Prime Ideals in $B C I$ and $B C K$-Algebras

R. A. Borzooei and O. Zahiri

Abstract

In this paper, we introduce a new definition of prime ideal in $B C I$-algebras and show that it is equivalent to the last definition of prime ideal in lower $B C K$-semilattice. Then we attempt to generalize some useful theorems about prime ideals, in BCI-algebras, instead of lower $B C K$-semilattices.

2010 Mathematics Subject Classification. 06F35; 03G25.
Key words and phrases. BCI-algebra, BCK-algebra, ideal, prime ideal, maximal ideal.

1. Introduction

The notions of $B C K$ and $B C I$-algebras were introduced by Imai and Iseki $[3,4]$ in 1966. They are two important classes of logical algebras. Most of the algebras related to the t-norm based logic, such as $M T L$-algebras, $B L$-algebras and residuated lattices are extensions of $B C K$-algebras. These algebras have been extensively studied since their introduction. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. The concept of ideal in these algebra follows from the concepts of deductive system and ideal in logical algebras such as $B L$-algebras and residuated lattices.

Iseki [5], introduced the concept of prime ideal in commutative $B C K$-algebras and Palasinski [10], generalized this definition for any lower $B C K$-semilattices. Then many authors have studied the properties of this ideal in lower $B C K$-semilattices (see $[1,2,5,9,10]$). They showed that this ideal is one of the most important ideals in lower $B C K$-semilattices. Any ideal F of a lower $B C K$-semilattices contained in a prime ideal, has prime and minimal prime decomposition. But prime ideal and irreducible ideal are the same in lower $B C K$-semilattice. In this paper, we generalize the concept of prime ideals for $B C I$-algebras and attempt to generalize the properties of prime ideals in $B C I$-algebras. We show that prime ideals are irreducible in any $B C I$-algebras, but the converse may not true in general. Then we verify some useful properties of this ideals in $B C I$ and $B C K$-algebra such as relation between prime ideals and maximal ideals.

2. Preliminaries

Definition 2.1. [3, 4] A BCI-algebra is an algebra ($X, *, 0$) of type $(2,0)$ satisfying the following conditions: for all $x, y, z \in X$

$$
\begin{aligned}
& (B C I 1)((x * y) *(x * z)) *(z * y)=0 \\
& (B C I 2) x * 0=x \\
& (B C I 3) x * y=0 \text { and } y * x=0 \text { imply } y=x
\end{aligned}
$$

Let X be a $B C I$-algebra and $x * y^{n}=(\ldots((x * y) * y) * \ldots) * y$, where y occurs n times and $x, y \in X$. Then for all $x, y, z \in X$ and $k \in \mathbb{N}$, the following hold: (see [11])

$$
\begin{aligned}
& (B C I 4) x * x=0 \\
& (B C I 5)(x * y) * z=(x * z) * y \\
& (B C I 6) x *(x *(x * y))^{k}=x * y^{k} \\
& (B C I 7) 0 *(x * y)^{k}=\left(0 * x^{k}\right) *\left(0 * y^{k}\right) \\
& (B C I 8) 0 *(0 * x)^{k}=0 *\left(0 * x^{k}\right) .
\end{aligned}
$$

A nonempty subset S of $B C I$-algebra $(X, *, 0)$ is called a subalgebra of X if $x * y \in S$, for any $x, y \in S$.
For any $B C I$-algebra X, the relation $x \leq y \Leftrightarrow x * y=0$ is a partial order relation [4]. It is called BCI-ordering of X. The set $P=\{x \in X \quad \mid 0 *(0 * x)=x\}$ is called P-semisimple part of $B C I$-algebra X and X is called a P-semisimple $B C I$-algebra if $P=X$ (see $[8,11]$). The set $\{x \in X \mid 0 * x=0\}$ is called $B C K$-part of BCI-algebra X and is denoted by $B C K(X)$. If $X=B C K(X)$, then we say X is a $B C K$-algebra. A lower $B C K$-semilattice is a $B C K$-algebra $(X, *, 0)$, such that it with respect to it's $B C I$-ordering formes a lower semilattice. Moreover, a $B C I$-algebra X is called associative if $(x * y) * z=x *(y * z)$, for any $x, y, z \in X$. In any associative $B C I$-algebra, $x * y=y * x$ and $0 * x=x$, for any $x, y \in X$ (see [7]).

Definition 2.2. [3, 4] Let I be a nonempty subset of $B C I$-algebra X containing 0 . I is called an ideal of X if $y * x \in I$ and $x \in I$ imply $y \in I$, for any $x, y \in X$. Clearly, $\{0\}$ is an ideal of X and we write 0 is an ideal of X, for convenience. An ideal I is called proper, if $I \neq X$ and is called closed, if $x * y \in I$, for all $x, y \in I$. The $B C K$-part of X is a closed ideal of X. Let S be a nonempty subset of X. We call the least ideal of X containing S, the generated ideal of X by S and is denoted by $\langle S\rangle$.

If A and B are two subalgebras of X, then we usually denote $A+B$ for $\langle A \cup B\rangle$. Moreover, $A+B$ is a closed ideal of X [see [11], Proposition 1.4.15]. If X is a $B C I$ algebra, then $B C K$-part of X is a closed ideal of X and P-semisimple part of X is a subalgebra of X. If X is a lower $B C K$-semilattice, then for any $x, y \in X$, we have
(P1) $\langle x\rangle \cap\langle y\rangle=\langle x \wedge y\rangle$ (see [11], Proposition 1.4.16).
Let A be an ideal of a $B C I$-algebra X. Then the relation θ defined by $(x, y) \in$ $\theta \Leftrightarrow x * y, y * x \in A$ is a congruence relation on X. We usually denote A_{x} for $[x]=\{y \in X \quad \mid(x, y) \in \theta\}$. Moreover, A_{0} is a closed ideal of $B C I$-algebra X. In fact, it is the greatest closed ideal contained in A. Assume that $X / A=\left\{A_{x} \mid x \in X\right\}$. Then $\left(X / A, *, A_{0}\right)$ is a $B C I$-algebra, where $A_{x} * A_{y}=A_{x * y}$, for all $x, y \in X$.

Let X and Y be two $B C I$-algebras. A map $f: X \rightarrow Y$ is called a $B C I$-homomorphism, if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$. If $f: X \rightarrow Y$ is a BCIhomomorphism, then the set $\operatorname{ker}(f)=f^{-1}(0)$ is a closed ideal of X. A homomorphism is one to one if and only if $\operatorname{ker}(f)=\{0\}$ (see [11]). The homomorphism f is called an epimorphism if f is onto. Moreover, an isomorphism is a homomorphism, which is both one to one and onto. Note that, if $f: X \rightarrow Y$ is a $B C I$-homomorphism, then $f(0)=0$. An element x of BCI-algebra X is called nilpotent if $0 * x^{n}=0$, for some $n \in \mathbb{N}$. A $B C I$-algebra is called nilpotent if any element of X is nilpotent (see [6]).

Theorem 2.1. [11] BCI-algebra X is nilpotent if and only if every ideal of X is closed.

Theorem 2.2. [11] Let S be a nonempty subset of a BCI-algebra X and

$$
A=\left\{x \in X \mid\left(\ldots\left(\left(x * a_{1}\right) * a_{2}\right) * \ldots\right) * a_{n}=0, \text { for some } n \in \mathbb{N} \text { and some } a_{1}, \ldots, a_{n} \in S\right\}
$$

Then $\langle S\rangle=A \cup\{0\}$. Especially, if S contains a nilpotent element of X, then $\langle S\rangle=A$. Moreover, if I is an ideal of X, then
$\langle A \cup S\rangle=\left\{x \in X \quad \mid\left(\ldots\left(\left(x * a_{1}\right) * a_{2}\right) * \ldots\right) * a_{n} \in A\right.$, for some $n \in \mathbb{N}$ and $\left.a_{1}, \ldots, a_{n} \in S\right\}$.
Definition 2.3. [10] A proper ideal I of $B C I$-algebra X is called an irreducible ideal if $A \cap B=I$ implies $A=I$ or $B=I$, for any ideals A and B of X.

Definition 2.4. [10] Let X be a $B C I$-algebra. A proper ideal M of X is called a maximal ideal if $\langle M \cup\{x\}\rangle=X$ for any $x \in X \backslash M$, where $\langle M \cup\{x\}\rangle$ is an ideal generated by $M \cup\{x\}$. Note that, M is a maximal ideal of X if and only if $M \subseteq A \subseteq X$ implies that $M=A$ or $A=X$, for any ideal A of X.
Theorem 2.3. [10] Let X and Y be two BCI-algebras and $f: X \rightarrow Y$ be a BCIepimorphism. If $A=\operatorname{ker}(f)$, then $\alpha: X / A \rightarrow Y$ which is defined by $\alpha\left(A_{x}\right)=f(x)$ is a BCI-isomorphism.

Lemma 2.4. [11] Let I and J be two ideals of $B C I$-algebra X such that $I \subseteq J$. Denote $J / I=\left\{I_{x} \in X / I \quad \mid x \in J\right\}$. Then
(i) $x \in J$ if and only if $I_{x} \in J / I$, for any $x \in X$.
(ii) $J / I=\left\{I_{x} \in X / I \quad \mid x \in J\right\}$ is an ideal of X / I.
(iii) Let I be a closed ideal of X. If S and T are the sets of all ideals of X and X / I, respectively, then the map $g: S \rightarrow T$ defined by $g(J)=J / I$, is a bijective map. The inverse of g is the map $f: T \rightarrow S$, is defined by $f(J)=\cup\left\{I_{x} \mid I_{x} \in J\right\}$.

Definition 2.5. [5] A proper ideal I of lower $B C K$-semilattice X is called prime if $x \wedge y \in I$ implies $x \in I$ or $y \in I$.

Let $\left\{X_{i}\right\}_{i \in I}$ be a family of $B C I$-algebras. Then $\prod_{i \in I} X_{i}$ is a $B C I$-algebra and the map $\pi_{j}: \prod_{i \in I} X_{i} \rightarrow X_{j}$, defined by $\pi_{j}\left(\left(x_{i}\right)_{i \in I}\right)=x_{j}$ is called $j-$ th natural projection map.

Definition 2.6. [11] A $B C I$-algebra X is called a subdirect product of $B C I$-algebras family $\left\{X_{i}\right\}_{i \in I}$ if there is an one to one $B C I$-homomorphism $f: X \rightarrow \prod_{i \in I} X_{i}$ such that $\pi_{i}(f(X))=X_{i}$, where $\pi_{i}: \prod_{i \in I} X_{i} \rightarrow X_{i}$ is the $i-t h$ natural projection map, for all $i \in I$. Moreover, the map f is called subdirect embedding.

3. Prime ideals in $B C I$ and $B C K$-algebras

In this section, we introduce the concept of prime ideals in $B C I$-algebras and we prove that this concept and the last definition of prime ideal in a lower $B C K$ semilattice are equivalent. Then we generalize some useful theorems about the prime ideals on $B C I$ and $B C K$-algebras. Finally, we discuss some relations between $B C K$ part and prime ideals in $B C I$ and $B C K$-algebras.

Throughout this section, X is a $B C I$-algebra, B is $B C K$-part of X and P is P-semisimple part of X, unless otherwise stated.

Definition 3.1. A proper ideal I of $B C I$-algebra X is called prime if $A \cap B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$, for all ideals A and B of X.

Example 3.1. Let "-" be the subtraction of integers. Then $X=(\mathbb{Z},-, 0)$ is a $B C I$ algebra. Clearly, $M_{1}=\mathbb{N} \cup\{0\}$ and $M_{2}=\{-n \quad \mid n \in \mathbb{N}\} \cup\{0\}$ are two maximal ideals of X (see [11], Example 5.3.2). Let $I \cap J \subseteq \mathbb{N}$. If $I \nsubseteq \mathbb{N}$ and $J \nsubseteq \mathbb{N}$ then there exist $m, n \in \mathbb{N}$ such that $-n \in I$ and $-m \in J$. By Theorem 2.3, we conclude that $-m n \in I \cap J \subseteq \mathbb{N} \cup\{0\}$, which is impossible. Hence $\mathbb{N} \cup\{0\}$ is a prime ideal of X. By the similar way, M_{2} is a prime ideal of X.

Theorem 3.1. (i) Let I be an ideal of X. Then I is a prime ideal of X if and only if $\langle x\rangle \cap\langle y\rangle \subseteq I$ implies $x \in I$ or $y \in I$, for any $x, y \in X$.
(ii) If X is a lower BCK-semilattice, then Definition 3.1 and Definition 2.5 are equivalent.

Proof. (i) Let I be an ideal of X, such that $\langle x\rangle \cap\langle y\rangle \subseteq I$ implies $x \in I$ or $y \in I$. If A and B are two ideals of X, such that $A \cap B \subseteq I$, then there is no harm in assuming $A \nsubseteq I$. Hence there exists $a \in A$ such that $a \notin I$. For any $b \in B$, since $\langle a\rangle \cap\langle b\rangle \subseteq A \cap B \subseteq I$ and $a \notin I$, the primeness of I implies $b \in I$. Therefore, $B \subseteq I$. Conversely, let I be a prime ideal of X. Clearly, $\langle x\rangle \cap\langle y\rangle \subseteq I$ implies $x \in I$ or $y \in I$, for any $x, y \in X$.
(ii) Since by $(P 1),\langle x\rangle \cap\langle y\rangle=\langle x \wedge y\rangle$, for any $x, y \in X$ so Definition 3.1 and Definition 2.5 are equivalent.

Clearly, any prime ideal of X is an irreducible ideal. Moreover, if $\{0\}$ is an irreducible ideal of X, then $\{0\}$ is a prime ideal.

Definition 3.2. A nonempty subset F of X is called a finite \cap-structure, if $(\langle x\rangle \cap\langle y\rangle) \cap F \neq \emptyset$, for all $x, y \in F$, and X is called a finite \cap-structure if $X \backslash\{0\}$ is a finite \cap-structure.

Proposition 3.2. Let Y be a BCI-algebra and $f: X \rightarrow Y$ be an onto $B C I$ homomorphism. Then the following assertions hold:
(i) An ideal I of X is prime if and only if $F=X-I$ is a finite \cap-structure.
(ii) Let I be a closed ideal of X and J be an ideal of X containing I. If J is a prime ideal of X, then J / I is a prime ideal of X / I.
(iii) Let I be a prime ideal of X and $\operatorname{ker}(f) \subseteq I$. Then $f(I)$ is a prime ideal of Y.
(iv) Let $I D(X)$ be the set of all ideals of X. Then $I D(X)$ is a chain if and only if every proper ideal of X is prime.
Proof. (i) Let I be a prime ideal of X and $x, y \in F$. If $(\langle x\rangle \cap\langle y\rangle) \cap F=\emptyset$, then $\langle x\rangle \cap\langle y\rangle \subseteq I$. Since I is a prime ideal of X, we have $x \in I$ or $y \in I$, which is impossible. Hence $(\langle x\rangle \cap\langle y\rangle) \cap F \neq \emptyset$. Conversely, let F be a finite \cap-structure and $x, y \in X$ such that $\langle x\rangle \cap\langle y\rangle \subseteq I$. If $x \notin I$ and $y \notin I$, then $x, y \in F$ and so $(\langle x\rangle \cap\langle y\rangle) \cap F \neq \emptyset$. Hence, $\langle x\rangle \cap\langle y\rangle \nsubseteq I$, which is impossible. Therefore, $x \in I$ or $y \in I$ and so by Theorem 3.1(i), I is a prime ideal of X.
(ii) Let J be a prime ideal of X. By Lemma 2.4(ii), J / I is an ideal of X / I. Let A and B be two ideals of X / I such that, $A \cap B \subseteq J / I$. By Lemma 2.4(iii), there are two ideals E and F of X, such that $A=E / I$ and $B=F / I$. Then $(E \cap F) / I=$ $E / I \cap F / I=A \cap B \subseteq J / I$. Therefore, $E \cap F \subseteq J$ and so $E \subseteq J$ or $F \subseteq J$. Hence $E / I \subseteq J / I$ or $F / I \subseteq J / I$. Thus J / I is a prime ideal of X / I.
(iii) Since $\operatorname{ker}(f)$ is a closed ideal of X, then by Theorem 2.3 and (ii), $X / \operatorname{ker}(f) \cong Y$ and $I / \operatorname{ker}(f)$ is a prime ideal of $X / \operatorname{ker} f$. Moreover, $f(I) \cong I / \operatorname{ker}(f)$. Hence $f(I)$ is a prime ideal of Y.
(iv) Let $I D(X)$ be a chain and I be a proper ideal of X. Clearly, $\langle a\rangle \cap\langle b\rangle \subseteq I$ implies $a \in I$ or $b \in I$. Hence, I is a prime ideal of X. Conversely, let any proper ideal of X
be prime. Let I and J be two proper ideals of X. Since $I \cap J$ is a proper ideal of X, then $I \subseteq I \cap J$ or $J \subseteq I \cap J$ and so $I \subseteq J$ or $J \subseteq I$. Therefore, $I D(X)$ is a chain.

Corollary 3.3. Let $x \in X-\{0\}$, such that $x * y=x$, for all $y \in X-\{x\}$. Then there exists a prime ideal Q of X, such that $x \notin Q$.

Proof. Let $Q=X-\{x\}$. Then $0 \in Q$. If $a * b, b \in Q$, then $a \neq x$ and so $a \in Q$. Hence Q is an ideal of X. Clearly, $X-Q$ is a finite \cap-structure. By Proposition 3.2(i), Q is a prime ideal of X. Therefore, there exists a prime ideal Q of X such that $x \notin Q$.

Example 3.2. Let $X=\{0,1,2, a\}$. Define the binary operation"*" on X by the following table:

Table 1

$*$	0	1	2	a
0	0	0	0	a
1	1	0	0	a
2	2	1	0	a
a	a	a	a	0

It is easy to prove that $(X, *, 0)$ is a $B C I$-algebra. Since $a * y=a$, for any $y \in X-\{a\}$, then by Corollary $3.3, Q=X-\{a\}$ is a prime ideal of X, such that $a \notin Q$.

Proposition 3.4. Let I be an ideal of X.
(i) If I is a prime ideal of X, then I / I_{0} is a prime ideal of X / I_{0}.
(ii) If I is a closed prime ideal of X, then I_{0} is a closed prime ideal of X / I.
(iii) If I_{0} is a prime ideal of X / I and $I \subseteq B$, then I is a prime ideal of X.

Proof. (i) Since I_{0} is a closed ideal of X, then by Lemma 2.4, I / I_{0} is an ideal of X / I_{0}. Let A^{\prime} and B^{\prime} be two ideals of X / I_{0} such that $A^{\prime} \cap B^{\prime} \subseteq I / I_{0}$. Then by Lemma 2.4(iii), there are ideals A and B of X containing I_{0} such that $A^{\prime}=A / I_{0}$ and $B^{\prime}=B / I_{0}$ and so $(A \cap B) / I_{0}=A^{\prime} \cap B^{\prime} \subseteq I / I_{0}$. Hence by Lemma 2.4(i),(ii), $A \cap B \subseteq I$ and so $A \subseteq I$ or $B \subseteq I$ and so $A^{\prime} \subseteq I / I_{0}$ or $B^{\prime} \subseteq I / I_{0}$. Therefore, I / I_{0} is a prime ideal of X / I_{0}.
(ii) If I is closed, then $I=I_{0}$ and so $X / I=X / I_{0}$ and $I / I_{0}=I_{0}$. Hence the proof of this part is straightforward consequent of (i).
(iii) Let $I \subseteq B$ and I_{0} be a prime ideal of X / I and $\langle x\rangle \cap\langle y\rangle \subseteq I$, for some $x, y \in X$. If $I_{u} \in\left\langle I_{x}\right\rangle \cap\left\langle I_{y}\right\rangle$, then by Theorem 2.2, there exist $n, m \in \mathbb{N}$ such that $I_{u} *\left(I_{x}\right)^{n}=I_{0}$ and $I_{u} *\left(I_{y}\right)^{m}=I_{0}$ and so by definition of $*$ on X / I we get $I_{u * x^{n}}=I_{u} * I_{x^{n}}=I_{0}$ and $I_{u * y^{m}}=I_{u} * I_{y^{m}}=I_{0}$. It follows from (BCI2) that, $u * x^{n} \in I$ and $u * y^{m} \in I$ and so $u * x^{m}=a, u * y^{m}=b$, for some $a, b \in I$. Since $I \subseteq B$, then by Theorem 2.2, we obtained $(u * a) * b \in\langle x\rangle \cap\langle y\rangle$ and so $(u * a) * b \in I$. Moreover, I is an ideal and $a, b \in I$. Hence $u, 0 * u \in I$ and so $I_{u}=I_{0}$. Thus, $\left\langle I_{x}\right\rangle \cap\left\langle I_{y}\right\rangle \subseteq I_{0}$. Since I_{0} is a prime ideal of X / I, then we have $I_{x}=I_{0}$ or $I_{y}=I_{0}$ and so $x \in I$ or $y \in I$. Hence by Theorem 3.1(i), I is a prime ideal of X.

By definition of prime and irreducible ideals, any prime ideal is an irreducible ideal in any $B C I$-algebra. But the converse is false. In next example, we will show that there exists an irreducible ideal which is not prime.

Example 3.3. (i) Let $X=\{0, a, b, c\}$. Define the binary operation"*" on X by the following table:

Table 2

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

Then $(X, *, 0)$ is a $B C I$-algebra (see [11]) and $\{\{0\},\{0, a\},\{0, b\},\{0, c\}\}$ is the set of all proper ideals of X. Clearly, $\{0, a\},\{0, b\}$ and $\{0, c\}$ are irreducible ideals of X. We have $\{0, a\} \cap\{0, b\} \subseteq\{0, c\}$. Hence $\{0, c\}$ is not a prime ideal of X. By the similar way, $\{0\},\{0, a\}$ and $\{0, b\}$ are not prime ideals of X. Therefore, X has not any prime ideal.
(ii) Let $(X, *, 0)$ be the $B C I$-algebra in Example 3.1. Then $I=\{0, a\}$ is an irreducible ideal of X. Now, we have $b, c \in X-I$ and $\langle b\rangle \cap\langle c\rangle=\{0, b\} \cap\{0, c\}=\{0\}$ and so $(\langle b\rangle \cap\langle c\rangle) \cap(X-I)=\emptyset$. Therefore, $X-I$ is not a finite- \cap structure.
(iii) Let $X=\{0,1, a, b, c\}$. Define the binary operation "*" on X by the following table:

$$
\text { Table } 3
$$

$*$	0	1	a	b	c
0	0	0	a	b	c
1	1	0	a	b	c
a	a	a	0	c	b
b	b	b	c	0	a
c	c	c	b	a	0

Then $(X, *, 0)$ is a $B C I$-algebra and $\{\{0\},\{0,1, a\},\{0,1, b\},\{0,1, c\}\}$ is the set of all proper ideals of X and $\{0,1, b\} \cap\{0,1, c\} \subseteq\{0,1, a\}$ and so $I=\{0,1, a\}$ is not a prime ideal of X. But, $\left\{\left\{I_{0}\right\},\left\{I_{0}, I_{c}\right\}\right\}$ is the set of all ideals of X / I. Hence I_{0} is a prime ideal of X / I. Therefore, the converse of Proposition 3.4(iii), is not true in general.
Theorem 3.5. Let A be an ideal of X such that $A \subseteq B$. Then $I \cap J \subseteq A$ if and only if $\langle A \cup I\rangle \cap\langle A \cup J\rangle=A$, for any ideals I and J of X.

Proof. Let $\langle A \cup I\rangle \cap\langle A \cup J\rangle=A$. Since $I \cap J \subseteq(\langle A \cup I\rangle \cap\langle A \cup J\rangle)$, we obtain $I \cap J \subseteq A$. Conversely, assume that $I \cap J \subseteq A$. Clearly, $A \subseteq\langle A \cup I\rangle \cap\langle A \cup J\rangle$. Let $u \in\langle A \cup I\rangle \cap\langle A \cup J\rangle$. Since A is an ideal of X, then by Theorem 2.2, we get $\left(\left(\ldots\left(u * x_{1}\right) * \ldots\right) * x_{n}\right) \in A$, for some $n \in \mathbb{N}$ and $x_{1}, \ldots, x_{n} \in I$. It follows that, there exists $m_{1} \in A$ such that $\left(\left(\ldots\left(u * x_{1}\right) * \ldots\right) * x_{n}\right)=m_{1}$. By the similar way, we have $\left(\left(\ldots\left(u * y_{1}\right) * \ldots\right) * y_{m}\right)=m_{2}$, for some $m \in \mathbb{N}, y_{1}, \ldots, y_{m} \in J$ and $m_{2} \in A$. Hence by (BCI4), and (BCI5), we get

$$
\left(\left(\left(\ldots\left(u * m_{1}\right) * \ldots\right) * x_{n}\right)\right) * x_{1}=\left(\left(\left(\ldots\left(u * x_{1}\right) * \ldots\right) * x_{n}\right)\right) * m_{1}=0
$$

Since I is an ideal of X and $x_{1}, \ldots, x_{n} \in I$, then $u * m_{1} \in I$. By the similar way, we can show that $u * m_{2} \in J$. Since $m_{1}, m_{2} \in B$, we conclude that $\left(u * m_{1}\right) * m_{2} \leq u * m_{1}$ and $\left(u * m_{1}\right) * m_{2} \leq u * m_{2}$, and so $\left(u * m_{1}\right) * m_{2} \in I \cap J \subseteq A$. Hence, $m \in A$ and so $\langle A \cup I\rangle \cap\langle A \cup J\rangle \subseteq A$. Therefore, $\langle A \cup I\rangle \cap\langle A \cup J\rangle=A$.

Example 3.4. Let $(X, *, 0)$ be the $B C I$-algebra in Example 3.3(i). Then $I=$ $\{0, a\}, J=\{0, b\}$ and $K=\{0, c\}$ are three ideals of X and $J \cap K \subseteq I$, but $\langle I \cup J\rangle=X=\langle I \cup K\rangle$. Hence, if A is not contained in B then Theorem 3.5, may not true, in general.

Remark 3.6. We know that, if M is a maximal ideal of lower $B C K$-semilattice X, then M is a prime ideal [see [10], Corollary 4]. In Theorem 3.7, we will show that, any maximal ideal is a prime ideal in any $B C K$-algebra.

Theorem 3.7. If M is a maximal ideal of $B C K$-algebra X, then M is a prime ideal of X.

Proof. Let $\langle x\rangle \cap\langle y\rangle \subseteq M$, for some $x, y \in X$. If $x \notin M$ and $y \notin M$, then $\langle M \cup\{x\}\rangle=X$ and $\langle M \cup\{y\}\rangle=X$ and so $\langle M \cup\{x\}\rangle \cap\langle M \cup\{y\}\rangle=X$. Now, by Theorem 3.5, $\langle x\rangle \cap\langle y\rangle \nsubseteq M$, which is impossible. Hence by Theorem 3.1(i), M is a prime ideal of X.

Example 3.5. Let X be the $B C I$-algebra in Example 3.3(i). Clearly, $M=\{0, b\}$ is a maximal ideal of X. Since $\{0, a\} \cap\{0, c\}=\{0\} \subseteq M,\{0, a\} \nsubseteq M$ and $\{0, c\} \nsubseteq M$, then M is not a prime ideal of X. Hence Theorem 3.7, may not true in general.

It has been known, if X is a lower $B C K$-semilattice and A is an ideal of X such that $A \cap F=\emptyset$, where F is $\wedge-$ closed subset of X. Then there is a prime ideal Q of X such that $A \subseteq Q$ and $Q \cap F=\emptyset$ [see [11], Proposition 1.4.19]. We generalize this theorem for $B C K$-algebra.

Theorem 3.8. Let X be a BCK-algebra and F be a nonempty subset of X such that F is closed under " o ", where xoy $:=x *(x * y)$, for any $x, y \in F$. If A is an ideal of X such that $A \cap F=\emptyset$, then there exist a prime ideal Q of X such that $A \subseteq Q$ and $Q \cap F=\emptyset$.

Proof. Let $S=\{I \mid I \triangleleft X, A \subseteq I$ and $F \cap I=\emptyset\}$. Then S with respect to the inclusion relation " \subseteq " formes a poset. Clearly, every chain on S has an upper bound (union of its elements). Hence Zorn's Lemma implies that, S has a maximal element, say Q. Obviously, Q is an ideal of X such that $P \cap A=\emptyset$. We claim that Q is a prime ideal, otherwise there are ideals I, J of X, such that $I \cap J \subseteq Q, I \nsubseteq Q$ and $J \nsubseteq Q$. By maximality of Q we have $\langle Q \cup I\rangle \cap F \neq \emptyset$ and $\langle Q \cup J\rangle \cap F \neq \emptyset$. Let $a \in\langle Q \cup I\rangle \cap F$ and $b \in\langle Q \cup J\rangle \cap F$. Since $(a o b) * a=0$ and $(a o b) * b=0$, we have $a o b \in(\langle Q \cup I\rangle \cap\langle Q \cup J\rangle)$. On the other hand, $a, b \in F$ and F is $o-$ closed and so $a o b \in F$. Hence

$$
a o b \in(\langle Q \cup I\rangle \cap\langle Q \cup J\rangle) \cap F .
$$

Comparison of last relation with $Q \cap F=\emptyset$ gives $Q \neq\langle Q \cup I\rangle \cap\langle Q \cup J\rangle$. Hence Theorem 3.5, implies $I \cap J \nsubseteq Q$. Therefore, Q is a prime ideal.

Corollary 3.9. Let X be a BCK-algebra. Then the following assertions hold:
(i) For any $x \in X \backslash\{0\}$, there exists a prime ideal Q such that $x \notin P$.
(ii) $\cap\{Q \mid Q$ is a prime ideal of $X\}=\{0\}$.
(iii) Any proper ideal A of X can be expressed as the intersection of all prime ideals of X containing A.
(iv) Let Y be a BCI-algebra and $f: X \rightarrow Y$ be a BCI-homomorphism, such that $f(X)$ is an ideal of Y. If I is a prime ideal of Y and $f^{-1}(I) \neq X$, then $f^{-1}(I)$ is a prime ideal of X.

Proof. (i) Let $x \in X \backslash\{0\}$. Then we set $A=\{0\}$ and $F=\{x\}$. Clearly, F is o-closed and $A \cap F=\emptyset$. Hence by Theorem 3.8, there exists a prime ideal Q such that Q is not contain x.
(ii) The proof is straightforward.
(iii) Let $a \in(X-A)$ and $F=\{a\}$. Then by (BCI2), $x *(x * y) \in F$, for all $x, y \in F$.

By Theorem 3.8, there exists a prime ideal Q_{a} of X such that $a \notin Q_{a}$ and $A \subseteq Q_{a}$.

Therefore, $A \subseteq \bigcap_{a \in X-A} Q_{a}$. On the other hand $b \notin \bigcap_{a \in X-A} Q_{a}$, for any $b \in X-A$. Hence $\bigcap_{a \in X-A} Q_{a} \subseteq A$ and so $A=\bigcap_{a \in X-A} Q_{a}$.
(iv) Let $\langle x\rangle \cap\langle y\rangle \subseteq f^{-1}(I)$, for some $x, y \in X$. If $\langle f(x)\rangle \cap\langle f(y)\rangle=0$, then $\langle f(x)\rangle \cap$ $\langle f(y)\rangle \subseteq I$. Let $u \in\langle f(x)\rangle \cap\langle f(y)\rangle-\{0\}$. Then there exist $m, n \in \mathbb{N}$ such that $u * f(x)^{n}=0$ and $u * f(y)^{m}=0$. Since $f(X)$ is an ideal of Y and $\langle f(x)\rangle \subseteq f(X)$, $\langle f(y)\rangle \subseteq f(X)$, then $u=f(a)$, for some $a \in X$. Moreover, f is a $B C I$-homomorphism and so $f\left(a * x^{n}\right)=0=f\left(a * y^{m}\right)$. Hence, $a * x^{n} \in f^{-1}(I)$ and $a * y^{m} \in f^{-1}(I)$ and so $a \in\left\langle f^{-1}(I) \cup\{x\}\right\rangle \cap\left\langle f^{-1}(I) \cup\{y\}\right\rangle$. Since $\langle x\rangle \cap\langle y\rangle \subseteq f^{-1}(I)$, then by Theorem 3.5, $a \in f^{-1}(I)$ and so $u=f(a) \in I$. Hence $\langle f(x)\rangle \cap\langle f(y)\rangle \subseteq I$. Now, since I is a prime ideal of Y we have $f(x) \in I$ or $f(y) \in I$ and so $x \in f^{-1}(I)$ or $y \in f^{-1}(I)$. Therefore, by Theorem 3.1(i), $f^{-1}(I)$ is a prime ideal of X.
Corollary 3.10. Let A be an ideal of X generated by P. If I is a proper ideal of X containing P, then

$$
I=\cap\left\{\cup\left\{A_{x} \mid A_{x} \in J\right\} \quad \mid J \text { is a prime ideal of } X / A\right\} .
$$

Proof. Clearly, X / A is a $B C K$-algebra. By Corollary 3.9(iii), we have

$$
I / A=\cap\{J \mid \mathrm{J} \text { is a prime ideal of } X / A\}
$$

Let J be a prime ideal of X / A. Since $A=\langle P\rangle=\langle P \cup P\rangle=P+P$, then A is a closed ideal of X and so by Lemma 2.4(iii), $J=F_{J} / A$, where $F_{J}=\cup\left\{A_{x} \mid A_{x} \in J\right\}$. Therefore,
$I / A=\cap\left\{F_{J} / A \mid \mathrm{J}\right.$ is a prime ideal of $\left.X / A\right\}=\left(\cap\left\{F_{J} \mid \mathrm{J}\right.\right.$ is a prime ideal of $\left.\left.X / A\right\}\right) / A$
Now, by Lemma 2.4(ii), we conclude that $I=\cap\left\{F_{J} \mid \mathrm{J}\right.$ is a prime ideal of $\left.X / A\right\}$.
Let X be a lower $B C K$-semilattice and I be an ideal of X. If X / I is a $B C K$-chain, then I is a prime ideal of X. In next theorem, we generalize this theorem. Note that, if X has not any prime ideal we say the intersection of all prime ideals of X is X.
Theorem 3.11. Let X be a BCI-algebra and I be a prime ideal of X.
(i) If $I \subseteq B$ and $I D(X / I)$ is a chain, then I is a prime ideal of X.
(ii) Let M_{1}, \ldots, M_{n} and M be maximal ideals of X such that $\bigcap_{i=1}^{n} M_{i} \subseteq M$. Then there exists $j \in\{1,2, \ldots, n\}$, such that $M_{j}=M$.
(iii) Let X be a non zero nilpotent BCI-algebra and $S=\left\{P_{\alpha} \mid \alpha \in J\right\}$ be the set of all prime ideals of X. Then $\bigcap_{\alpha \in J} P_{\alpha}=\{0\}$ if and only if X is subdirect product of special family $\left\{X_{i}\right\}_{i \in I}$, such that X_{i} is a finite \cap-structure, for any $i \in I$.
Proof. (i) Let $x, y \in X$ such that $\langle x\rangle \cap\langle y\rangle \subseteq I$. Since $I D(X / I)$ is a chain, then $\left\langle I_{x}\right\rangle \subseteq\left\langle I_{y}\right\rangle$ or $\left\langle I_{y}\right\rangle \subseteq\left\langle I_{x}\right\rangle$. Let $\left\langle I_{x}\right\rangle \subseteq\left\langle I_{y}\right\rangle$. Then by Theorem 2.2, there exists $n \in \mathbb{N}$ such that $I_{x * y^{n}}=I_{x} * I_{y^{n}}=I_{x} *\left(I_{y}\right)^{n}=I_{0}$ and so $x * y^{n} \in I$. Since $I \subseteq B$, then by Theorem 2.2, we have $x *\left(x * y^{n}\right) \in\langle x\rangle \cap\langle y\rangle$ and so $x \in I$. By the similar way, we get $y \in I$, when $I_{y} \subseteq I_{x}$. Therefore, I is a prime ideal of X.
(ii) By Theorem 3.7, M is a prime ideal of X. Hence there exists $j \in\{1, \ldots, n\}$ such that $M_{j} \subseteq M$. Since M_{j} is a maximal ideal of X we obtain that $M_{j}=M$.
(iii) Clearly, the map $\varphi: X \rightarrow \prod_{\alpha \in J} X / P_{\alpha}$ defined by $\varphi(x)=\left(\left(P_{\alpha}\right)_{x}\right)_{\alpha \in J}$, for all $x \in X$, is a homomorphism and $\operatorname{ker}(\varphi)=\bigcap_{\alpha \in J} P_{\alpha}=\{0\}$. Thus φ is a one to one
homomorphism and so it is a subdirect embedding. Now, let $\alpha \in J$. Since X is nilpotent, then I is closed and so by Proposition 3.4(ii) $\left(P_{\alpha}\right)_{0}$ is a prime ideal of X / P. Hence by Proposition 3.2(i), $X / P_{\alpha}-\left\{P_{0}\right\}$ is a finite \cap-structure and so by definition X / P_{α} is a finite \cap-structure. Conversely, let X be subdirect product of family $\left\{X_{i}\right\}_{i \in I}$, such that X_{i} is a finite \cap-structure, for any $i \in I$. Then there is an one to one $B C I$-homomorphism $\varphi: X \rightarrow \prod_{j \in J} X_{j}$ such that $\left(\pi_{i} o \varphi\right): X \rightarrow X_{i}$ is an onto $B C I$-homomorphism and so $X / B_{i} \cong X_{i}$, for any $i \in J$, where $B_{i}=\left(\pi_{i} o \varphi\right)^{-1}(\{0\})$. Let $i \in J$. Since X_{i} is a finite \cap-structure, then X / B_{i} is finite \cap-structure and so by Proposition 3.2(i), B_{i} is a prime ideal of X. Clearly, $\bigcap_{j \in J} B_{j}=\operatorname{ker}(\varphi)=\{0\}$. Therefore, the intersection of all prime ideals of X is $\{0\}$.

Corollary 3.12. Every non zero BCK-algebra is subdirect product of a family of finite \cap-structure BCI-algebras.

Proof. It is straight consequent of Corollary 3.9(ii) and Theorem 3.11(iii).
Example 3.6. Let $X=\{0,1,2, a, b\}$. Define the binary operation "*" on X by the following table:
Table 4

${ }^{*}$	0	1	2	a	b
0	0	0	0	b	a
1	1	0	1	b	a
2	2	2	0	b	a
a	a	a	a	0	b
b	b	b	b	a	0

Then $(X, *, 0)$ is a $B C I$-algebra (see [11] Appendix B Example 8). Let $I=\{0,1\}$. Then $I \subseteq B$ and $\left\{\left\{I_{0}\right\},\left\{I_{0}, I_{2}\right\}, X / I\right\}$ is the set of all ideals of X / I. Therefore, the set of ideals of X / I is a chain. By Theorem 3.11(i), we conclude that I is a prime ideal of X.

Note 3.13. [11] Let X be a P-semisimple $B C I$-algebra. Then $(X, ., 0)$ is an Abelian group, where $x . y=x *(0 * y)$, for all $x, y \in X$. Moreover, any closed ideal of X is a subgroup of $(X, ., 0)$.

Theorem 3.14. Let X be an associative BCI-algebras and I be an ideal of X.
(i) If there exist distinct elements x, y of X such that $x, y \notin I$. Then I is not a prime ideal.
(ii) If X is of order $n>2$, then there is not any prime ideal on X.

Proof. (i) Since X is an associative $B C I$-algebra, we have $\langle x\rangle=\{x, 0\}$ and $\langle y\rangle=$ $\{0, y\}$ and so $\langle x\rangle \cap\langle y\rangle=0$. Therefore, I is not a prime ideal of X.
(ii) Let I be a proper ideal of X. Since X is finite, then I is a closed ideal. Hence by Note $3.13, I$ is a subgroup of $(X, ., 0)$ and so there exists $t \in \mathbb{N}-\{1\}$ such that $n=t|I|$, where $|I|$ is the number of elements of I. Hence $|I| \leq n-2$. Now, by (i), I is not a prime ideal of X and so X has not any prime ideals.

Theorem 3.15. Let M be a maximal ideal of X containing P. If $I=\langle P\rangle$, then M / I is a prime ideal of X / I.

Proof. Since, $I=\langle P\rangle=\langle P \cup P\rangle=P+P$, then I is a closed ideal of X. Since $P \subseteq M$, we have $I \subseteq M$ and so M / I is a maximal ideal of X / I. Also X / I is a $B C K$-algebra. Hence by Theorem 3.7, M / I is a prime ideal of X / I.

Example 3.7. Let $X=\{0,1, a, b\}$. Define the operation "*" on X by
Table 5

$*$	0	1	a	b
0	0	0	a	a
1	1	0	b	a
a	a	a	0	0
b	b	a	1	0

Clearly, $(X, *, 0)$ is a $B C I$-algebra (see [11] Appendix B Example 4) and $\{\{0\},\{0, \mathrm{a}\}$, $\{0,1\}\}$ is the set of all proper ideals of X. Hence $M=\{0, a\}$ is a maximal ideal of X. It is obvious that $P=\{0, a\}$ is the P-semisimple part of X. By Theorem 3.15, M/I is a prime ideal of X / I, where $I=\langle P\rangle$.
Lemma 3.16. Let X be a nilpotent $B C I$-algebra. Then for any $b \in B \backslash\{0\}$, there exists a prime ideal Q such that $b \notin Q$.

Proof. Let $b \in B \backslash\{0\}$. By Corollary 3.9(i), there exists a prime ideal I of B such that $b \notin I$. Let P be P-semisimple part of X. We claim that $b \notin I+P$. Otherwise, $b \in I+P$. Then by Theorem 2.2 , there exist $a_{1}, \ldots, a_{n} \in I$ such that $\left(\ldots\left(b * a_{1}\right) *\right.$ $\ldots) * a_{n} \in P$. Since B is a closed ideal of X we have $\left(\ldots\left(b * a_{1}\right) * \ldots\right) * a_{n} \in B$. Hence $\left(\ldots\left(b * a_{1}\right) * \ldots\right) * a_{n} \in B \cap P=\{0\}$. Therefore,

$$
\left(\ldots\left(b * a_{1}\right) * \ldots\right) * a_{n}=0 \in I
$$

Since I is an ideal of X containing a_{1}, \ldots, a_{n}, we conclude that $b \in I$, which is a contradiction. Hence $b \notin I+P$. It remains to show that $I+P$ is a prime ideal of X. Let J and K be two ideals of X such that $J \cap K \subseteq I+P$. Then

$$
\begin{equation*}
(J \cap B) \cap(K \cap B)=(J \cap K) \cap B \subseteq(I+P) \cap B \tag{3.1}
\end{equation*}
$$

Now, we show that $(I+P) \cap B=I$. Clearly, $I \subseteq(I+P) \cap B$. Let $x \in(I+P) \cap B$. Then there exist $a_{1}, \ldots, a_{n} \in I$ such that $\left(\ldots\left(x * a_{1}\right) * \ldots\right) * a_{n} \in P$. Since $x, a_{1}, \ldots, a_{n} \in B$ we have

$$
\begin{equation*}
\left(\ldots\left(x * a_{1}\right) * \ldots\right) * a_{n} \in P \cap B=\{0\} \tag{3.2}
\end{equation*}
$$

Moreover, since $a_{1}, \ldots, a_{n} \in I$ we obtain $x \in I$. Hence $(I+P) \cap B \subseteq I$. Therefore, $(I+P) \cap B=I$. By (3.1) and (3.2) we have $(J \cap B) \cap(K \cap B) \subseteq I$. Since I is a prime ideal of B we have $J \cap B \subseteq I$ or $K \cap B \subseteq I$. Assume that $J \cap B \subseteq I$. Since $x *(0 *(0 * x)) \in B$ and X is nilpotent, then by Theorem 2.1, $x *(0 *(0 * x)) \in B \cap J$ and $0 *(0 * x) \in P$, for all $x \in J$. Since $J \cap B \subseteq I$, we have $x \in I+P$. Therefore,

$$
\begin{equation*}
J \subseteq I+P \tag{3.3}
\end{equation*}
$$

If $K \cap B \subseteq I$, then by the similar way, we obtain

$$
\begin{equation*}
K \subseteq I+P \tag{3.4}
\end{equation*}
$$

Putting (3.3) and (3.4) together, we obtain that $J \subseteq I+P$ or $K \subseteq I+P$. Hence $I+P$ is a prime ideal of X.
Corollary 3.17. If X is a nilpotent $B C I$-algebra such that $B \neq\{0\}$, then X has a prime ideal.

Theorem 3.18. Let X be a nilpotent BCI-algebra.
(i) For any $x \in X-P$, there exists a prime ideal Q of X, such that $x \notin Q$.
(ii) $\cap\{Q \mid Q$ is a prime ideal of $X\} \subseteq P$.

Proof. (i) Let $x \in X-P$. Then by (BCI6) and (BCI7), we conclude that $x *(0 *$ $(0 * x)) \in B-\{0\}$. Hence by Lemma 3.16, there is a prime ideal Q of X such that $x *(0 *(0 * x)) \notin Q$. Therefore, $x \notin Q$. Since if $x \in Q$, then by (BCI4), (BCI5) and (BCI6), we get $(x *(0 *(0 * x))) * x=0 * x \in Q$ (since Q is closed) and so $x *(0 *(0 * x)) \in Q$, which is impossible.
(ii) It is straight consequent of (i).

References

[1] J. Ahsan, E. Y. Deeba and A. B. Thaheem, On prime ideal of BCK-algebra, Mathematica Japonica 36 (1991), 875-882.
[2] Z. M. Chen and H. X. Wang, On ideals in BCI-algebra, Mathematica Japonica 36 (1991), 627-632.
[3] Y. Imai and K. Iseki, On axiom system of propositional calculi, XIV, Japan Acad. 42 (1966), 19-22.
[4] K. Iseki, An algebra related with a propositional calculus, Japan Acad. 42 (1966), 26-29.
[5] K. Iseki, On some ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 65-70.
[6] Y. B. Jun and E. H. Row, Nil subsets in BCH-algebras, East Asian Math.J. 22 (2006), no. 2, 207-213.
[7] T. D. Lei, Structure of finite associative BCI-algebras, J. of Shaanxi Teachers Univ. 2 (1982), 17-20.
[8] T. D. Lei and C. C. Xi, P-semisimple BCI-algebras, J. of Shaanxi Teachers Univ. 3 (1984), no. 2, 25-29.
[9] J. Meng, Y. B. Jun, X. L. Xin, Prime ideal in commutative BCK-algebras, Discussiones Mathematicae 18 (1998), 5-15.
[10] M. Palasinski, Ideal in BCK-algebras which are lower lattices, Bulletin of the Section of Logic 10 (1981), no. 1, 48-50.
[11] H. Yisheng, BCI-algebra, Science Press, China, 2006.
(R. A. Borzooei) Department of Mathematics, Shahid Beheshti University, Tehran, Iran E-mail address: borzooei@sbu.ac.ir
(O. Zahiri) Department of Mathematics, Shahid Beheshti University, Tehran, Iran E-mail address: o.zahiri@yahoo.com

