Prime Ideals in BCI and BCK-Algebras

R. A. Borzooei and O. Zahiri

Abstract. In this paper, we introduce a new definition of prime ideal in BCI-algebras and show that it is equivalent to the last definition of prime ideal in lower BCK-semilattice. Then we attempt to generalize some useful theorems about prime ideals, in BCI-algebras, instead of lower BCK-semilattices.

2010 Mathematics Subject Classification. 06F35; 03G25.

Key words and phrases. BCI-algebra, BCK-algebra, ideal, prime ideal, maximal ideal.

1. Introduction

The notions of BCK and BCI-algebras were introduced by Imai and Iseki [3, 4] in 1966. They are two important classes of logical algebras. Most of the algebras related to the t-norm based logic, such as MTL-algebras, BL-algebras and residuated lattices are extensions of BCK-algebras. These algebras have been extensively studied since their introduction. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. The concept of ideal in these algebra follows from the concepts of deductive system and ideal in logical algebras such as BL-algebras and residuated lattices.

Iseki [5], introduced the concept of prime ideal in commutative BCK-algebras and Palasinski [10], generalized this definition for any lower BCK-semilattices. Then many authors have studied the properties of this ideal in lower BCK-semilattices (see [1, 2, 5, 9, 10]). They showed that this ideal is one of the most important ideals in lower BCK-semilattices. Any ideal F of a lower BCK-semilattices contained in a prime ideal, has prime and minimal prime decomposition. But prime ideal and irreducible ideal are the same in lower BCK-semilattice. In this paper, we generalize the concept of prime ideals for BCI-algebras and attempt to generalize the properties of prime ideals in BCI-algebras. We show that prime ideals are irreducible in any BCI-algebras, but the converse may not true in general. Then we verify some useful properties of this ideals in BCI and BCK-algebra such as relation between prime ideals and maximal ideals.

2. Preliminaries

Definition 2.1. [3, 4] A BCI-algebra is an algebra $(X, *, 0)$ of type $(2, 0)$ satisfying the following conditions: for all $x, y, z \in X$

$(BC11) \ ((x * y) * (x * z)) * (z * y) = 0$
$(BC12) x * 0 = x$
$(BC13) x * y = 0$ and $y * x = 0$ imply $y = x$
Let X be a BCI-algebra and $x \ast y^n = \cdots ((x \ast y) \ast y) \ast \cdots \ast y$, where y occurs n times and $x, y \in X$. Then for all $x, y, z \in X$ and $k \in \mathbb{N}$, the following hold: (see [11])

$(BCIA)\ x \ast x = 0$

$(BC15)\ (x \ast y) \ast z = (x \ast z) \ast y$

$(BC16)\ x \ast (x \ast (x \ast y))^k = x \ast y^k$

$(BC17)\ 0 \ast (x \ast y)^k = (0 \ast x^k) \ast (0 \ast y^k)$

$(BC18)\ 0 \ast (0 \ast x^k) = 0 \ast (0 \ast y^k)$

A nonempty subset S of BCI-algebra $(X, \ast, 0)$ is called a subalgebra of X if $x \ast y \in S$, for any $x, y \in S$.

For any BCI-algebra X, the relation $x \leq y \iff x \ast y = 0$ is a partial order relation [4]. It is called BCI-ordering of X. The set $P = \{x \in X\ | 0 \ast (0 \ast x) = x\}$ is called P-semisimple part of BCI-algebra X and is called a P-semisimple BCI-algebra if $P = X$ (see [8, 11]). The set $\{x \in X\ | 0 \ast x = 0\}$ is called BCI-part of BCI-algebra X and is denoted by $BCI(X)$. If $X = BCI(X)$, then we say X is a BCI-algebra. A lower BCI-semilattice is a BCI-algebra $(X, \ast, 0)$, such that it with respect to its BCI-ordering forms a lower semilattice. Moreover, a BCI-algebra X is called associative if $(x \ast y) \ast z = x \ast (y \ast z)$, for any $x, y, z \in X$. In any associative BCI-algebra, $x \ast y = y \ast x$ and $0 \ast x = x$, for any $x, y \in X$ (see [7]).

Definition 2.2. [3, 4] Let I be a nonempty subset of BCI-algebra X containing 0. I is called an ideal of X if $y \ast x \in I$ and $x \in I$ imply $y \in I$, for any $x, y \in X$. Clearly, $\{0\}$ is an ideal of X and we write 0 is an ideal of X, for convenience. An ideal I is called proper, if $I \neq X$ and is called closed, if $x, y \in I$, for all $x, y \in I$. The BCI-part of X is a closed ideal of X. Let S be a nonempty subset of X. We call the least ideal of X containing S, the generated ideal of X by S and is denoted by (S).

If A and B are two subalgebras of X, then we usually denote $A \cup B$ for $(A \cup B)$.

Moreover, $A + B$ is a closed ideal of X (see [11], Proposition 1.4.15). If X is a BCI-algebra, then BCI-part of X is a closed ideal of X and P-semisimple part of X is a subalgebra of X. If X is a lower BCI-semilattice, then for any $x, y \in X$, we have

$(P1)\ (x) \cap (y) = (x \land y)$ (see [11], Proposition 1.4.16).

Let A be an ideal of a BCI-algebra X. Then the relation θ defined by $(x, y) \in \theta \iff x \ast y = 0 \ast x \in A$ is a congruence relation on X. We usually denote A_x for $[x] = \{y \in X\ | (x, y) \in \theta\}$. Moreover, A_0 is a closed ideal of BCI-algebra X. In fact, it is the greatest closed ideal contained in A. Assume that $X/A = \{A_x\ | x \in X\}$. Then $(X/A, \ast, A_0)$ is a BCI-algebra, where $A_x \ast A_y = A_{x \ast y}$, for all $x, y \in X$.

Let X and Y be two BCI-algebras. A map $f : X \to Y$ is called a BCI-homomorphism, if $f(x \ast y) = f(x) \ast f(y)$, for all $x, y \in X$. If $f : X \to Y$ is a BCI-homomorphism, then the set $\ker(f) = f^{-1}(0)$ is a closed ideal of X. A homomorphism is one to one if and only if $\ker(f) = \{0\}$ (see [11]). The homomorphism f is called an epimorphism if f is onto. Moreover, an isomorphism is a homomorphism, which is both one to one and onto. Note that, if $f : X \to Y$ is a BCI-homomorphism, then $f(0) = 0$. An element x of BCI-algebra X is called nilpotent if $0 \ast x^n = 0$, for some $n \in \mathbb{N}$. A BCI-algebra is called nilpotent if any element of X is nilpotent (see [6]).

Theorem 2.1. [11] BCI-algebra X is nilpotent if and only if every ideal of X is closed.

Theorem 2.2. [11] Let S be a nonempty subset of a BCI-algebra X and

$A = \{x \in X\ | ((x \ast a_1) \ast a_2) \ast \cdots \ast a_n = 0, \text{ for some } n \in \mathbb{N} \text{ and some } a_1, \ldots, a_n \in S\}.$
Then \(\langle S \rangle = A \cup \{0\} \). Especially, if \(S \) contains a nilpotent element of \(X \), then \(\langle S \rangle = A \). Moreover, if \(I \) is an ideal of \(X \), then
\[
(A \cup S) = \{x \in X \mid (\cdots((x*a_1)*a_2)*\cdots)*a_n \in A, \text{ for some } n \in \mathbb{N} \text{ and } a_1, \ldots, a_n \in S\}.
\]

Definition 2.3. [10] A proper ideal \(I \) of BCI-algebra \(X \) is called an irreducible ideal if \(A \cap B = I \) implies \(A = I \) or \(B = I \), for any ideals \(A \) and \(B \) of \(X \).

Definition 2.4. [10] Let \(X \) be a BCI-algebra. A proper ideal \(M \) of \(X \) is called a maximal ideal if \(\langle M \cup \{x\} \rangle = X \) for any \(x \in X \setminus M \), where \(\langle M \cup \{x\} \rangle \) is an ideal generated by \(M \cup \{x\} \). Note that, \(M \) is a maximal ideal of \(X \) if and only if \(M \subseteq A \subseteq X \) implies that \(M = A \) or \(A = X \), for any ideal \(A \) of \(X \).

Theorem 2.3. [10] Let \(X \) and \(Y \) be two BCI-algebras and \(f : X \to Y \) be a BCI-epimorphism. If \(A = \ker(f) \), then \(\alpha : X/A \to Y \) which is defined by \(\alpha(A_x) = f(x) \) is a BCI-isomorphism.

Lemma 2.4. [11] Let \(I \) and \(J \) be two ideals of BCI-algebra \(X \) such that \(I \subseteq J \). Denote \(J/I = \{I_x \in X/I \mid x \in J\} \). Then
\[
(i) \quad \text{if and only if } I \subseteq J/I, \text{ for any } x \in X.
\]
\[
(ii) \quad J/I = \{I_x \in X/I \mid x \in J\} \text{ is an ideal of } X/I.
\]
\[
(iii) \quad \text{Let } I \text{ be a closed ideal of } X. \text{ If } S \text{ and } T \text{ are the sets of all ideals of } X \text{ and } X/I, \text{ respectively, then the map } g : S \to T \text{ defined by } g(J) = J/I, \text{ is a bijective map.}
\]
\[
\text{The inverse of } g \text{ is the map } f : T \to S, \text{ is defined by } f(J) = \cup\{I_x \mid I_x \in J\}.
\]

Definition 2.5. [5] A proper ideal \(I \) of lower BCK-semilattice \(X \) is called prime if \(x \land y \in I \) implies \(x \in I \) or \(y \in I \).

Let \(\{X_i\}_{i \in I} \) be a family of BCI-algebras. Then \(\prod_{i \in I} X_i \) is a BCI-algebra and the map \(\pi_j : \prod_{i \in I} X_i \to X_j \), defined by \(\pi_j((x_i)_{i \in I}) = x_j \) is called the \(j \)-th natural projection map.

Definition 2.6. [11] A BCI-algebra \(X \) is called a subdirect product of BCI-algebras family \(\{X_i\}_{i \in I} \) if there is an one to one BCI-homomorphism \(f : X \to \prod_{i \in I} X_i \) such that \(\pi_i(f(X)) = X_i \), where \(\pi_i : \prod_{i \in I} X_i \to X_i \) is the \(i \)-th natural projection map, for all \(i \in I \). Moreover, the map \(f \) is called subdirect embedding.

3. **Prime ideals in BCI and BCK-algebras**

In this section, we introduce the concept of prime ideals in BCI-algebras and we prove that this concept and the last definition of prime ideal in a lower BCK-semilattice are equivalent. Then we generalize some useful theorems about the prime ideals on BCI and BCK-algebras. Finally, we discuss some relations between BCK-part and prime ideals in BCI and BCK-algebras.

Throughout this section, \(X \) is a BCI-algebra, \(B \) is BCK-part of \(X \) and \(P \) is \(P \)-semisimple part of \(X \), unless otherwise stated.

Definition 3.1. A proper ideal \(I \) of BCI-algebra \(X \) is called prime if \(A \cap B \subseteq I \) implies \(A \subseteq I \) or \(B \subseteq I \), for all ideals \(A \) and \(B \) of \(X \).
Example 3.1. Let "-" be the subtraction of integers. Then \(X = (\mathbb{Z}, -) \) is a BCI-algebra. Clearly, \(M_1 = \mathbb{N} \cup \{0\} \) and \(M_2 = \{-n \mid n \in \mathbb{N}\} \cup \{0\} \) are two maximal ideals of \(X \) (see [11], Example 5.3.2). Let \(I \cap J \subseteq \mathbb{N} \). If \(I \not\subseteq \mathbb{N} \) and \(J \not\subseteq \mathbb{N} \) then there exist \(m,n \in \mathbb{N} \) such that \(-n \in I \) and \(-m \in J \). By Theorem 2.3, we conclude that \(-mn \in I \cap J \subseteq \mathbb{N} \cup \{0\} \), which is impossible. Hence \(\mathbb{N} \cup \{0\} \) is a prime ideal of \(X \).

By the similar way, \(M_2 \) is a prime ideal of \(X \).

Theorem 3.1. (i) Let \(I \neq \emptyset \) be an ideal of \(X \). Then \(I \) is a prime ideal of \(X \) if and only if \(\langle x \rangle \cap \langle y \rangle \subseteq I \) implies \(x \in I \) or \(y \in I \), for any \(x, y \in X \).

(ii) If \(X \) is a lower BCK-semilattice, then Definition 3.1 and Definition 2.5 are equivalent.

Proof. (i) Let \(I \) be an ideal of \(X \), such that \(\langle x \rangle \cap \langle y \rangle \subseteq I \) implies \(x \in I \) or \(y \in I \). If \(A \) and \(B \) are two ideals of \(X \), such that \(A \cap B \subseteq I \), then there is no harm in assuming \(A \nsubseteq I \). Hence there exists \(a \in A \) such that \(a \notin I \). For any \(b \in B \), since \(\langle a \rangle \cap \langle b \rangle \subseteq A \cap B \subseteq I \) and \(a \notin I \), the primeness of \(I \) implies \(b \in I \). Therefore, \(B \subseteq I \). Conversely, let \(I \) be a prime ideal of \(X \). Clearly, \(\langle x \rangle \cap \langle y \rangle \subseteq I \) implies \(x \in I \) or \(y \in I \), for any \(x, y \in X \).

(ii) Since by (P1), \(\langle x \rangle \cap \langle y \rangle = \langle xy \rangle \), for any \(x, y \in X \) so Definition 3.1 and Definition 2.5 are equivalent.

Clearly, any prime ideal of \(X \) is an irreducible ideal. Moreover, if \(\{0\} \) is an irreducible ideal of \(X \), then \(\{0\} \) is a prime ideal.

Definition 3.2. A nonempty subset \(F \) of \(X \) is called a finite \(-\)-structure, if \(\langle x \rangle \cap \langle y \rangle \neq \emptyset \), for all \(x, y \in F \), and \(X \) is called a finite \(-\)-structure if \(X \setminus \{0\} \) is a finite \(-\)-structure.

Proposition 3.2. Let \(Y \) be a BCI-algebra and \(f : X \to Y \) be an onto BCI-homomorphism. Then the following assertions hold:

(i) An ideal \(I \) of \(X \) is prime if and only if \(F = X - I \) is a finite \(-\)-structure.

(ii) Let \(I \) be a closed ideal of \(X \) and \(J \) be an ideal of \(X \) containing \(I \). If \(J \) is a prime ideal of \(X \), then \(J/I \) is a prime ideal of \(X/I \).

(iii) Let \(I \) be a prime ideal of \(X \) and \(\ker f \subseteq I \). Then \(f(I) \) is a prime ideal of \(Y \).

(iv) Let \(ID(X) \) be the set of all ideals of \(X \). Then \(ID(X) \) is a chain if and only if every proper ideal of \(X \) is prime.

Proof. (i) Let \(I \) be a prime ideal of \(X \) and \(x, y \in F \). If \(\langle x \rangle \cap \langle y \rangle \cap F = \emptyset \), then \(\langle x \rangle \cap \langle y \rangle \subseteq I \). Since \(I \) is a prime ideal of \(X \), we have \(x \in I \) or \(y \in I \), which is impossible. Hence \(\langle x \rangle \cap \langle y \rangle \cap F \neq \emptyset \). Conversely, let \(F \) be a finite \(-\)-structure and \(x, y \in X \) such that \(\langle x \rangle \cap \langle y \rangle \subseteq I \). If \(x \notin I \) and \(y \notin I \), then \(x, y \in F \) and so \(\langle x \rangle \cap \langle y \rangle \cap F \neq \emptyset \). Hence, \(\langle x \rangle \cap \langle y \rangle \not\subseteq I \), which is impossible. Therefore, \(x \in I \) or \(y \in I \) and so by Theorem 3.1(i), \(I \) is a prime ideal of \(X \).

(ii) Let \(J \) be a prime ideal of \(X \). By Lemma 2.4(ii), \(J/I \) is an ideal of \(X/I \). Let \(A \) and \(B \) be two ideals of \(X/I \) such that, \(A \cap B \subseteq J/I \). By Lemma 2.4(iii), there are two ideals \(E \) and \(F \) of \(X \), such that \(A = E/I \) and \(B = F/I \). Then \((E \cap F)/I = E/I \cap F/I = A \cap B \subseteq J/I \). Therefore, \(E \cap F \subseteq J \) and so \(E \subseteq J \) or \(F \subseteq J \). Hence \(E/I \subseteq J/I \) or \(F/I \subseteq J/I \). Thus \(J/I \) is a prime ideal of \(X/I \).

(iii) Since \(\ker f \) is a closed ideal of \(X \), then by Theorem 2.3 and (ii), \(X/\ker f \equiv Y \) and \(J/\ker f \) is a prime ideal of \(X/\ker f \). Moreover, \(f(I) \cong I/\ker f \). Hence \(f(I) \) is a prime ideal of \(Y \).

(iv) Let \(ID(X) \) be a chain and \(I \) be a proper ideal of \(X \). Clearly, \(\langle a \rangle \cap \langle b \rangle \subseteq I \) implies \(a \in I \) or \(b \in I \). Hence, \(I \) is a prime ideal of \(X \). Conversely, let any proper ideal of \(X \)
be prime. Let I and J be two proper ideals of X. Since $I \cap J$ is a proper ideal of X, then $I \subseteq I \cap J$ or $J \subseteq I \cap J$ and so $I \subseteq J$ or $J \subseteq I$. Therefore, $ID(X)$ is a chain. □

Corollary 3.3. Let $x \in X - \{0\}$, such that $x * y = x$, for all $y \in X - \{x\}$. Then there exists a prime ideal Q of X, such that $x \notin Q$.

Proof. Let $Q = X - \{x\}$. Then $0 \in Q$. If $a * b, b \in Q$, then $a \neq x$ and so $a \in Q$. Hence Q is an ideal of X. Clearly, $X - Q$ is a finite \cap-structure. By Proposition 3.2(i), Q is a prime ideal of X. Therefore, there exists a prime ideal Q of X such that $x \notin Q$. □

Example 3.2. Let $X = \{0, 1, 2, a\}$. Define the binary operation “$*$” on X by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

It is easy to prove that $(X, *, 0)$ is a BCI-algebra. Since $a * y = a$, for any $y \in X - \{a\}$, then by Corollary 3.3, $Q = X - \{a\}$ is a prime ideal of X, such that $a \notin Q$.

Proposition 3.4. Let I be an ideal of X.

(i) If I is a prime ideal of X, then I/I_0 is a prime ideal of X/I_0.

(ii) If I is a closed prime ideal of X, then I_0 is a closed prime ideal of X/I.

(iii) If I_0 is a prime ideal of X/I and $I \subseteq B$, then I is a prime ideal of X.

Proof. (i) Since I_0 is a closed ideal of X, then by Lemma 2.4, I/I_0 is an ideal of X/I_0. Let A' and B' be two ideals of X/I_0 such that $A' \cap B' \subseteq I/I_0$. Then by Lemma 2.4(iii), there are ideals A and B of X containing I_0 such that $A' = A/I_0$ and $B' = B/I_0$ and so $(A \cap B)/I_0 = A' \cap B' \subseteq I/I_0$. Hence by Lemma 2.4(i),(ii), $A \cap B \subseteq I$ and so $A \subseteq I$ or $B \subseteq I$ and so $A' \subseteq I/I_0$ or $B' \subseteq I/I_0$. Therefore, I/I_0 is a prime ideal of X/I_0.

(ii) If I is closed, then $I = I_0$ and so $X/I = X/I_0$ and $I/I_0 = I_0$. Hence the proof of this part is straightforward consequent of (i).

(iii) Let $I \subseteq B$ and I_0 be a prime ideal of X/I and $(x) \cap (y) \subseteq I$, for some $x, y \in X$. If $I_u \in (I_x) \cap (I_y)$, then by Theorem 2.2, there exist $n, m \in \mathbb{N}$ such that $I_u * (I_x)_n = I_0$ and $I_u * (I_y)_m = I_0$ and so by definition of $*$ on X/I we get $I_u * x^n = I_u * I_x = I_0$ and $I_u * y^m = I_u * I_y = I_0$. It follows from (BCI2) that, $u * x^n \in I$ and $u * y^m \in I$ and so $u * x^n = a, u * y^m = b$, for some $a, b \in I$. Since $I \subseteq B$, then by Theorem 2.2, we obtained $(u * a) * b \in (x) \cap (y)$ and so $(u * a) * b \in I$. Moreover, I is an ideal and $a, b \in I$. Hence $u, 0 * u \in I$ and so $I_u = I_0$. Thus, $(I_u) \cap (I_y) \subseteq I_0$. Since I_0 is a prime ideal of X/I, then we have $I_x = I_0$ or $I_y = I_0$ and so $x \in I$ or $y \in I$. Hence by Theorem 3.1(i), I is a prime ideal of X.

By definition of prime and irreducible ideals, any prime ideal is an irreducible ideal in any BCI-algebra. But the converse is false. In next example, we will show that there exists an irreducible ideal which is not prime.
Example 3.3. (i) Let $X = \{0, a, b, c\}$. Define the binary operation $*^m$ on X by the following table:

$$
\begin{align*}
\begin{array}{ccc}
* & 0 & a & b & c \\
0 & 0 & a & b & c \\
a & a & 0 & c & b \\
b & b & c & 0 & a \\
c & c & b & a & 0
\end{array}
\end{align*}
$$

Then $(X, *, 0)$ is a BCI-algebra (see [11]) and $\emptyset, \{0\}, \{0, a\}, \{0, b\}, \{0, c\}$ is the set of all proper ideals of X. Clearly, $\emptyset, \{0, a\}, \{0, b\}$ and $\{0, c\}$ are irreducible ideals of X. We have $\emptyset \cap \{0, b\} \subseteq \{0, c\}$. Hence $\{0, c\}$ is not a prime ideal of X. By the similar way, $\emptyset, \{0, a\}$ and $\{0, b\}$ are not prime ideals of X. Therefore, X has not any prime ideal.

(ii) Let $(X, *, 0)$ be the BCI-algebra in Example 3.1. Then $I = \{0, a\}$ is an irreducible ideal of X. Now, we have $b, c \in X - I$ and $(b) \cap (c) = \{0, b\} \cap \{0, c\} = \{0\}$ and so $((b) \cap (c)) \cap (X - I) = \emptyset$. Therefore, $X - I$ is not a finite-∩ structure.

(iii) Let $X = \{0, 1, a, b, c\}$. Define the binary operation $*^m$ on X by the following table:

$$
\begin{align*}
\begin{array}{ccc}
* & 0 & 1 & a & b & c \\
0 & 0 & 0 & a & b & c \\
1 & i & 0 & a & b & c \\
a & a & a & 0 & c & b \\
b & b & b & c & 0 & a \\
c & c & c & b & a & 0
\end{array}
\end{align*}
$$

Then $(X, *, 0)$ is a BCI-algebra and $\emptyset, \{0\}, \{0, 1\}, \{0, 1, b\}, \{0, 1, c\}$ is the set of all proper ideals of X and $\emptyset, \{0, 1\} \cap \{0, 1, c\} \subseteq \{0, 1\}$ and so $I = \{0, 1, a\}$ is not a prime ideal of X. But, $\{I_0\}, \{I_0, I_1\}$ is the set of all ideals of X/I. Hence I_0 is a prime ideal of X/I. Therefore, the converse of Proposition 3.4(iii), is not true in general.

Theorem 3.5. Let A be an ideal of X such that $A \subseteq B$. Then $I \cap J \subseteq A$ if and only if $(A \cup I) \cap (A \cup J) = A$, for any ideals I and J of X.

Proof. Let $(A \cup I) \cap (A \cup J) = A$. Since $I \cap J \subseteq ((A \cup I) \cap (A \cup J))$, we obtain $I \cap J \subseteq A$. Conversely, assume that $I \cap J \subseteq A$. Clearly, $A \subseteq (A \cup I) \cap (A \cup J)$. Let $u \in (A \cup I) \cap (A \cup J)$. Since A is an ideal of X, then by Theorem 2.2, we get $((...\langle u \times x_1 \rangle ... \times x_n)) \in A$, for some $n \in \mathbb{N}$ and $x_1, ..., x_n \in I$. It follows that, there exists $m_1 \in A$ such that $((...\langle u \times x_1 \rangle ... \times x_n) = m_1$. By the similar way, we have $((...\langle u \times y_1 \rangle ... \times y_m) = m_2$, for some $m \in \mathbb{N}$, $y_1, ..., y_m \in J$ and $m_2 \in A$. Hence by (BCI4), and (BCI5), we get

$$
((...\langle u \times m_1 \rangle ... \times x_n)) \times x_1 = ((...\langle u \times x_1 \rangle ... \times x_n) \times m_1 = 0.
$$

Since I is an ideal of X and $x_1, ..., x_n \in I$, then $u \times m_1 \in I$. By the similar way, we can show that $u \times m_2 \in J$. Since $m_1, m_2 \in B$, we conclude that $u \times m_1 \times m_2 \leq u \times m_1$ and $(u \times m_1) \times m_2 \leq u \times m_2$, and so $(u \times m_1) \times m_2 \in I \cap J \subseteq A$. Hence, $m \in A$ and so $(A \cup I) \cap (A \cup J) = A$. Therefore, $(A \cup I) \cap (A \cup J) = A$. □

Example 3.4. Let $(X, *, 0)$ be the BCI-algebra in Example 3.3(i). Then $I = \{0, a\}, J = \{0, b\}$ and $K = \{0, c\}$ are three ideals of X and $J \cap K \subseteq I$, but $\langle I \cup J \rangle = X = \langle I \cup K \rangle$. Hence, if A is not contained in B then Theorem 3.5, may not true, in general.
Remark 3.6. We know that, if M is a maximal ideal of lower BCK-semilattice X, then M is a prime ideal [see [10], Corollary 4]. In Theorem 3.7, we will show that, any maximal ideal is a prime ideal in any BCK-algebra.

Theorem 3.7. If M is a maximal ideal of BCK-algebra X, then M is a prime ideal of X.

Proof. Let $(x) \cap (y) \subseteq M$, for some $x, y \in X$. If $x \notin M$ and $y \notin M$, then $(M \cup \{x\}) = X$ and $(M \cup \{y\}) = X$ and so $(M \cup \{x\}) \cap (M \cup \{y\}) = X$. Now, by Theorem 3.5, $(x) \cap (y) \not\subseteq M$, which is impossible. Hence by Theorem 3.1(i), M is a prime ideal of X. \hfill \Box

Example 3.5. Let X be the BCI-algebra in Example 3.3(i). Clearly, $M = \{0, b\}$ is a maximal ideal of X. Since $\{0, a\} \cap \{0, c\} = \{0\} \subseteq M$, $\{0, a\} \not\subseteq M$ and $\{0, c\} \not\subseteq M$, then M is not a prime ideal of X. Hence Theorem 3.7, may not true in general.

It has been known, if X is a lower BCK-semilattice and A is an ideal of X such that $A \cap F = \emptyset$, where F is \land-closed subset of X. Then there is a prime ideal Q of X such that $A \subseteq Q$ and $Q \cap F = \emptyset$ [see [11], Proposition 1.4.19]. We generalize this theorem for BCK-algebra.

Theorem 3.8. Let X be a BCK-algebra and F be a nonempty subset of X such that F is closed under “$*$”, where $x * y := x + (x * y)$, for any $x, y \in F$. If A is an ideal of X such that $A \cap F = \emptyset$, then there exist a prime ideal Q of X such that $A \subseteq Q$ and $Q \cap F = \emptyset$.

Proof. Let $S = \{I | I \triangleleft X, A \subseteq I$ and $F \cap I = \emptyset\}$. Then S with respect to the inclusion relation “\subseteq” forms a poset. Clearly, every chain on S has an upper bound (union of its elements). Hence Zorn’s Lemma implies that, S has a maximal element, say Q. Obviously, Q is an ideal of X such that $P \cap A = \emptyset$. We claim that Q is a prime ideal, otherwise there are ideals I, J of X, such that $I \cap J \subseteq Q$, $I \not\subseteq Q$ and $J \not\subseteq Q$. By maximality of Q we have $(Q \cup I) \cap F \neq \emptyset$ and $(Q \cup J) \cap F \neq \emptyset$. Let $a \in (Q \cup I) \cap F$ and $b \in (Q \cup J) \cap F$. Since $(aob) * a = 0$ and $(aob) * b = 0$, we have $aob \in ((Q \cup I) \cap (Q \cup J))$. On the other hand, $a, b \in F$ and F is o-closed and so $aob \in F$. Hence $aob \in ((Q \cup I) \cap (Q \cup J)) \cap F$.

Comparison of last relation with $Q \cap F = \emptyset$ gives $Q \neq (Q \cup I) \cap (Q \cup J)$. Hence Theorem 3.5, implies $I \cap J \not\subseteq Q$. Therefore, Q is a prime ideal. \hfill \Box

Corollary 3.9. Let X be a BCK-algebra. Then the following assertions hold:

(i) For any $x \in X \setminus \{0\}$, there exists a prime ideal Q of X such that $x \notin P$.

(ii) $\cap \{Q \mid Q \text{ is a prime ideal of } X \} = \{0\}$.

(iii) Any proper ideal A of X can be expressed as the intersection of all prime ideals of X containing A.

(iv) Let Y be a BCI-algebra and $f : X \rightarrow Y$ be a BCI-homomorphism, such that $f(X)$ is an ideal of Y. If I is a prime ideal of Y and $f^{-1}(I) \neq X$, then $f^{-1}(I)$ is a prime ideal of X.

Proof. (i) Let $x \in X \setminus \{0\}$. Then we set $A = \{0\}$ and $F = \{x\}$. Clearly, F is o-closed and $A \cap F = \emptyset$. Hence by Theorem 3.8, there exists a prime ideal Q such that Q does not contain x.

(ii) The proof is straightforward.

(iii) Let $a \in (X - A)$ and $F = \{a\}$. Then by $(BCI2)$, $x * (x * y) \in F$, for all $x, y \in F$. By Theorem 3.8, there exists a prime ideal Q of X such that $a \notin Q$ and $A \subseteq Q$.

Therefore, \(A \subseteq \bigcap_{a \in X - A} Q_a \). On the other hand \(b \not\in \bigcap_{a \in X - A} Q_a \), for any \(b \in X - A \).

Hence \(\bigcap_{a \in X - A} Q_a \subseteq A \) and so \(A = \bigcap_{a \in X - A} Q_a \).

(iv) Let \((x) \cap (y) \subseteq f^{-1}(I) \), for some \(x, y \in X \). If \(\langle f(x) \rangle \cap \langle f(y) \rangle = 0 \), then \(\langle f(x) \rangle \cap \langle f(y) \rangle \subseteq I \). Let \(u \in \langle f(x) \rangle \cap \langle f(y) \rangle - \{0\} \). Then there exist \(m, n \in \mathbb{N} \) such that \(u * f(x)^n = 0 \) and \(u * f(y)^m = 0 \). Since \(f(X) \) is an ideal of \(Y \) and \(\langle f(x) \rangle \subseteq f(X) \), \(\langle f(y) \rangle \subseteq f(X) \), then \(u = f(a) \), for some \(a \in X \). Moreover, \(f \) is a BCI-homomorphism and so \(f(a * x^n) = 0 = f(a * y^m) \). Hence, \(a * x^n \in f^{-1}(I) \) and \(a * y^m \in f^{-1}(I) \) and so \(a \in \langle f^{-1}(I) \cup \{x\} \rangle \cap \langle f^{-1}(I) \cup \{y\} \rangle \). Since \(\langle x \rangle \cap \langle y \rangle \subseteq f^{-1}(I) \), then by Theorem 3.5, \(a \in f^{-1}(I) \) and so \(u = f(a) \in I \). Hence \(\langle f(x) \rangle \cap \langle f(y) \rangle \subseteq I \). Now, since \(I \) is a prime ideal of \(Y \) we have \(f(x) \in I \) or \(f(y) \in I \) and so \(x \in f^{-1}(I) \) or \(y \in f^{-1}(I) \). Therefore, by Theorem 3.1(i), \(f^{-1}(I) \) is a prime ideal of \(X \). \(\square

Corollary 3.10. Let \(A \) be an ideal of \(X \) generated by \(P \). If \(I \) is a proper ideal of \(X \) containing \(P \), then

\[I = \bigcap \{ \bigcup \{ A_x \mid A_x \in J \} \mid J \text{ is a prime ideal of } X/A \}. \]

Proof. Clearly, \(X/A \) is a BCK-algebra. By Corollary 3.9(iii), we have

\[I/A = \bigcap \{ J \mid J \text{ is a prime ideal of } X/A \}. \]

Let \(J \) be a prime ideal of \(X/A \). Since \(A = (P) = (P \cup P) = P + P \), then \(A \) is an closed ideal of \(X \) and so by Lemma 2.4(iii), \(J = F_j/A \), where \(F_j = \bigcup \{ A_x \mid A_x \in J \} \).

Therefore, \(I/A = \bigcap \{ F_j/A \mid J \text{ is a prime ideal of } X/A \} = (\bigcap \{ F_j \mid J \text{ is a prime ideal of } X/A \})/A \).

Now, by Lemma 2.4(ii), we conclude that \(I = \bigcap \{ F_j \mid J \text{ is a prime ideal of } X/A \} \). \(\square

Let \(X \) be a lower BCK-semilattice and \(I \) be an ideal of \(X \). If \(X/I \) is a BCK-chain, then \(I \) is a prime ideal of \(X \). In next theorem, we generalize this theorem. Note that, if \(X \) has not any prime ideal we say the intersection of all prime ideals of \(X \) is \(X \).

Theorem 3.11. Let \(X \) be a BCI-algebra and \(I \) be a prime ideal of \(X \).

(i) If \(I \subseteq B \) and \(ID(X/I) \) is a chain, then \(I \) is a prime ideal of \(X \).

(ii) Let \(M_1, \ldots, M_n \) and \(M \) be maximal ideals of \(X \) such that \(\bigcap_{i=1}^{n} M_i \subseteq M \). Then there exists \(j \in \{1, 2, \ldots, n\} \), such that \(M_j = M \).

(iii) Let \(X \) be a non zero nilpotent BCI-algebra and \(S = \{ P_{\alpha} \mid \alpha \in J \} \) be the set of all prime ideals of \(X \). Then \(\bigcap_{\alpha \in J} P_{\alpha} = \{0\} \) if and only if \(X \) is subdirect product of special family \(\{ X_i \}_{i \in I} \), such that \(X_i \) is a finite \(\cap \)-structure, for any \(i \in I \).

Proof. (i) Let \(x, y \in X \) such that \((x) \cap (y) \subseteq I \). Since \(ID(X/I) \) is a chain, then \(\langle I_x \rangle \subseteq \langle I_y \rangle \) or \(\langle I_y \rangle \subseteq \langle I_x \rangle \). Let \(\langle I_z \rangle \subseteq \langle I_y \rangle \). Then by Theorem 2.2, there exists \(n \in \mathbb{N} \) such that \(I_{x \cdot y^n} = I_z \cdot I_{y^n} = I_z \cdot (I_y)^n = I_0 \) and so \(x \cdot y^n \in I \). Since \(I \subseteq B \), then by Theorem 2.2, we have \(x \cdot (x \cdot y^n) \in (x) \cap (y) \) and so \(x \in I \). By the similar way, we get \(y \in I \), when \(I_y \subseteq I_z \). Therefore, \(I \) is a prime ideal of \(X \).

(ii) By Theorem 3.7, \(M \) is a prime ideal of \(X \). Hence there exists \(j \in \{1, \ldots, n\} \) such that \(M_j \subseteq M \). Since \(M_j \) is a maximal ideal of \(X \) we obtain that \(M_j = M \).

(iii) Clearly, the map \(\varphi : X \to \prod_{\alpha \in J} X/P_{\alpha} \) defined by \(\varphi(x) = ((P_{\alpha})_x)_{\alpha \in J} \), for all \(x \in X \), is a homomorphism and \(ker(\varphi) = \bigcap_{\alpha \in J} P_{\alpha} = \{0\} \). Thus \(\varphi \) is a one to one
homomorphism and so it is a subdirect embedding. Now, let α ∈ J. Since X is nilpotent, then I is closed and so by Proposition 3.4(ii) \((P_α)_0\) is a prime ideal of \(X/P\). Hence by Proposition 3.2(i), \(X/P_α = \{P_0\}\) is a finite \(∩\)-structure and so by definition \(X/P_α\) is a finite \(∩\)-structure. Conversely, let X be subdirect product of family \(\{X_i\}_{i ∈ I}\), such that \(X_i\) is a finite \(∩\)-structure, for any \(i ∈ I\). Then there is an one to one \(BCI\)-homomorphism \(φ : X → \prod_{j ∈ J} X_j\) such that \((π_iφ) : X → X_i\) is an onto \(BCI\)-homomorphism and so \(X/B_i \cong X_i\), for any \(i ∈ J\), where \(B_i = (π_iφ)^{-1}(\{0\})\).

Let \(i ∈ J\). Since \(X_i\) is a finite \(∩\)-structure, then \(X/B_i\) is finite \(∩\)-structure and so by Proposition 3.2(i), \(B_i\) is a prime ideal of \(X\). Clearly, \(\bigcap_{j ∈ J} B_j = ker(φ) = \{0\}\).

Therefore, the intersection of all prime ideals of \(X\) is \(\{0\}\). \(\square\)

Corollary 3.12. Every non zero \(BCK\)-algebra is subdirect product of a family of finite \(∩\)-structure \(BCI\)-algebras.

Proof. It is straight consequent of Corollary 3.9(ii) and Theorem 3.11(iii). \(\square\)

Example 3.6. Let \(X = \{0, 1, 2, a, b\}\). Define the binary operation \(*^\ast\) on \(X\) by the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X, *, 0)\) is a \(BCI\)-algebra (see [11] Appendix B Example 8). Let \(I = \{0, 1\}\). Then \(I ⊆ B\) and \(\{I_0\}, \{I_0, I_2\}, X/I\) is the set of all ideals of \(X/I\). Therefore, the set of ideals of \(X/I\) is a chain. By Theorem 3.11(i), we conclude that \(I\) is a prime ideal of \(X\).

Note 3.13. [11] Let \(X\) be a \(P\)-semisimple \(BCI\)-algebra. Then \((X, *, 0)\) is an Abelian group, where \(x, y = x * (0 * y)\), for all \(x, y ∈ X\). Moreover, any closed ideal of \(X\) is a subgroup of \((X, *, 0)\).

Theorem 3.14. Let \(X\) be an associative \(BCI\)-algebras and \(I\) be an ideal of \(X\).

(i) If there exist distinct elements \(x, y\) of \(X\) such that \(x, y ∉ I\). Then \(I\) is not a prime ideal.

(ii) If \(I\) is of order \(n > 2\), then there is not any prime ideal on \(X\).

Proof. (i) Since \(X\) is an associative \(BCI\)-algebra, we have \(\langle x \rangle = \{x, 0\}\) and \(\langle y \rangle = \{0, y\}\) and so \(\langle x \rangle \cap \langle y \rangle = 0\). Therefore, \(I\) is not a prime ideal of \(X\).

(ii) Let \(I\) be a proper ideal of \(X\). Since \(X\) is finite, then \(I\) is a closed ideal. Hence by Note 3.13, \(I\) is a subgroup of \((X, *, 0)\) and so there exists \(t ∈ \mathbb{N} \setminus \{1\}\) such that \(n = t|I|\), where \(|I|\) is the number of elements of \(I\). Hence \(|I| ≤ n - 2\). Now, by (i), \(I\) is not a prime ideal of \(X\) and so \(X\) has not any prime ideals. \(\square\)

Theorem 3.15. Let \(M\) be a maximal ideal of \(X\) containing \(P\). If \(I = \langle P \rangle\), then \(M/I\) is a prime ideal of \(X/I\).
Proof. Since, \(I = \langle P \rangle = \langle P \cup P \rangle = P + P\), then \(I\) is a closed ideal of \(X\). Since \(P \subseteq M\), we have \(I \subseteq M\) and so \(M/I\) is a maximal ideal of \(X/I\). Also \(X/I\) is a \(BCK\)-algebra. Hence by Theorem 3.7, \(M/I\) is a prime ideal of \(X/I\). \(\square\)

Example 3.7. Let \(X = \{0,1,a,b\}\). Define the operation "\(*\)" on \(X\) by

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Clearly, \((X, *, 0)\) is a \(BCI\)-algebra (see [11] Appendix B Example 4) and \(\{\{0\}, \{0,a\}, \{0,1\}\}\) is the set of all proper ideals of \(X\). It is obvious that \(P = \{0,a\}\) is the \(P\)-semisimple part of \(X\). By Theorem 3.15, \(M/I\) is a prime ideal of \(X/I\), where \(I = \langle P \rangle\).

Lemma 3.16. Let \(X\) be a nilpotent \(BCI\)-algebra. Then for any \(b \in B\setminus\{0\}\), there exists a prime ideal \(Q\) such that \(b \notin Q\).

Proof. Let \(b \in B\setminus\{0\}\). By Corollary 3.9(i), there exists a prime ideal \(I\) of \(B\) such that \(b \notin I\). Let \(P\) be \(P\)-semisimple part of \(X\). We claim that \(b \notin I + P\). Otherwise, \(b \in I + P\). Then by Theorem 2.2, there exist \(a_1,\ldots,a_n \in I\) such that \((\ldots(b * a_1) * \ldots) * a_n \in P\). Since \(B\) is a closed ideal of \(X\) we have \((\ldots(b * a_1) * \ldots) * a_n \in B\). Hence \((\ldots(b * a_1) * \ldots) * a_n \in B \cap P = \{0\}\). Therefore,

\[\ldots(b * a_1) * \ldots * a_n = 0 \in I.\]

Since \(I\) is an ideal of \(X\) containing \(a_1,\ldots,a_n\), we conclude that \(b \notin I\), which is a contradiction. Hence \(b \notin I + P\). It remains to show that \(I + P\) is a prime ideal of \(X\). Let \(J\) and \(K\) be two ideals of \(X\) such that \(J \cap K \subseteq I + P\). Then

\[(J \cap B) \cap (K \cap B) = (J \cap K) \cap B \subseteq (I + P) \cap B.\] \hspace{1cm} (3.1)

Now, we show that \((I + P) \cap B = \{0\}\). Clearly, \(I \subseteq (I + P) \cap B\). Let \(x \in (I + P) \cap B\). Then there exist \(a_1,\ldots,a_n \in I\) such that \((\ldots(x * a_1) * \ldots) * a_n \in P\). Since \(x, a_1,\ldots,a_n \in B\) we have

\[(\ldots(x * a_1) * \ldots) * a_n \in P \cap B = \{0\}.\] \hspace{1cm} (3.2)

Moreover, since \(a_1,\ldots,a_n \in I\) we obtain \(x \in I\). Hence \((I + P) \cap B \subseteq I\). Therefore, \((I + P) \cap B = \{0\}\). By (3.1) and (3.2) we have \((J \cap B) \cap (K \cap B) \subseteq I\). Since \(I\) is a prime ideal of \(B\) we have \(J \cap B \subseteq I\) or \(K \cap B \subseteq I\). Assume that \(J \cap B \subseteq I\). Since \(x * (0 * (0 * x)) \in B\) and \(X\) is nilpotent, then by Theorem 2.1, \(x * (0 * (0 * x)) \in B \cap J\) and \(0 * (0 * x) \in P\), for all \(x \in J\). Since \(J \cap B \subseteq I\), we have \(x \in I + P\). Therefore,

\[J \subseteq I + P.\] \hspace{1cm} (3.3)

If \(K \cap B \subseteq I\), then by the similar way, we obtain

\[K \subseteq I + P.\] \hspace{1cm} (3.4)

Putting (3.3) and (3.4) together, we obtain that \(J \subseteq I + P\) or \(K \subseteq I + P\). Hence \(I + P\) is a prime ideal of \(X\). \(\square\)

Corollary 3.17. If \(X\) is a nilpotent \(BCI\)-algebra such that \(B \neq \{0\}\), then \(X\) has a prime ideal.
Theorem 3.18. Let X be a nilpotent BCI-algebra.

(i) For any $x \in X - P$, there exists a prime ideal Q of X, such that $x \notin Q$.

(ii) $\cap\{Q \mid Q \text{ is a prime ideal of } X\} \subseteq P$.

Proof. (i) Let $x \in X - P$. Then by ($BCI6$) and ($BCI7$), we conclude that $x \cdot (0 \cdot (0 \cdot x)) \in B - \{0\}$. Hence by Lemma 3.16, there is a prime ideal Q of X such that $x \cdot (0 \cdot (0 \cdot x)) \notin Q$. Therefore, $x \notin Q$. Since if $x \in Q$, then by ($BCI4$), ($BCI5$) and ($BCI6$), we get $(x \cdot (0 \cdot (0 \cdot x))) \cdot x = 0 \cdot x \in Q$ (since Q is closed) and so $x \cdot (0 \cdot (0 \cdot x)) \in Q$, which is impossible.

(ii) It is straight consequent of (i). \hfill \qed

References