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Counting certain sublattices in the subgroup lattice
of a finite abelian group

Marius Tărnăuceanu and Dan Gregorian Fodor

Abstract. The main goal of the current paper is to determine the total number of convex
sublattices of length 2 in the subgroup lattice of a finite abelian group. This counting problem
is reduced to finite p-groups. Explicit formulas are obtained in some particular cases.
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1. Introduction

The relation between the structure of a group and the structure of its lattice of
subgroups constitutes an important domain of research in group theory. The topic
has enjoyed a rapid development starting with the first half of the ’20 century. Many
classes of groups determined by different properties of partially ordered subsets of
their subgroups (especially lattices of subgroups) have been identified. We refer to
Suzuki’s book [9], Schmidt’s book [5] or the more recent book [10] by the first author
for more information about this theory.

An important concept of subgroup lattice theory has been introduced by Schmidt
[6] (see also [7]): given a lattice L, a group G is said to be L-free if the subgroup
lattice L(G) has no sublattice isomorphic to L. Interesting results about L-free groups
have been obtained for several particular lattices L, as the diamond lattice M5 or the
pentagon lattice N5. We recall here that a group is M5-free if and only if it is locally
cyclic and, in particular, a finite group is M5-free if and only if it is cyclic. Notice also
that the class of L-free groups can be extended to the class of groups whose subgroup
lattices contain a certain number of sublattices isomorphic to L (see e.g. [13]).

Clearly, for a finite group G the above concept leads to the natural problem of
counting the sublattices of L(G) that are isomorphic to a given lattice L. In the
general case this problem is very difficult. So, in the current paper we will treat
it only for finite abelian groups G and for L of type Lp = L(Z2

p) (i.e. the lattice of
subspaces of a vector space of dimension 2 over Zp), p ∈ π(G). This choice of L is very
natural, since a finite abelian p-group is Lp-free if and only if it is cyclic. Moreover,
we will restrict our counting only on the convex sublattices of L(G). In other words,
the purpose of this paper is to determine the number cs2(G) of convex sublattices of
length 2 in the subgroup lattice of a finite abelian group.

The paper is organized as follows. In Section 2 we show that the study is reduced to
p-groups and we develop a general method to find the number of the above sublattices.
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Section 3 and 4 deal with the particular cases of elementary abelian p-groups and of
abelian p-groups of rank 2. In the final section some conclusions and further research
directions are indicated.

Most of our notation is standard and will usually not be repeated here. Basic defi-
nitions and results on lattices and groups can be found in [2, 3] and [4, 8], respectively.

2. Preliminaries

Let G be a finite abelian group and L(G) be the subgroup lattice of G. It is
well-known that G can be written as a direct product of p-groups

G =
k∏

i=1

Gi,

where |Gi| = pαi
i , for all i = 1, 2, ..., k. Since the subgroups of a direct product of

groups having coprime orders are also direct products (see Corollary of (4.19), [8], I),
it follows that

L(G) ∼=
k∏

i=1

L(Gi).

The above lattice direct decomposition is often used in order to reduce some combina-
torial problems on L(G) to the subgroup lattices of finite p-groups (see e.g. [1, 11, 12]).
This technique can be also applied to our problem.

It is easy to see that a convex sublattice of length 2 of L(G) can be obtained in
a unique way, namely as a direct product of a convex sublattice of length 2 of some
L(Gi) by a subgroup contained in

∏
j ̸=i Gj . This leads to the following result.

Theorem 2.1. The number of convex sublattices of length 2 in the subgroup lattice

of the finite abelian group G =
∏k

i=1 Gi satisfies

cs2(G) =
k∑

i=1

cs2(Gi)
∏
j ̸=i

|L(Gj) | . (1)

Clearly, Theorem 2.1 shows that the computation of cs2(G) is reduced to the
computation of cs2(Gi), i = 1, 2, ..., k.

Example 2.1. For the abelian group G = Z2
2 × Z2

3 we have

cs2(G) = cs2(Z2
2) |L(Z2

3) | + cs2(Z2
3) |L(Z2

2) |= 1 · 6 + 1 · 5 = 11 .

Assume next that G is a finite abelian p-group, say

G =
r∏

i=1

Zpαi ,

where 1 ≤ α1 ≤ α2 ≤ ... ≤ αr. For every subgroup H of G, let us denote by NH the
number of convex sublattices of length 2 of L(G) with the top H. Obviously, we have

cs2(G) =
∑

H∈L(G)

NH . (2)
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Let s be the rank of H ∈ L(G). We easily infer that every convex sublattice of
length 2 of L(G) with the top H is perfectly determined by a quotient of H isomorphic
to Z2

p . This implies that

NH = |{K ∈ L(H) | H/K ∼= Z2
p}| =

= |{K ∈ L(Zs
p) | |K| = ps−2}| =

=
p2s−1 − ps − ps−1 + 1

p3 − p2 − p+ 1
.

Thus (2) allows us to compute cs2(G) if we know precisely the subgroup structure of
G. Unfortunately, this is happening in very few cases. One of them is constituted by
the finite elementary abelian p-groups and will be treated in Section 3.

For the other cases we are able to develop an alternative method. Observe that
cs2(G) can be seen as a function in α1, α2, ..., αr, say

cs2(G) = cs2(α1, α2, ..., αr),

and put

n =
pr − 1

p− 1
.

Then G has nmaximal subgroups, sayM1,M2, ...,Mn. A convex sublattice of length 2
of L(G) either is contained in some Mi, i = 1, 2, ..., n, or has the top G. Consequently,
by applying the Inclusion-Exclusion Principle, we get

cs2(G)=
n∑

i=1

cs2(Mi)−
∑

1≤i1<i2≤n

cs2(Mi1 ∩Mi2) + ...+ (−1)n−1cs2(
n∩

i=1

Mi) +NG . (3)

It is now clear that if all intersections of maximal subgroups of G are known, then
(3) leads to a recurrence relation that permits us to determine explicitly cs2(G). This
will be exemplified in Section 4 for r = 2.

3. Finite elementary abelian p-groups

Let G = Zr
p be an elementary abelian p-group of rank r, that is a direct product

of r copies of Zp . Under the above notation and by using the fact that all subgroups
of a given order of G are isomorphic, one obtains

cs2(G) =
∑

H∈L(G)

NH =
r∑

i=0

∑
H∈L(G), |H|=pi

NH =
r∑

i=0

ar,p(i)NHi ,

where ar,p(i) denotes the number of subgroups of order pi of G and |Hi| = pi, i =
0, 1, ..., r. By Corollary 2.14 of [11] (see also Proposition 3.1 of [12]), we have

ar,p(i) = 1 if i = 0 or i = r

and

ar,p(i) =
∑

1≤j1<j2<...<ji≤r

pj1+j2+...+ji− i(i+1)
2 if 1 ≤ i ≤ r − 1.

On the other hand, all quantities NHi are known by Section 2 since the rank of Hi

is i. Notice also that NHi = 0, for all i ≤ 2. Hence we have shown the following
theorem.
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Theorem 3.1. The number of convex sublattices of length 2 in the subgroup lattice
of the finite elementary abelian p-group G = Zr

p is

cs2(G) =
r∑

i=2

ar,p(i)
p2i−1 − pi − pi−1 + 1

p3 − p2 − p+ 1
,

where the numbers ar,p(i), i = 2, 3, ..., r, are indicated above.

Example 3.1. For the elementary abelian p-group Z3
p we have a3,p(2) = p2 + p + 1

and a3,p(3) = 1. Thus the formula in Theorem 3.1 becomes

cs2(Z3
p) = (p2 + p+ 1) · p

3 − p2 − p+ 1

p3 − p2 − p+ 1
+ 1 · p

5 − p3 − p2 + 1

p3 − p2 − p+ 1
= 2(p2 + p+ 1)

and in particular

cs2(Z3
2) = 14 .

Remark 3.1. Theorem 3.1 can be also used to give a lower bound for cs2(G), when
G =

∏r
i=1 Zpαi is an arbitrary finite abelian p-group. Put α =

∑r
i=1 αi and consider

the first α+ 1 terms of the Frattini series of G:

Φ0(G) = G and Φj(G) = Φ(Φj−1(G)), for all j = 1, α.

Then we have

cs2(G) ≥
α∑

j=1

cs2(Φj−1(G)/Φj(G))=

r−1∑
i=0

α0+...+αi+αi+1∑
j=α0+...+αi+1

cs2(Φj−1(G)/Φj(G)),

where, by convention, α0 = 0. Since Φj−1(G)/Φj(G) ∼= Zr−i
p for any j = α0 + ... +

αi + 1, ..., α0 + ...+ αi + αi+1, Theorem 3.1 leads to

cs2(G) ≥
r−1∑
i=0

αi+1

r−i∑
k=2

ar−i,p(k)
p2k−1 − pk − pk−1 + 1

p3 − p2 − p+ 1
.

We remark that in the case i = r − 1 we have Φj−1(G)/Φj(G) ∼= Zp for all j, and
consequently cs2(Φj−1(G)/Φj(G)) = 0. In this way, the above inequality can be
rewritten as

cs2(G) ≥
r−2∑
i=0

αi+1

r−i∑
k=2

ar−i,p(k)
p2k−1 − pk − pk−1 + 1

p3 − p2 − p+ 1
. (4)

Finally, we exemplify (4) for abelian p-groups of rank 3:

cs2(Zpα1×Zpα2×Zpα3 ) ≥
1∑

i=0

αi+1

3−i∑
k=2

a3−i,p(k)
p2k−1 − pk − pk−1 + 1

p3 − p2 − p+ 1
=

= α1

[
a3,p(2) + a3,p(3)(p

2 + p+ 1)
]
+ α2a2,p(2) =

= 2α1(p
2 + p+ 1) + α2 .
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4. Finite rank 2 abelian p-groups

It is well-known that for a finite rank 2 abelian p-group G = Zpα1 ×Zpα2 , 1 ≤ α1 ≤
α2, the number of maximal subgroups is n = p+ 1 and these are of type

M1,M2, ...,Mp
∼= Zpα1−1 × Zpα2 and Mp+1

∼= Zpα1 × Zpα2−1 .

Then (3) becomes

cs2(α1, α2)=p · cs2(α1−1, α2) + cs2(α1, α2−1)− p · cs2(α1−1, α2−1) + 1 ,

for all 1 ≤ α1 ≤ α2. The solution of this recurrence relation can be easily found by
induction on α1 or by using the method of generating functions, namely

cs2(α1, α2) =

α1−1∑
i=0

(α1 + α2 − 2i− 1) pi =

=
(α2−α1+1)pα1+1−(α2−α1−1)pα1−(α1+α2+1)p+(α1+α2−1)

(p− 1)2
.

Hence the following theorem holds.

Theorem 4.1. The number of convex sublattices of length 2 in the subgroup lattice
of the finite rank 2 abelian p-group G = Zpα1 × Zpα2 , 1 ≤ α1 ≤ α2, is

cs2(G) =
(α2−α1+1)pα1+1−(α2−α1−1)pα1−(α1+α2+1)p+(α1+α2−1)

(p− 1)2
.

Example 4.1. By the above formula, we have

cs2(Zp2 × Zp3) =
2p3 − 6p+ 4

(p− 1)2
= 2p+ 4

and in particular
cs2(Z4 × Z8) = 8 .

Remarks.
1. It is easy to see that for α1 + α2 = k = constant (i.e. G = Zpα1 × Zpα2 is of a

fixed order, namely pk) the function cs2 = cs2(α1) is increasing, and therefore
its maximum is obtained for α1 =

[
k
2

]
.

2. The value of cs2(α1, α2) coincides with the total number of subgroups of Zpα1−1×
Zpα2−1 , which has been calculated in Proposition 2.9 of [11] (see also Theorem
3.3 of [12]).

3. By Theorem 3.1, we infer that

cs2(α1, α2) ≡ α1 + α2 − 1 (mod p) .

A standard induction on r easily shows that

cs2(α1, α2, ..., αr) ≡ α1 + α2 + ...+ αr − 1 (mod p) .

4. A lower bound for cs2(α1, α2, ..., αr) that involves the quantity cs2(α1, α2) com-
puted above is the following

cs2(α1, α2, ..., αr) ≥ cs2(α1, α2) |L(
r∏

i=3

Zpαi )| ≥

≥ cs2(α1, α2)
r∏

i=3

|L(Zpαi )| = cs2(α1, α2)
r∏

i=3

(αi + 1).
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Observe that this depends on all αi, i = 1, 2, ..., r, instead of the lower bound
given by Remark 3.1.

5. Conclusions and further research

All our previous results show that the problem of counting the number of (convex)
sublattices in the subgroup lattice of a group G that are isomorphic to a given lattice
L is an interesting computational aspect of subgroup lattice theory. Clearly, the study
started in this paper can be extended for other lattices L and groups G. This will
surely be the subject of some further research.

Finally, we indicate three open problems concerning the above topic.

Problem 5.1. Improve Theorems 3.1 and 4.1, by obtaining explicit formulas for
cs2(G) when G is of an arbitrary rank.

Problem 5.2. In the class of finite groups G of a fixed order, find the mini-
mum/maximum of cs2(G). Is it true that the function cs2 is strictly decreasing
on the set of abelian p-groups of order pn, totally ordered by the lexicographic order?

Problem 5.3. Determine the number of (convex) sublattices in other remarkable
posets of subgroups (e.g. normal subgroup lattices) of a finite group that are isomor-
phic to a given lattice.
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[10] M. Tărnăuceanu, Groups determined by posets of subgroups, Ed. Matrix Rom, Bucureşti, 2006.
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