dx [ xd) ,

and further o e
[ ] K@@ < L. (23)

The left-hand side of the inequality (23) coincides with the left-hand side of relation
(20), so by Lemma 2.2 we have

Now by letting ¢ — O™ we obtain that L* < L; which contradicts with the assumption
L, < L*. Thus, the constant L* is the best possible. (I

Remark 2.2. Note that the kernel K1(x,y) = | In((224+2zy cos a+y?)/(x%+2zy cos +
v, 0 < a < B < m, is homogeneous function of degree 0. By putting the kernel
Ki(z,y), the parameters A1 = (1 +1)/q and Az = (1 — r)/p in the inequalities (18)
and (19) we obtain the result of Xie et al. from Introduction (see also [4]). Similarly,
the kernel Ky(z,y) = mingeq103{1/(2® + 2zycosas + y?)}, 0 < aq < ap < m, is
homogeneous function of degree —2. By putting the kernel Ko(x,y), the parameters
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A1 = —)A/q and Ay = X/p in the inequalities (18) and (19) we obtain the result of
Xin (see also [3]).

Remark 2.3. Similarly as in Remark 2.2, in particular
(i) for K(z,y) = (2* +yN) 7!, (A\=2s, s >0, pAs+qA; =2— ) in (18) and (19)
we find the best possible constant

uPA2 2

L= hulpa) +hatpda) =2 [ = e,

where Ay < % and pAs + X > 1;
(i) for K(z,y) = (max{z*,y*})71, (A =2s, s >0, pAs+qA; =2— ) in (18) and
(19) we find the best possible constant
R 2 2
T du = + ,
o max{l,u*} 1—-pAs pAs+Ar—-1
where Ay < % and pAs + X > 1;

: B
(iii) for K(z,y) = (M) , (0 < B <1, pAy+qA; = 2) in (18) and (19) we

lz—y
find the best possible constant

I :/OO (|min{1,u}|>ﬁupA2du+/°° uf—pA2 du
0 11— ul o (I+u)P
=B(1-8,1-pA>+ )+ B(1-B,pA2+5-1)
+ B(pAz — 1,1 — pAs + B3),
whereA2>% and pAs + 3> 1, pAy — B < 1;

L* =
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