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Sharp integral inequalities based on general three-point
formula via a generalization of Montgomery identity

Josip PECARIC AND MIHAELA RIBICIC PENAVA

ABSTRACT. In this paper we establish the families of general three-point quadrature formulae,
by using the generalization of the weighted Montgomery identity via Taylor’s formula. The
results are applied to prove a number of inequalities which give error estimates for the general
three-point formula and for three-point Gauss-Chebyshev formulae of the first and of the
second kind.
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1. Introduction

The most elementary quadrature rules in three nodes are the Simpson’s rule, based
on the Simpson’s formula

[ rom= g friw e (42) < o] - Cpgraore.

6 2 2880

where £ € [a,b], and the dual Simpson’s rule based on the following three point
formula

/abf(t)dtz bga [Zf <3a:b> -/ (a;b) w2 (ang)] i 7(2b384?))5f(4)(77)’
(2)

where 1 € [a,b]. These formulae are valid for any function f with continuous forth
derivative ™) on [a, b).

Let f : [a,b] — R be differentiable on [a,b] and f’ : [a,b] — R integrable on [a, b].
Then the Montgomery identity holds (see [3])

b b
f@ =5 [ fas [ P s o g

where the Peano kernel is

P(x’t){ i ;t;b
= < b.

In [4] J. Pecari¢ has proved the following weighted Montgomery identity

b b
f () = / w(t) f (t) d + / Py (a.t) f (t) dt, (4)
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GENERAL THREE-POINT FORMULA 133

where w : [a,b] — [0,00) is some probability density function, that is integrable
function satisfying fab w(t)dt =1, and W (t) = f; w (z) dx for t € [a,b], W (t) = 0 for
t<aand W(t)=1fort>band P, (z,t) is the weighted Peano kernel defined by

W), a<t<uz,
Py (z,t) = ()

W(t)—1, x<t<b.
Now, let us suppose I is an open interval in R, [a,b] C I, f : I — R is such that
f=1 is absolutely continuous for some n > 2, w : [a,b] — [0,00) a probability
density function. Then the following generalization of the weighted Montgomery
identity via Taylor’s formula states (given by A. Agli¢ Aljinovié¢ and J. Pecarié in [1])

b =2 (i) () [0 )
f () :/ w(t) f(t)dt — ZW/ w(s)(s—a) T ds

i=0
1

b
—_— z,8) ) (s)ds
+(n_1)!LTw,n( bl )f ()d7

where z € [a,b] and
[lw@) (u—s)"""du, a<s<ua,
Ty (z,8) = . - (7)
—J,w ) (u—s)"""du, x<s<b.

If we take w (t) = 2, t € [a,b], the equality (6) reduces to

b—a’
1 b n—2 ) (b _ I)i+2 _ (CL _ x)i+2
- _ (i+1)
F@ =gy [ roa- e St
+1/bT (2.5) 1 (s)d
= (s s)ds,
(8)
where z € [a,b] and
—a=s)" <5<,
T, ({[;’ 3) _ n(b—a)
:z((bb_—i)) , <s<b

For n =1 (8) reduces to Montgomery identity (3).

In this paper we continue work which has been started in [2]. Namely, we use the
identities (6) and (8) to establish for each number z € [a, %2) the general weighted
three-point quadrature formula

b
[ w0 i@a=a@i @+ faro-ol+ 02407 (57) + B (i

(9)
a+b

where E (f,w;x) is the reminder and A : [a, T) — R a real function. Obtained
formula is used to prove a number of inequalities which give error estimates for the
general three-point formula for functions whose derivatives are from the L,— spaces.
These inequalities are generally sharp. Also, we obtain three-point Gauss-Chebyshev
formulae of the first and of the second kind as special cases of the general weighted

three-point quadrature formula and prove some sharp inequalities. As special cases
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of general non-weighted three-point quadrature formula, we obtain generalizations of
the well-known Simpson’s (1) and dual Simpson’s formula (2).

2. General weighted three-point formula

Let f : [a,b] — R be such that f~1) exists on [a,b] for some n > 2. We introduce
the following notation for each z € [a, %4?)

D) =A@ @)+ flatb-o] + (1240 f (“F7).

/@)

/ " (s)(s — ) 1ds

=0

n—2 .(;
+Z fOY(a+b—2) /bw(s)(s—a—b—kx)iﬂds]

2 it )
o2 pUHD) (agb) b a4+ b\
+a —2A(x)); (z+71)2'/ w(s) <s— : ) ds  (10)
and
fwm (x,8) = —A(x) [Twn(x,s) + Tyn(a+b—z,8)]—(1—24(z)) Tyn <a2+b, s> ,

where Ty, ,, (z, ) is defined as (7).
The following is a general weighted three-point formula.

Theorem 2.1. Let I be an open interval in R, [a,b] C I, and let w : [a,b] — [0, 00)
be some probability density function. Let f : I — R be such that £V is absolutely
continuous for some n > 2. Then for each x € [a, “T'H’) the following identity holds

b b
1 ~
| w®s@i = D@+t @)+ = [ Funle ) Oas ()
Proof. Weput z =x,2 = “TH’ and £ = a+b— 2z in (6) to obtain three new formulae.
After multiplying these three formulae by A (z),1—2A () and A (x) and adding we
get (11). O

Remark 2.1. Identity (11) holds true in the case n = 1. In this special case we have

b b
/ w(t) f(t)dt = D () +/ Twa (z,8) f (s)ds (12)

Twi(z,s)=—A(x) [Ty (z,8) +Tw1(a+b—2x,s)] — (1 —24(x)) Twa <a2+b’ s)

=A@ [Py (8) + P (ot b= 2.5)] = (1= 24() P (525

There follows an error estimate for general formula (11).
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Theorem 2.2. Suppose that all the assumptions of Theorem 2.1 hold. Additionally,
assume that (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo, % + % =1,

let f(") € LP[a,b] for some n > 1. Then for each x € la, “T'H’) we have

b
[ w1t =D@) =t @) < s [T )] 5] - )
a (n - ]- q p
Inequality (13) is sharp for 1 < p < co.
Proof. Applying the Holder inequality we have
1 b
o, T 910 8] < g [T )] [
gy [ T @) 1 ()08 € e [Bun )] 1

Using the above inequality from (11) we get estimate (13). Let us denote UZ (s) =
Twn(x,s). For the proof of sharpness, we will find a function f such that

b
/ Uz (s) F™ (s) ds

For 1 < p < oo, take f to be such that

—|® (n)
=0zl ||,

1

£ (s) = signUy; (s) - |Uy; (s) |77,

and for p = oo, take
£ (s) = signU? (s) .

3. Applications to Gaussian quadrature formulae

Let us recall that Gaussian quadrature formulae are formulae of the following type

b k
[=05®a=3 aif @)+ Ee(), (14)
a i=1
where k € N. Without loss of generality, we may restrict ourselves to [a,b] = [—1,1].

3.1. w(t) = ﬁ, t € (—1,1). In this case we have Gauss-Chebyshev formula of

the first kind

1
/ 1_t2 dtferAf )+ Ep (f) (15)

where

1
Ai:E7 7,:].,,]€

and z; are zeros of the Chebyshev polynomials of the first kind defined as
T (x) = cos (k arccos (z)) .
Ty (x) has exactly k distinct zeros
 (2i-1)m
@y = €08 0,
all of which lie in the interval (—1,1) (see [6]).
Error of the approximation formula (15) is given by

B (f) = mf(%) €. £e(-11).
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In case k = 3 (15) reduces to

! 1 T V3 m
[ oa=5l(-8) s0 s (8)] 4 g0,
where £ € (—1,1) .
Remark 3.1. If we apply (12) with [a,b] = [-1,1], z = =32, A (—@) =1 and
w(t) = - fl,tz’ te(—1,1), we get

where —3 — Laresins, —1<s<-— @,
Q1 (5) —%—%acsms %<s§07
1 =
1 1 V3
5 ;arcsms O<s§7,
%—%acsins £<s§1

Corollary 3.1. Let I be an open interval in R, [-1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oco. Let f: I — R be an absolutely continuous function and
f e L?[-1,1]. Then we have

[ Arwa-[r(-8) +10+7 (8)]| <l e, 09

Inequality (16) is sharp for 1 < p < co.

Proof. This is a special case of Theorem 2.2 for [a,b] = [-1,1], z = —@, A (—@) =
gand w(t) = —=, t € (-1,1). O

Corollary 3.2. Let I be an open interval in R, [—1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oo and f : I — R absolutely continuous function. Then we have

[ rwa-3[r(-F) 1o+ ()
(4=2V3) [ fllo. f'€L®[-1,1],
<9 25T =1 f My, fe L [-1,1],
w1y fre Lt [-11].

The first and the second inequality are sharp.

Proof. Applying (16) with p = oo, we have

V3

1 -3 0
[1|Q1 (8)‘(15:/71 |—%—%arcsins|ds+[ﬁ |—% — L arcsin s| ds

2
V3

V3 1
2
+ 6 -1 arcsins| ds + % -1 arcsins| ds = 4=2v38
0 [y V3 ™ g

2




GENERAL THREE-POINT FORMULA 137

and the first inequality is obtained. To prove the second inequality we take p = 2
V3

1 V] 0
/_1 Q1 (s)]* ds = /_1 |-3 - %arcsinsfds—l—/_@ |-% - %arcsinsfds

2
\/§

V3 1
—l—/ ’6—7arcsms| ds+/ |2 —farcsms’ ds-‘igﬁu
0 %

Finally, for p = 1, we have

sup |Q1 (s)] = max sup |f% — %arcsins| ,  sup }f% — %arcsins ,
se[-1,1] se[—l,—é] sG[—@,O]
sup |6 - arcsms| sup |2 — = arcs1ns|
sE[O,@,] ée[g,l]
Now, by elementary calculation we get
sup |—%—%arcsins‘ :%, sup ’—%—%arcsins| :%,
Se[_lv_Ts] se[—é,o]
sup |6 — ;arcsms‘ + sup ’2 - farcsms| :
se[o,é,} se[é,l]
and the third inequality is proved. (I
Remark 3.2. Inequalities from the last Corollary are proved by J. Pecarié¢ et al. in
[5].
Remark 3.3. If we apply Theorem 2.1 with n = 2, [a,b] = [-1,1], z = —é,
A (7@) =1andw(t) = ﬁ, te(—1,1), we get
1
1 s
o= 31 () <105 (£)]
7r\/§ 1
+ D2 () -1 (D)) 47 [ @@
-1
where %s—i—%(sarcsins—l—\/l—sz), —1<s< — %,
Qs (5) = %er%(sarcsiner\/lfsQ), 7@ s <0,
2 —%s—i—%(sarcsins—&—\/l—sQ), 0<8§§,
—%s—i—%(sarcsins—&—\/l—s?), §<s§1.
Corollary 3.3. Let I be an open interval in R, [—-1,1] C I, (p,q) a pair of conjugate

exponents, 1 < p,q < oo and let f : I — R be such that [’ is an absolutely continuous
function. Then we have

RS 0 (8)+ o (6) - 41 (£)]

s e, feL®[-1,1],
<9 5/ EEN My, e L2111,
||f//||1a fNGLl [7171]

The first and the second inequality are sharp.



138 J. PECARIC AND M. RIBICIC PENAVA

PmOf Applying (13) with n = 2, [a,b] = [-1,1], z = —@, A (—§> = %, w(t) =
ﬁ’ te (—1,1) and p = 0o, p = 2, p = 1 and carrying out the same analysis as in
Corollary 3.2 we obtain the above inequalities (I
Remark 3.4. If we apply Theorem 2.1 with n = 3, [a,b] = [-1,1], = = —73,

A (—?) =1 and w(t) = € (-1,1), we get

v
[t ou=5 () croes (O] 52 [r (9) -7 ()

1
i
s o3 () v o+ (D)5 [ @@
-1
where
—% (% —|—52) — %3\/1 — 52 — % (% —|—s2) arcsins, —1<s<— @,
v | ) - L T= L s g, —F <o
%(%—1—52)—%8\/1—52—%(%+32)arcsins, 0<s§§,
(3+5%) — £svV1—52— 1 (5 + 5% arcsins, £<s<1.

Corollary 3.4. Let I be an open interval in R, [-1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oo and let f : I — R be such that f" is an absolutely continuous
function. Then we have

[T -5l (8) 105 () + 55 (-6)
2 (F)+ 1 (-8) + 1o+ 2 (9]
0.493373 || f"|l .,  f" € L>®[-1,1],
< 0.45485 || f"|[5 » e L?[-1,1],

a5 (OV3+5m) If]l . f" e Lt [-1,1].
The first and the second inequality are sharp.

Proof Applying (13) with n = 3, [a,b] = [-1,1], = = —§7 A (—?) =i w(t) =
ﬂm, t e (—1,1) and p = oo, p = 2, p = 1, respectively, and carrying out the same
analysis as in Corollary 3.2 we get the above inequalities. O

3.2. w(t) =vV1—-t? te[-1,1]. In this case we have Gauss-Chebyshev formula
of the second kind

1 k
™
[ VT Era =3 Af @)+ B (17)
-1 2 i=1
where i
4 g2
A; 1 sin Py
and x; are zeros of the Chebyshev polynomials of the second kind defined as
sin [(k + 1) arccos (x
o (a) S+ D anceos (2)]
sin [arccos ()]

i=1,....k

C (z) has exactly k distinct zeros
s

I; = COS m,
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all of which lie in the interval [—1, 1] (see [6]).
Error of the approximation formula (17) is

™

B (f) = mf(%) ), £e(=1,1).

In case k = 3 the following identity holds

/11 VIZ2f (@ de= 5 [£ (=) +200)+ 1 (F)] + 55151 (€),
where £ € (—1,1).

Remark 3.5. If we apply the (12) with [a,b] = [-1,1], x = —g, A (—7) =3 and
w(t) = Lir_tz, t € [-1,1], we get

/_11\/1—t2f(t)dt:78r[f(—‘£§>+2f(0)+f(22>] +72T/1 Ry (s) f' (s) ds

where

% %(sm—l—arcsms) —1§3§——27
i % (Ser arcsms) 7@ <s

(sv1— %+ arcsin s) 0<
(sm—k arcsin s) 72

Corollary 3.5. Let I be an open interval in R, [—1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oco. Let f : I — R be an absolutely continuous function and
f e L?[-1,1]. Then we have

[ VimErwa- s (<8) 21 0+ 7 (B)]| < IR0, (9

Inequality (18) is sharp for 1 < p < co.

Proof. This is a special case of Theorem 2.2 for [a,b] = [-1,1], z = —@, A (—@) =
1 andw(t):L;*tz,te [—1,1]. O

Corollary 3.6. Let I be an open interval in R, [—1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oo and f: I — R an absolutely continuous function. Then we
have

[ ViR a-T[r(-8) +2r 0+ ()

0.26917 (/'] » f" € L>[-1,1],
<q 0.239162||f']l,, f'€L*[-1,1],
sl fre Lt [-1,1].

The first and the second inequality are sharp.
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Proof. Applying (18) with p = oo, we get
1 -
/ | R, (5)|d3:/ ’—%—%(s 1—32—|—arcsins>‘ds
—1 -1

O \/5
v
V3

7
_i_%<s 1—52+arcsins>‘ds+/
1
+/ %—%(s 1—52—|—arcsins>‘dsz0.171359
o

%—%(s 1—32+arcsins>’ds

and the first inequality is obtained. To prove the second inequality we take p = 2

1 — 2
/ |R1(s)|2d3:/ ’—%—%(s 1—32+arcsins)‘ ds
-1
vz

2 e
i—%(s 1—82—|—arcsins)’ ds—|—/
0

2
i—%(s 1—82—|—arcsins)‘ ds

2
% — % (s 1 — 52 + arcsin s)) ds ~ 0.0231817

If p=1, we have

sup ‘—%—%(3\/1—52+arcsins)‘:i—i

o)
SE[—I,—Q} "
sup ‘—i—%(s 1—52+arcsins)‘:i,
s€[—§,0}
sup H -1 (s 1 —s2+arcsins)‘ =14
s€[0,§}
sup ‘% -1 (s 1—82+arcsins)‘ =1-+
se[g,l}
SO
sup |Ry(s)=max{}— 5,5} =17
se[—1,1]
and the third inequality is proved. O
Remark 3.6. Inequalities from the last Corollary are proved by J. Pecarié et al. in
[5].
Remark 3.7. If we apply Theorem 2.1 with n = 2, [a,b] = [-1,1], z = —g,

A(,@) =1 and w(t) = @, t € [-1,1], we get
/11 VI—ef@at = [f(—8)+27 O+ (%
T

f[f/<—?)—f’(§)}+g/ Ro (s) [" (s)ds

DN
N—
[E—

where
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S+ as (248 )V1—s2+ Lsarcsins, —1<s<-—%2
§+L(2+5 )er*Sarcsms f@<5§0,
RQ(S): 4 3 5 5
—24+ L (246%)V1—s2+ Isarcsins, 0<s< Y2,
_%+3w<2+8)\/_782+*8341"C81H8 §<8§1

Corollary 3.7. Let I be an open interval in R, [-1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oo and let f : I — R be such that [’ is an absolutely continuous
function. Then we have

‘/11\/@f(t>dt_78f[f(_¢2§>

+2/(0)+f (£)
g (-9) -2 (2

)l

%Tr”fl/”oo’ fNELOO [_15 ]’
<< 0.3287364 || f"||,, f' € L*[-1,1]
31770 fre Lt [-1,1].

The first and the second inequality are sharp.
Proof. Applying (13) with n = 2, [a,b] = [-1,1], = = —¥2 4 (—ﬁ> =L wi) =

2 2

L?tz, t€[-1,1] and p = 00, p = 2, p = 1, respectively, and carrying out the same

analysis as in Corollary 3.6 we get the above inequalities. (I
Remark 3.8. If we apply Theorem 2.1 with n = 3, [a,b] = [-1,1], z = 772,
A (—@) =1 andw(t) = Lir_ﬂ, t € [-1,1], we get

[ VR le(F) v ()] 58 [ (F) -1 (9)

+—[3f”( )+2f” )+3f”(§)]+;:/1Rg(s)f”’(s)ds
)

where %(1—1—45 —m(135+25)m
ﬁ( +4s )arcsms —1§s§—72,

—15 (1+4s?) — 13- (135 4 25%) V1 — 52
Ry (s) = ﬁ (1+4s )arcsms —72 <s<0,

£ (1+4s%) — - (135 +2s%) V1 — 52
ﬁ(l—i—lls)arcsms 0<s§§,

%(1+4 ?) — 3= (135 +25%) V1 — 2
1 (1+4s )arcsms ﬁ<5§1.

Corollary 3.8. Let I be an open interval in R, [—1,1] C I, (p,q) a pair of conjugate
exponents, 1 < p,q < oo and let f : I — R be such that " is an absolutely continuous
function. Then we have

[ ViR a- T s (<8) 20 0+ 1 (4) + 25 (-4)
27 (8) <3 () Hir o+ i ()]
0.0869419 || f"||., f" € L*>®[-1,1],

)

< { 0.0885601 | f",, f"eL?*[-1
4%; Hf///”1 , f/// c Ll [ 1

al]
1]
1]

)
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The first and the second inequality are sharp.

Proof. Applying (13) with n = 3, [a,b] = [-1,1], = —§7 A (—g) =1 w(t) =

27@7—152’ t€[-1,1] and p = 0o, p = 2, p = 1, respectively, and carrying out the same
analysis as in Corollary 3.6 we obtain the above inequalities. O

4. Non-weighted three-point formula and applications

We define
n () = A (x)rf {f(iﬂ) () + (71)i+1 it (a+b— z)} (b— x)”? —(a- x)i+2
' = (i+2)(b—a)
2 (arb) U (1)) (b—a)™
+ (1=24(x) > Y ( : ) ( 2¢+2(3+2)!

=0

and

To(z,8) = —nA(x) [T (2,8) + Ta (a+b—2,5)] —n(l—24(x)) T, (a;b,s) .

Theorem 4.1. Let I be an open interval in R, [a,b] C I, and let f: I — R be such
that =1 is absolutely continuous for some n > 2. Then for each = € [a7 C‘T*'b) the
following identity holds

1P ~ RPN
o [O@=D@h @ [ D@6 )
Proof. This is a special case of Theorem 2.1 for w(t) = ;2—, ¢ € [a, b]. O

Remark 4.1. Identity (19) holds true in the case n = 1.

Theorem 4.2. Suppose that all the assumptions of Theorem 4.1 hold. Additionally,
assume that (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo, % + % =1

and f") € LP[a,b] for some n > 1. Then for each x € la, “TH’) we have

P ~ SRS
/ FO)dt =D ()~ b @)| < | T )| £ - (20)
b—a a n! q p
Inequality (20) is sharp for 1 < p < co.
Proof. This is a special case of Theorem 2.2 for w(t) = ﬁ, t € [a,b]. O
Now, we set
b—a)? b
A(m):(—a)z, x € [a,a+ )
6(a+b—2x) 2

This special choice of the function A enables us to consider generalizations of the
well-known Simpson’s formula ( 1) and dual Simpson’s formula (2).
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4.1. = = a. Suppose that all the assumptions of Theorem 4.1 hold, then the gener-

alization of the Simpson’s formula reads

b b
1 / f(@)dt = D (a) +1, (a) + L / fn (a,s) R (s)ds, (21)

n!

b—a
where
D =glr@+ar (5 +70)].
n-2 a 1— (_1)i (b— a)i+1
+ % P f(”‘l) ( ;b) ( 9i+2 (Z)—|— 2! ,
and

T, (a,s) = —% [Tn (a,5) + 4T, (“;%) + T (b, s)}

5(a—s)"+(b—s)" +b
- a—s)"+5(b—s)" a+b
a0 2 <s=<b

In the next corollaries we will use the Beta function and the incomplete Beta

function of Euler type defined by
1 T

B(e.y) = / FUA -0 B (o) = / G U P TR}
0 0

Corollary 4.1. Suppose that all the assumptions of Theorem 4.1 hold. Additionally,
assume that (p,q) s a pair of conjugate exponents, that is 1 < p,q < oo, % + % =1.

(a) If f™) € L™ [a,b], then

b
1 / F()dt— D (a) — T, (a)

b—a
S Y T TCRIT AU 51 TURYi4 Y
= (et 1)! 3.2+ 3(1+ V5)" =

(b) If £ € L?[a,b], then

b
1 / F(t)dt— D (a) — T (a)

b—a

1 < (2272 4 3) (b—a)™ ! LB (b

a) 2n—1

) .

%
<= Bn+1n+1 H (n)

n!

(c) If f™ € L' [a,b], then

b
ﬁ/ F(H)dt = D (a) =Ty (a)
< Los { (b—a)" (=" +5)(b-a)" } s

L .

6 3. 2n+1
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The first and the second inequality are sharp.

Proof. We apply (20) with z = a and p = 0o

b T 5(a—s)"+ (b—s)" b la—s)"+5(b—s)"
l d&*l ‘ 6(b—a) ds*ﬁy 6(6—a)
oD 2 (0 —a)" o D= (=1)")(0—a)"

6-2" (n+1) 6(1+/5)" (n+1)

and the first inequality is obtained. If p = 2, we have

ds

fn (a,s)

2 2

S 5(a—s)" +(b—s)" (@a—s)"+5(b—s)"

b 2 oL b
T =
/a n(a,s)‘ ds /a 60— a) ds—&—/a;b 60b—a) ds
b—a)® ' [ 244 22l .
= ( 3é [2%“ @n+1) +10-(-1)" B, (n—l—l,n—&—l)}

+10- (—=1)"

/N

(b—a)>" " [ 24 4 2201

36 2211 (2 + 1) B(n+1,n+1)—Bé(n+1,n+1)>}.

and the second inequality is proved.
To obtain the third inequality we take p = 1

sup fn(a,s)‘

s€la,b]

R sup 5(a—s)"+(b—2s) sup (a—s)"+5(0b—s)
Se[a,%“} 6(b—a) SE[“TH’J?] 6(b—a)

The function y : [a,b] = R, y () =5(a — )" + (b — 2)", is decreasing on (a, zo) and
"YBa+b

2022 and decreasing on (a, b) if n is
1+ 5 )

increasing on (xg,b) if n is even, where xg =
odd. By an elementary calculation we get

5(a—s)"+(b—s)"
6(b—a)

sup
se[a,‘lT"'b}

for even n, and

sup

a

sE[a,Tb}

for odd n. Also

sup
SE[GTH’,IJ]

if n is even, and

sup
sE[“T”,b]

if n is odd. O
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3a+b .
4.2. ¢ = — Suppose that all the assumptions of Theorem 4.1 hold, then the

generalization of the famous dual Simpson’s formula reads

1 * 3a+b\ ~ (3a+b 1 [~ [(3a+b N
m/ﬂ f(t)dt:D<4>—|—tn( 7 )+n'/a Tn( 7 ,s)f()(s)ds
(22)
3a+b 1 3a+b a+b a+3b
p(*52) =5 (M) -1 (7)o (%))

z (3a+b) gz_: [f(i-H) (3@2—1)) (1) g (a—z?)b)}

=0

where

w

i i+2 i+l i i+l
x[3+27(71)+}(bia)+ nZ2f(1+1) atb ( = 1))(b—a)+
442 (7 + 2)! 2 2042 (14 2)! ’
and
~ (3a+0b n 3a+b a-+b a+ 3b
Tn 5 = -3 2Tn P _Tn P 2Tn P
(abis‘l)"’ a < s < 3a+b
(a—s)"+2(b—s)" a+b a b
| e v
- a—s)"+(b—s)" a b a+3b
GO %<S§ e
—s)" a+3b
) +T < s<b.

Corollary 4.2. Suppose that all the assumptions of Theorem 4.1 hold. Additionally,
assume that (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo, % + % =1.

(a) If f(™) € L>®[a,b], then

1 b 3a+b\ ~ [(3a+b
b_a/amdt0< - >t( - )

) [3 (237 4 1) — 2n+1 (2 n (—1)”“) + (—1)”“] (b—a)"
St 3. 220+l

&

(b) If f™ € L? [a,b], then

1 b 3a+b\ ~ [(3a+b
b_g/ﬂf(t)dtD( 1 >tn< 1 )

l ( |:9 (4 . 32n—1 + 1) —3- 227L+1 _ 1] (b _ CL)2n_1

<

n! 9. 241 (20, 4+ 1)

4(=1)" (b—a)™ "

- 9

[B% (n+1,n+1)_Bi (n+1,n+1)}>2 Hf(n)
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(c) If f™ € L' [a,b], then

1 b 3a+b ~ (3a+b
) s (35 n (% )‘

< (b—a)"! max{ 1 23"+ (=1)" 2"+ (1+(-)") (3" —2""1+ 1) } Hfm

n! 2’ 3.9 3.22n
The first and the second inequality are sharp.

Proof. We apply (20) with z = 3“T+b and p = 00

+b

b 3a n atb n n
~ [(3a+b B T |(a—s) 2 |(a—s)"4+2(b—s)
/a Tn< 1 ,s> dsf/a - ds+/3a4+b 50— a) ds
a+3b
T 2(a@—9)"+(b—s)" (b —s)"
+/a;b 5(—a) ds+/a43b - ds
oy (b—a)" |2- 37+ 4 (—1)" T —2ntl (94 (—1)* !
e, 0] (o)

22042 (p 4 1) 3.22742 (n 4 1)
[3 (2 .3n + 1) _ 27L+1 (2 + (_1)n+1> + (_1>n+1} (b _ a)n
32201 (n £ 1)

and the first inequality is obtained. To prove the second inequality we take p = 2

/" 7 (Bath stz/aaﬁ <—>d+/ (=" +20—5)"["
a " 4 7 a b—a 3atb 3([)7&)
a+3b n n (2 "2
o [ e=pr s 0o dH/b b
a+b 3(b—a) a+3b b*CL
2 1
B (b _ a)Qn—l [4 . 32n+1 - 3. 22n+1 _ 1] (b _ a)2n—1
42n+1 (2n 4+ 1) 9. 42041 (2 + 1)
4 _ln b— 2n—1
LU )(9 ) [Bg(n-ﬁ-l,n-l—l)—B%(n—i—l,n—l—l)}.

If p =1, we have

- 3 b _ &\ " 2(h— n
sup Tn< a + ,s)‘ — max sup u : sup (a—s)"+2(b—s)
s€[ab] 4 s€a, 322 b—a se[2uth ato] 3(b—a)
2(a—3s8)"+(b—-3s)" h—s)"
sup (a 8) + ( S) , sup Q
se[agh, ati] 3(b—a) se[eL3t b] b—a
By an elementary calculation we get
_ n b _ n—1 _ n _ n—1
e I e e [ Gl O )
sela,2ue) | D=0 2 sefatp g | D—a 22,
su (a—s)"+2(b—s)"| _(2:3"+(-1)") b-a)"
56[3%3%&] 3(b—a) 3. 920 '

L .

)
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Also
(2-3"+1)(b—a)" "
3.2%n ’

2(a—5)"+(b—s)"
3(b—a)

sup
seleg, o5

if n is even, and

2(a—38)"+(b—s)"
3(b—a)

n—1 n n—1
o 00 @3 D (- a) |
3. 22

i 3.2n

se[a;b7a§3b]
if n is odd. Thus
n—1 n n—1
R _ .an -1 _
7 (3a+b7s>’ ax (b—a) (2-3"+(=1)")(b—a)

sup
s€la,b]

2"+ (1 + (-D)") (3" =2+ D] (b —a)"
3.92n

4 92n 3. 920 ’

and the third inequality is proved.
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