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Prime Ideals in BCI and BCK-Algebras
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Abstract. In this paper, we introduce a new definition of prime ideal in BCI-algebras and
show that it is equivalent to the last definition of prime ideal in lower BCK-semilattice. Then
we attempt to generalize some useful theorems about prime ideals, in BCI-algebras, instead
of lower BCK-semilattices.
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1. Introduction

The notions of BCK and BCI-algebras were introduced by Imai and Iseki [3, 4] in
1966. They are two important classes of logical algebras. Most of the algebras related
to the t-norm based logic, such as MTL-algebras, BL-algebras and residuated lattices
are extensions of BCK-algebras. These algebras have been extensively studied since
their introduction. It is known that the class of BCK-algebras is a proper subclass
of the class of BCI-algebras. The concept of ideal in these algebra follows from the
concepts of deductive system and ideal in logical algebras such as BL-algebras and
residuated lattices.

Iseki [5], introduced the concept of prime ideal in commutative BCK-algebras
and Palasinski [10], generalized this definition for any lower BCK-semilattices. Then
many authors have studied the properties of this ideal in lower BCK-semilattices
(see [1, 2, 5, 9, 10]). They showed that this ideal is one of the most important ideals
in lower BCK-semilattices. Any ideal F of a lower BCK-semilattices contained in
a prime ideal, has prime and minimal prime decomposition. But prime ideal and
irreducible ideal are the same in lower BCK-semilattice. In this paper, we generalize
the concept of prime ideals for BCI-algebras and attempt to generalize the properties
of prime ideals in BCI-algebras. We show that prime ideals are irreducible in any
BCI-algebras, but the converse may not true in general. Then we verify some useful
properties of this ideals in BCI and BCK-algebra such as relation between prime
ideals and maximal ideals.

2. Preliminaries

Definition 2.1. [3, 4] A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0) satisfying
the following conditions: for all x, y, z ∈ X

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
(BCI2) x ∗ 0 = x
(BCI3) x ∗ y = 0 and y ∗ x = 0 imply y = x
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Let X be a BCI-algebra and x ∗ yn = (...((x ∗ y) ∗ y) ∗ ...) ∗ y, where y occurs n
times and x, y ∈ X. Then for all x, y, z ∈ X and k ∈ N, the following hold: (see [11])

(BCI4) x ∗ x = 0
(BCI5) (x ∗ y) ∗ z = (x ∗ z) ∗ y
(BCI6) x ∗ (x ∗ (x ∗ y))k = x ∗ yk

(BCI7) 0 ∗ (x ∗ y)k = (0 ∗ xk) ∗ (0 ∗ yk)
(BCI8) 0 ∗ (0 ∗ x)k = 0 ∗ (0 ∗ xk).

A nonempty subset S of BCI-algebra (X, ∗, 0) is called a subalgebra of X if x∗y ∈ S,
for any x, y ∈ S.
For any BCI-algebra X, the relation x ≤ y ⇔ x ∗ y = 0 is a partial order relation
[4]. It is called BCI-ordering of X. The set P = {x ∈ X |0 ∗ (0 ∗ x) = x} is called
P -semisimple part of BCI-algebra X and X is called a P -semisimple BCI-algebra if
P = X (see [8, 11]). The set {x ∈ X |0 ∗ x = 0} is called BCK-part of BCI-algebra
X and is denoted by BCK(X). If X = BCK(X), then we say X is a BCK-algebra.
A lower BCK-semilattice is a BCK-algebra (X, ∗, 0), such that it with respect to
it’s BCI-ordering formes a lower semilattice. Moreover, a BCI-algebra X is called
associative if (x∗y)∗z = x∗(y∗z), for any x, y, z ∈ X. In any associative BCI-algebra,
x ∗ y = y ∗ x and 0 ∗ x = x, for any x, y ∈ X (see [7]).

Definition 2.2. [3, 4] Let I be a nonempty subset of BCI-algebra X containing 0.
I is called an ideal of X if y ∗ x ∈ I and x ∈ I imply y ∈ I, for any x, y ∈ X. Clearly,
{0} is an ideal of X and we write 0 is an ideal of X, for convenience. An ideal I is
called proper, if I 6= X and is called closed, if x∗y ∈ I, for all x, y ∈ I. The BCK-part
of X is a closed ideal of X. Let S be a nonempty subset of X. We call the least ideal
of X containing S , the generated ideal of X by S and is denoted by 〈S〉.

If A and B are two subalgebras of X, then we usually denote A + B for 〈A ∪ B〉.
Moreover, A + B is a closed ideal of X [see [11], Proposition 1.4.15]. If X is a BCI-
algebra, then BCK-part of X is a closed ideal of X and P -semisimple part of X is a
subalgebra of X. If X is a lower BCK-semilattice, then for any x, y ∈ X, we have

(P1) 〈x〉 ∩ 〈y〉 = 〈x ∧ y〉 (see [11], Proposition 1.4.16).
Let A be an ideal of a BCI-algebra X. Then the relation θ defined by (x, y) ∈

θ ⇔ x ∗ y, y ∗ x ∈ A is a congruence relation on X. We usually denote Ax for
[x] = {y ∈ X |(x, y) ∈ θ}. Moreover, A0 is a closed ideal of BCI-algebra X. In fact,
it is the greatest closed ideal contained in A. Assume that X/A = {Ax |x ∈ X}.
Then (X/A, ∗, A0) is a BCI-algebra, where Ax ∗Ay = Ax∗y, for all x, y ∈ X.

Let X and Y be two BCI-algebras. A map f : X → Y is called a BCI-homo-
morphism, if f(x ∗ y) = f(x) ∗ f(y), for all x, y ∈ X. If f : X → Y is a BCI-
homomorphism, then the set ker(f) = f−1(0) is a closed ideal of X. A homomorphism
is one to one if and only if ker(f) = {0} (see [11]). The homomorphism f is called
an epimorphism if f is onto. Moreover, an isomorphism is a homomorphism, which
is both one to one and onto. Note that, if f : X → Y is a BCI-homomorphism, then
f(0) = 0. An element x of BCI-algebra X is called nilpotent if 0 ∗ xn = 0, for some
n ∈ N. A BCI-algebra is called nilpotent if any element of X is nilpotent (see [6]).

Theorem 2.1. [11] BCI-algebra X is nilpotent if and only if every ideal of X is
closed.

Theorem 2.2. [11] Let S be a nonempty subset of a BCI-algebra X and

A = {x ∈ X |(...((x∗a1)∗a2)∗...)∗an = 0, for some n ∈ N and some a1, ..., an ∈ S}.
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Then 〈S〉 = A∪{0}. Especially, if S contains a nilpotent element of X, then 〈S〉 = A.
Moreover, if I is an ideal of X, then

〈A∪S〉 = {x ∈ X |(...((x∗a1)∗a2)∗ ...)∗an ∈ A, for some n ∈ N and a1, ..., an ∈ S}.
Definition 2.3. [10] A proper ideal I of BCI-algebra X is called an irreducible ideal
if A ∩B = I implies A = I or B = I, for any ideals A and B of X.

Definition 2.4. [10] Let X be a BCI-algebra. A proper ideal M of X is called
a maximal ideal if 〈M ∪ {x}〉 = X for any x ∈ X\M , where 〈M ∪ {x}〉 is an ideal
generated by M∪{x}. Note that, M is a maximal ideal of X if and only if M ⊆ A ⊆ X
implies that M = A or A = X, for any ideal A of X.

Theorem 2.3. [10] Let X and Y be two BCI-algebras and f : X → Y be a BCI-
epimorphism. If A = ker(f), then α : X/A → Y which is defined by α(Ax) = f(x) is
a BCI-isomorphism.

Lemma 2.4. [11] Let I and J be two ideals of BCI-algebra X such that I ⊆ J .
Denote J/I = {Ix ∈ X/I |x ∈ J}. Then

(i) x ∈ J if and only if Ix ∈ J/I, for any x ∈ X.
(ii) J/I = {Ix ∈ X/I |x ∈ J} is an ideal of X/I.
(iii) Let I be a closed ideal of X. If S and T are the sets of all ideals of X and

X/I, respectively, then the map g : S → T defined by g(J) = J/I, is a bijective map.
The inverse of g is the map f : T → S, is defined by f(J) = ∪{Ix |Ix ∈ J}.
Definition 2.5. [5] A proper ideal I of lower BCK-semilattice X is called prime if
x ∧ y ∈ I implies x ∈ I or y ∈ I.

Let {Xi}i∈I be a family of BCI-algebras. Then
∏

i∈I

Xi is a BCI-algebra and the

map πj :
∏

i∈I

Xi → Xj , defined by πj((xi)i∈I) = xj is called j − th natural projection

map.

Definition 2.6. [11] A BCI-algebra X is called a subdirect product of BCI-algebras
family {Xi}i∈I if there is an one to one BCI-homomorphism f : X →

∏

i∈I

Xi such

that πi(f(X)) = Xi, where πi :
∏

i∈I

Xi → Xi is the i− th natural projection map, for

all i ∈ I. Moreover, the map f is called subdirect embedding.

3. Prime ideals in BCI and BCK-algebras

In this section, we introduce the concept of prime ideals in BCI-algebras and
we prove that this concept and the last definition of prime ideal in a lower BCK-
semilattice are equivalent. Then we generalize some useful theorems about the prime
ideals on BCI and BCK-algebras. Finally, we discuss some relations between BCK-
part and prime ideals in BCI and BCK-algebras.

Throughout this section, X is a BCI-algebra, B is BCK-part of X and P is
P -semisimple part of X, unless otherwise stated.

Definition 3.1. A proper ideal I of BCI-algebra X is called prime if A ∩ B ⊆ I
implies A ⊆ I or B ⊆ I, for all ideals A and B of X.
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Example 3.1. Let “-” be the subtraction of integers. Then X = (Z,−, 0) is a BCI-
algebra. Clearly, M1 = N ∪ {0} and M2 = {−n |n ∈ N} ∪ {0} are two maximal
ideals of X (see [11], Example 5.3.2). Let I ∩ J ⊆ N. If I * N and J * N then there
exist m, n ∈ N such that −n ∈ I and −m ∈ J . By Theorem 2.3, we conclude that
−mn ∈ I ∩ J ⊆ N ∪ {0}, which is impossible. Hence N ∪ {0} is a prime ideal of X.
By the similar way, M2 is a prime ideal of X.

Theorem 3.1. (i) Let I be an ideal of X. Then I is a prime ideal of X if and only
if 〈x〉 ∩ 〈y〉 ⊆ I implies x ∈ I or y ∈ I, for any x, y ∈ X.
(ii) If X is a lower BCK-semilattice, then Definition 3.1 and Definition 2.5 are
equivalent.

Proof. (i) Let I be an ideal of X, such that 〈x〉 ∩ 〈y〉 ⊆ I implies x ∈ I or y ∈ I.
If A and B are two ideals of X, such that A ∩ B ⊆ I, then there is no harm in
assuming A * I. Hence there exists a ∈ A such that a /∈ I. For any b ∈ B, since
〈a〉 ∩ 〈b〉 ⊆ A ∩B ⊆ I and a /∈ I, the primeness of I implies b ∈ I. Therefore, B ⊆ I.
Conversely, let I be a prime ideal of X. Clearly, 〈x〉 ∩ 〈y〉 ⊆ I implies x ∈ I or y ∈ I,
for any x, y ∈ X.
(ii) Since by (P1), 〈x〉∩〈y〉 = 〈x∧y〉, for any x, y ∈ X so Definition 3.1 and Definition
2.5 are equivalent. ¤

Clearly, any prime ideal of X is an irreducible ideal. Moreover, if {0} is an irre-
ducible ideal of X, then {0} is a prime ideal.

Definition 3.2. A nonempty subset F of X is called a finite ∩-structure, if
(〈x〉 ∩ 〈y〉)∩F 6= ∅, for all x, y ∈ F , and X is called a finite ∩-structure if X\{0} is a
finite ∩-structure.

Proposition 3.2. Let Y be a BCI-algebra and f : X → Y be an onto BCI-
homomorphism. Then the following assertions hold:

(i) An ideal I of X is prime if and only if F = X − I is a finite ∩-structure.
(ii) Let I be a closed ideal of X and J be an ideal of X containing I. If J is a

prime ideal of X, then J/I is a prime ideal of X/I.
(iii) Let I be a prime ideal of X and ker(f) ⊆ I. Then f(I) is a prime ideal of Y .
(iv) Let ID(X) be the set of all ideals of X. Then ID(X) is a chain if and only if

every proper ideal of X is prime.

Proof. (i) Let I be a prime ideal of X and x, y ∈ F . If (〈x〉 ∩ 〈y〉) ∩ F = ∅, then
〈x〉 ∩ 〈y〉 ⊆ I. Since I is a prime ideal of X, we have x ∈ I or y ∈ I, which is
impossible. Hence (〈x〉 ∩ 〈y〉) ∩ F 6= ∅. Conversely, let F be a finite ∩-structure
and x, y ∈ X such that 〈x〉 ∩ 〈y〉 ⊆ I. If x /∈ I and y /∈ I, then x, y ∈ F and so
(〈x〉 ∩ 〈y〉) ∩ F 6= ∅. Hence, 〈x〉 ∩ 〈y〉 * I, which is impossible. Therefore, x ∈ I or
y ∈ I and so by Theorem 3.1(i), I is a prime ideal of X.
(ii) Let J be a prime ideal of X. By Lemma 2.4(ii), J/I is an ideal of X/I. Let A
and B be two ideals of X/I such that, A ∩ B ⊆ J/I. By Lemma 2.4(iii), there are
two ideals E and F of X, such that A = E/I and B = F/I. Then (E ∩ F )/I =
E/I ∩ F/I = A ∩ B ⊆ J/I. Therefore, E ∩ F ⊆ J and so E ⊆ J or F ⊆ J . Hence
E/I ⊆ J/I or F/I ⊆ J/I. Thus J/I is a prime ideal of X/I.
(iii) Since ker(f) is a closed ideal of X, then by Theorem 2.3 and (ii), X/ker(f) ∼= Y
and I/ker(f) is a prime ideal of X/kerf . Moreover, f(I) ∼= I/ker(f). Hence f(I) is
a prime ideal of Y .
(iv) Let ID(X) be a chain and I be a proper ideal of X. Clearly, 〈a〉∩〈b〉 ⊆ I implies
a ∈ I or b ∈ I. Hence, I is a prime ideal of X. Conversely, let any proper ideal of X
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be prime. Let I and J be two proper ideals of X. Since I ∩ J is a proper ideal of X,
then I ⊆ I ∩ J or J ⊆ I ∩ J and so I ⊆ J or J ⊆ I. Therefore, ID(X) is a chain. ¤

Corollary 3.3. Let x ∈ X − {0}, such that x ∗ y = x, for all y ∈ X − {x}. Then
there exists a prime ideal Q of X, such that x /∈ Q.

Proof. Let Q = X−{x}. Then 0 ∈ Q. If a∗b, b ∈ Q, then a 6= x and so a ∈ Q. Hence
Q is an ideal of X. Clearly, X −Q is a finite ∩-structure. By Proposition 3.2(i), Q is
a prime ideal of X. Therefore, there exists a prime ideal Q of X such that x /∈ Q. ¤

Example 3.2. Let X = {0, 1, 2, a}. Define the binary operation “*” on X by the
following table:

Table 1
* 0 1 2 a
0 0 0 0 a
1 1 0 0 a
2 2 1 0 a
a a a a 0

It is easy to prove that (X, ∗, 0) is a BCI-algebra. Since a∗y = a, for any y ∈ X−{a},
then by Corollary 3.3, Q = X − {a} is a prime ideal of X, such that a /∈ Q.

Proposition 3.4. Let I be an ideal of X.
(i) If I is a prime ideal of X, then I/I0 is a prime ideal of X/I0.
(ii) If I is a closed prime ideal of X, then I0 is a closed prime ideal of X/I.
(iii) If I0 is a prime ideal of X/I and I ⊆ B, then I is a prime ideal of X.

Proof. (i) Since I0 is a closed ideal of X, then by Lemma 2.4, I/I0 is an ideal of
X/I0. Let A′ and B′ be two ideals of X/I0 such that A′ ∩ B′ ⊆ I/I0. Then by
Lemma 2.4(iii), there are ideals A and B of X containing I0 such that A′ = A/I0

and B′ = B/I0 and so (A ∩ B)/I0 = A′ ∩ B′ ⊆ I/I0. Hence by Lemma 2.4(i),(ii),
A ∩B ⊆ I and so A ⊆ I or B ⊆ I and so A′ ⊆ I/I0 or B′ ⊆ I/I0. Therefore, I/I0 is
a prime ideal of X/I0.
(ii) If I is closed, then I = I0 and so X/I = X/I0 and I/I0 = I0. Hence the proof of
this part is straightforward consequent of (i).
(iii) Let I ⊆ B and I0 be a prime ideal of X/I and 〈x〉∩〈y〉 ⊆ I, for some x, y ∈ X. If
Iu ∈ 〈Ix〉 ∩ 〈Iy〉, then by Theorem 2.2, there exist n,m ∈ N such that Iu ∗ (Ix)n = I0

and Iu ∗ (Iy)m = I0 and so by definition of ∗ on X/I we get Iu∗xn = Iu ∗ Ixn = I0

and Iu∗ym = Iu ∗ Iym = I0. It follows from (BCI2) that, u ∗ xn ∈ I and u ∗ ym ∈ I
and so u ∗ xm = a, u ∗ ym = b, for some a, b ∈ I. Since I ⊆ B, then by Theorem 2.2,
we obtained (u ∗ a) ∗ b ∈ 〈x〉 ∩ 〈y〉 and so (u ∗ a) ∗ b ∈ I. Moreover, I is an ideal and
a, b ∈ I. Hence u, 0 ∗ u ∈ I and so Iu = I0. Thus, 〈Ix〉 ∩ 〈Iy〉 ⊆ I0. Since I0 is a
prime ideal of X/I, then we have Ix = I0 or Iy = I0 and so x ∈ I or y ∈ I. Hence by
Theorem 3.1(i), I is a prime ideal of X. ¤

By definition of prime and irreducible ideals, any prime ideal is an irreducible ideal
in any BCI-algebra. But the converse is false. In next example, we will show that
there exists an irreducible ideal which is not prime.
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Example 3.3. (i) Let X = {0, a, b, c}. Define the binary operation “*” on X by the
following table:

Table 2
* 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Then (X, ∗, 0) is a BCI-algebra (see [11]) and {{0}, {0, a}, {0, b}, {0, c}} is the set of
all proper ideals of X. Clearly, {0, a}, {0, b} and {0, c} are irreducible ideals of X. We
have {0, a} ∩ {0, b} ⊆ {0, c}. Hence {0, c} is not a prime ideal of X. By the similar
way, {0}, {0, a} and {0, b} are not prime ideals of X. Therefore, X has not any prime
ideal.
(ii) Let (X, ∗, 0) be the BCI-algebra in Example 3.1. Then I = {0, a} is an irreducible
ideal of X. Now, we have b, c ∈ X − I and 〈b〉 ∩ 〈c〉 = {0, b} ∩ {0, c} = {0} and so
(〈b〉 ∩ 〈c〉) ∩ (X − I) = ∅. Therefore, X − I is not a finite-∩ structure.
(iii) Let X = {0, 1, a, b, c}. Define the binary operation “*” on X by the following
table:

Table 3
* 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Then (X, ∗, 0) is a BCI-algebra and {{0}, {0, 1, a}, {0, 1, b}, {0, 1, c}} is the set of all
proper ideals of X and {0, 1, b}∩{0, 1, c} ⊆ {0, 1, a} and so I = {0, 1, a} is not a prime
ideal of X. But, {{I0}, {I0, Ic}} is the set of all ideals of X/I. Hence I0 is a prime
ideal of X/I. Therefore, the converse of Proposition 3.4(iii), is not true in general.

Theorem 3.5. Let A be an ideal of X such that A ⊆ B. Then I ∩ J ⊆ A if and only
if 〈A ∪ I〉 ∩ 〈A ∪ J〉 = A, for any ideals I and J of X.

Proof. Let 〈A ∪ I〉 ∩ 〈A ∪ J〉 = A. Since I ∩ J ⊆ (〈A ∪ I〉 ∩ 〈A ∪ J〉), we obtain
I ∩ J ⊆ A. Conversely, assume that I ∩ J ⊆ A. Clearly, A ⊆ 〈A ∪ I〉 ∩ 〈A ∪ J〉.
Let u ∈ 〈A ∪ I〉 ∩ 〈A ∪ J〉. Since A is an ideal of X, then by Theorem 2.2, we get
((...(u ∗ x1)∗...) ∗ xn) ∈ A, for some n ∈ N and x1, ..., xn ∈ I. It follows that, there
exists m1 ∈ A such that ((...(u ∗ x1)∗...) ∗ xn) = m1. By the similar way, we have
((...(u ∗ y1)∗...) ∗ ym) = m2, for some m ∈ N , y1,..., ym ∈ J and m2 ∈ A. Hence by
(BCI4), and (BCI5), we get

(((...(u ∗m1) ∗ ...) ∗ xn)) ∗ x1 = (((...(u ∗ x1) ∗ ...) ∗ xn)) ∗m1 = 0.

Since I is an ideal of X and x1, ..., xn ∈ I, then u ∗m1 ∈ I. By the similar way, we
can show that u∗m2 ∈ J . Since m1,m2 ∈ B, we conclude that (u∗m1)∗m2 ≤ u∗m1

and (u ∗m1) ∗m2 ≤ u ∗m2, and so (u ∗m1) ∗m2 ∈ I ∩ J ⊆ A. Hence, m ∈ A and so
〈A ∪ I〉 ∩ 〈A ∪ J〉 ⊆ A. Therefore, 〈A ∪ I〉 ∩ 〈A ∪ J〉 = A. ¤
Example 3.4. Let (X, ∗, 0) be the BCI-algebra in Example 3.3(i). Then I =
{0, a}, J = {0, b} and K = {0, c} are three ideals of X and J ∩ K ⊆ I, but
〈I ∪ J〉 = X = 〈I ∪ K〉. Hence, if A is not contained in B then Theorem 3.5,
may not true, in general.
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Remark 3.6. We know that, if M is a maximal ideal of lower BCK-semilattice X,
then M is a prime ideal [see [10], Corollary 4 ]. In Theorem 3.7, we will show that,
any maximal ideal is a prime ideal in any BCK-algebra.

Theorem 3.7. If M is a maximal ideal of BCK-algebra X, then M is a prime ideal
of X.

Proof. Let 〈x〉∩〈y〉 ⊆ M , for some x, y ∈ X. If x /∈ M and y /∈ M , then 〈M∪{x}〉 = X
and 〈M ∪ {y}〉 = X and so 〈M ∪ {x}〉 ∩ 〈M ∪ {y}〉 = X. Now, by Theorem 3.5,
〈x〉 ∩ 〈y〉 * M , which is impossible. Hence by Theorem 3.1(i), M is a prime ideal of
X. ¤

Example 3.5. Let X be the BCI-algebra in Example 3.3(i). Clearly, M = {0, b} is
a maximal ideal of X. Since {0, a} ∩ {0, c} = {0} ⊆ M , {0, a} *M and {0, c} *M ,
then M is not a prime ideal of X. Hence Theorem 3.7, may not true in general.

It has been known, if X is a lower BCK-semilattice and A is an ideal of X such
that A ∩ F = ∅, where F is ∧−closed subset of X. Then there is a prime ideal Q of
X such that A ⊆ Q and Q ∩ F = ∅ [see [11], Proposition 1.4.19]. We generalize this
theorem for BCK-algebra.

Theorem 3.8. Let X be a BCK-algebra and F be a nonempty subset of X such that
F is closed under “o”, where xoy := x ∗ (x ∗ y), for any x, y ∈ F . If A is an ideal of
X such that A ∩ F = ∅, then there exist a prime ideal Q of X such that A ⊆ Q and
Q ∩ F = ∅.
Proof. Let S = {I|I C X, A ⊆ I and F ∩I = ∅}. Then S with respect to the inclusion
relation “⊆” formes a poset. Clearly, every chain on S has an upper bound (union of
its elements). Hence Zorn’s Lemma implies that, S has a maximal element, say Q.
Obviously, Q is an ideal of X such that P ∩A = ∅. We claim that Q is a prime ideal,
otherwise there are ideals I, J of X, such that I ∩ J ⊆ Q, I * Q and J * Q. By
maximality of Q we have 〈Q∪I〉∩F 6= ∅ and 〈Q∪J〉∩F 6= ∅. Let a ∈ 〈Q∪I〉∩F and
b ∈ 〈Q∪J〉∩F . Since (aob)∗a = 0 and (aob)∗b = 0, we have aob ∈ (〈Q∪I〉∩〈Q∪J〉).
On the other hand, a, b ∈ F and F is o−closed and so aob ∈ F . Hence

aob ∈ (〈Q ∪ I〉 ∩ 〈Q ∪ J〉) ∩ F.

Comparison of last relation with Q ∩ F = ∅ gives Q 6= 〈Q ∪ I〉 ∩ 〈Q ∪ J〉. Hence
Theorem 3.5, implies I ∩ J * Q. Therefore, Q is a prime ideal. ¤

Corollary 3.9. Let X be a BCK-algebra. Then the following assertions hold:
(i) For any x ∈ X\{0}, there exists a prime ideal Q such that x /∈ P .
(ii) ∩{Q | Q is a prime ideal of X } = {0}.
(iii) Any proper ideal A of X can be expressed as the intersection of all prime ideals

of X containing A.
(iv) Let Y be a BCI-algebra and f : X → Y be a BCI-homomorphism, such that

f(X) is an ideal of Y . If I is a prime ideal of Y and f−1(I) 6= X, then f−1(I) is a
prime ideal of X.

Proof. (i) Let x ∈ X\{0}. Then we set A = {0} and F = {x}. Clearly, F is o−closed
and A ∩ F = ∅. Hence by Theorem 3.8, there exists a prime ideal Q such that Q is
not contain x.
(ii) The proof is straightforward.
(iii) Let a ∈ (X −A) and F = {a}. Then by (BCI2), x ∗ (x ∗ y) ∈ F , for all x, y ∈ F .
By Theorem 3.8, there exists a prime ideal Qa of X such that a /∈ Qa and A ⊆ Qa.
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Therefore, A ⊆ ⋂
a∈X−A

Qa. On the other hand b /∈ ⋂
a∈X−A

Qa, for any b ∈ X − A.

Hence
⋂

a∈X−A

Qa ⊆ A and so A =
⋂

a∈X−A

Qa.

(iv) Let 〈x〉 ∩ 〈y〉 ⊆ f−1(I), for some x, y ∈ X. If 〈f(x)〉 ∩ 〈f(y)〉 = 0, then 〈f(x)〉 ∩
〈f(y)〉 ⊆ I. Let u ∈ 〈f(x)〉 ∩ 〈f(y)〉 − {0}. Then there exist m, n ∈ N such that
u ∗ f(x)n = 0 and u ∗ f(y)m = 0. Since f(X) is an ideal of Y and 〈f(x)〉 ⊆ f(X),
〈f(y)〉 ⊆ f(X) , then u = f(a), for some a ∈ X. Moreover, f is a BCI-homomorphism
and so f(a ∗xn) = 0 = f(a ∗ ym). Hence, a ∗xn ∈ f−1(I) and a ∗ ym ∈ f−1(I) and so
a ∈ 〈f−1(I) ∪ {x}〉 ∩ 〈f−1(I) ∪ {y}〉. Since 〈x〉 ∩ 〈y〉 ⊆ f−1(I), then by Theorem 3.5,
a ∈ f−1(I) and so u = f(a) ∈ I. Hence 〈f(x)〉 ∩ 〈f(y)〉 ⊆ I. Now, since I is a prime
ideal of Y we have f(x) ∈ I or f(y) ∈ I and so x ∈ f−1(I) or y ∈ f−1(I). Therefore,
by Theorem 3.1(i), f−1(I) is a prime ideal of X. ¤

Corollary 3.10. Let A be an ideal of X generated by P . If I is a proper ideal of X
containing P , then

I = ∩{∪{Ax |Ax ∈ J} |J is a prime ideal of X/A }.
Proof. Clearly, X/A is a BCK-algebra. By Corollary 3.9(iii), we have

I/A = ∩{J |J is a prime ideal of X/A}.
Let J be a prime ideal of X/A. Since A = 〈P 〉 = 〈P ∪ P 〉 = P + P , then A is a
closed ideal of X and so by Lemma 2.4(iii), J = FJ/A, where FJ = ∪{Ax |Ax ∈ J}.
Therefore,

I/A = ∩{FJ/A |J is a prime ideal of X/A} = (∩{FJ |J is a prime ideal of X/A})/A
Now, by Lemma 2.4(ii), we conclude that I = ∩{FJ |J is a prime ideal of X/A}. ¤

Let X be a lower BCK-semilattice and I be an ideal of X. If X/I is a BCK-chain,
then I is a prime ideal of X. In next theorem, we generalize this theorem. Note that,
if X has not any prime ideal we say the intersection of all prime ideals of X is X.

Theorem 3.11. Let X be a BCI-algebra and I be a prime ideal of X.
(i) If I ⊆ B and ID(X/I) is a chain, then I is a prime ideal of X.

(ii) Let M1,..., Mn and M be maximal ideals of X such that
n⋂

i=1

Mi ⊆ M . Then

there exists j ∈ {1, 2, ..., n}, such that Mj = M .
(iii) Let X be a non zero nilpotent BCI-algebra and S = {Pα |α ∈ J} be the set

of all prime ideals of X. Then
⋂

α∈J

Pα = {0} if and only if X is subdirect product of

special family {Xi}i∈I , such that Xi is a finite ∩-structure, for any i ∈ I.

Proof. (i) Let x, y ∈ X such that 〈x〉 ∩ 〈y〉 ⊆ I. Since ID(X/I) is a chain, then
〈Ix〉 ⊆ 〈Iy〉 or 〈Iy〉 ⊆ 〈Ix〉. Let 〈Ix〉 ⊆ 〈Iy〉. Then by Theorem 2.2, there exists n ∈ N
such that Ix∗yn = Ix ∗ Iyn = Ix ∗ (Iy)n = I0 and so x ∗ yn ∈ I. Since I ⊆ B, then by
Theorem 2.2, we have x ∗ (x ∗ yn) ∈ 〈x〉 ∩ 〈y〉 and so x ∈ I. By the similar way, we
get y ∈ I, when Iy ⊆ Ix. Therefore, I is a prime ideal of X.
(ii) By Theorem 3.7, M is a prime ideal of X. Hence there exists j ∈ {1, ..., n} such
that Mj ⊆ M . Since Mj is a maximal ideal of X we obtain that Mj = M .
(iii) Clearly, the map ϕ : X →

∏

α∈J

X/Pα defined by ϕ(x) = ((Pα)x)α∈J , for all

x ∈ X, is a homomorphism and ker(ϕ) =
⋂

α∈J

Pα = {0}. Thus ϕ is a one to one
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homomorphism and so it is a subdirect embedding. Now, let α ∈ J . Since X is
nilpotent, then I is closed and so by Proposition 3.4(ii) (Pα)0 is a prime ideal of
X/P . Hence by Proposition 3.2(i), X/Pα − {P0} is a finite ∩-structure and so by
definition X/Pα is a finite ∩-structure. Conversely, let X be subdirect product of
family {Xi}i∈I , such that Xi is a finite ∩-structure, for any i ∈ I. Then there is an
one to one BCI-homomorphism ϕ : X →

∏

j∈J

Xj such that (πioϕ) : X → Xi is an onto

BCI-homomorphism and so X/Bi
∼= Xi, for any i ∈ J , where Bi = (πioϕ)−1({0}).

Let i ∈ J . Since Xi is a finite ∩-structure, then X/Bi is finite ∩-structure and so
by Proposition 3.2(i), Bi is a prime ideal of X. Clearly,

⋂

j∈J

Bj = ker(ϕ) = {0}.

Therefore, the intersection of all prime ideals of X is {0}. ¤

Corollary 3.12. Every non zero BCK-algebra is subdirect product of a family of
finite ∩-structure BCI-algebras.

Proof. It is straight consequent of Corollary 3.9(ii) and Theorem 3.11(iii). ¤

Example 3.6. Let X = {0, 1, 2, a, b}. Define the binary operation “*” on X by the
following table:

Table 4
* 0 1 2 a b
0 0 0 0 b a
1 1 0 1 b a
2 2 2 0 b a
a a a a 0 b
b b b b a 0

Then (X, ∗, 0) is a BCI-algebra (see [11] Appendix B Example 8). Let I = {0, 1}.
Then I ⊆ B and {{I0}, {I0, I2}, X/I} is the set of all ideals of X/I. Therefore, the
set of ideals of X/I is a chain. By Theorem 3.11(i), we conclude that I is a prime
ideal of X.

Note 3.13. [11] Let X be a P -semisimple BCI-algebra. Then (X, ., 0) is an Abelian
group, where x.y = x ∗ (0 ∗ y), for all x, y ∈ X. Moreover, any closed ideal of X is a
subgroup of (X, ., 0).

Theorem 3.14. Let X be an associative BCI-algebras and I be an ideal of X.
(i) If there exist distinct elements x, y of X such that x, y /∈ I. Then I is not a

prime ideal.
(ii) If X is of order n > 2, then there is not any prime ideal on X.

Proof. (i) Since X is an associative BCI-algebra, we have 〈x〉 = {x, 0} and 〈y〉 =
{0, y} and so 〈x〉 ∩ 〈y〉 = 0. Therefore, I is not a prime ideal of X.
(ii) Let I be a proper ideal of X. Since X is finite, then I is a closed ideal. Hence
by Note 3.13, I is a subgroup of (X, ., 0) and so there exists t ∈ N − {1} such that
n = t|I|, where |I| is the number of elements of I. Hence |I| ≤ n− 2. Now, by (i), I
is not a prime ideal of X and so X has not any prime ideals. ¤

Theorem 3.15. Let M be a maximal ideal of X containing P . If I = 〈P 〉, then M/I
is a prime ideal of X/I.
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Proof. Since, I = 〈P 〉 = 〈P ∪P 〉 = P +P , then I is a closed ideal of X. Since P ⊆ M ,
we have I ⊆ M and so M/I is a maximal ideal of X/I. Also X/I is a BCK-algebra.
Hence by Theorem 3.7, M/I is a prime ideal of X/I. ¤

Example 3.7. Let X = {0, 1, a, b}. Define the operation “*” on X by

Table 5
* 0 1 a b
0 0 0 a a
1 1 0 b a
a a a 0 0
b b a 1 0

Clearly, (X, ∗, 0) is a BCI-algebra (see [11] Appendix B Example 4) and {{0}, {0,a},
{0,1}} is the set of all proper ideals of X. Hence M = {0, a} is a maximal ideal of X.
It is obvious that P = {0, a} is the P -semisimple part of X. By Theorem 3.15, M/I
is a prime ideal of X/I, where I = 〈P 〉.
Lemma 3.16. Let X be a nilpotent BCI-algebra. Then for any b ∈ B\{0}, there
exists a prime ideal Q such that b /∈ Q.

Proof. Let b ∈ B\{0}. By Corollary 3.9(i), there exists a prime ideal I of B such
that b /∈ I. Let P be P -semisimple part of X. We claim that b /∈ I + P . Otherwise,
b ∈ I + P . Then by Theorem 2.2, there exist a1, ..., an ∈ I such that (...(b ∗ a1) ∗
...) ∗ an ∈ P . Since B is a closed ideal of X we have (...(b ∗ a1) ∗ ...) ∗ an ∈ B. Hence
(...(b ∗ a1) ∗ ...) ∗ an ∈ B ∩ P = {0}. Therefore,

(...(b ∗ a1) ∗ ...) ∗ an = 0 ∈ I.

Since I is an ideal of X containing a1, ..., an, we conclude that b ∈ I, which is a
contradiction. Hence b /∈ I + P . It remains to show that I + P is a prime ideal of X.
Let J and K be two ideals of X such that J ∩K ⊆ I + P . Then

(J ∩B) ∩ (K ∩B) = (J ∩K) ∩B ⊆ (I + P ) ∩B. (3.1)

Now, we show that (I + P ) ∩B = I. Clearly, I ⊆ (I + P ) ∩B. Let x ∈ (I + P ) ∩B.
Then there exist a1, ..., an ∈ I such that (...(x∗a1)∗...)∗an ∈ P . Since x, a1, ..., an ∈ B
we have

(...(x ∗ a1) ∗ ...) ∗ an ∈ P ∩B = {0}. (3.2)

Moreover, since a1, ..., an ∈ I we obtain x ∈ I. Hence (I + P ) ∩ B ⊆ I. Therefore,
(I + P ) ∩ B = I. By (3.1) and (3.2) we have (J ∩ B) ∩ (K ∩ B) ⊆ I. Since I is a
prime ideal of B we have J ∩ B ⊆ I or K ∩ B ⊆ I. Assume that J ∩ B ⊆ I. Since
x ∗ (0 ∗ (0 ∗ x)) ∈ B and X is nilpotent, then by Theorem 2.1, x ∗ (0 ∗ (0 ∗ x)) ∈ B ∩ J
and 0 ∗ (0 ∗ x) ∈ P , for all x ∈ J . Since J ∩B ⊆ I, we have x ∈ I + P . Therefore,

J ⊆ I + P, (3.3)

If K ∩B ⊆ I, then by the similar way, we obtain

K ⊆ I + P. (3.4)

Putting (3.3) and (3.4) together, we obtain that J ⊆ I + P or K ⊆ I + P . Hence
I + P is a prime ideal of X. ¤

Corollary 3.17. If X is a nilpotent BCI-algebra such that B 6= {0}, then X has a
prime ideal.
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Theorem 3.18. Let X be a nilpotent BCI-algebra.
(i) For any x ∈ X − P , there exists a prime ideal Q of X, such that x /∈ Q.
(ii) ∩{Q |Q is a prime ideal of X } ⊆ P .

Proof. (i) Let x ∈ X − P . Then by (BCI6) and (BCI7), we conclude that x ∗ (0 ∗
(0 ∗ x)) ∈ B − {0}. Hence by Lemma 3.16, there is a prime ideal Q of X such that
x ∗ (0 ∗ (0 ∗ x)) /∈ Q. Therefore, x /∈ Q. Since if x ∈ Q, then by (BCI4), (BCI5)
and (BCI6), we get (x ∗ (0 ∗ (0 ∗ x))) ∗ x = 0 ∗ x ∈ Q (since Q is closed) and so
x ∗ (0 ∗ (0 ∗ x)) ∈ Q, which is impossible.

(ii) It is straight consequent of (i). ¤
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