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Evolving a Minimum Input Neural Network Based Controller
for the Pac-Man Agent

Dragoş Nicolescu

Abstract. In this paper we present the development and implementation of a neural network-
based controller for the Pac-Man agent which is fed with minimal information about the
environment. The implementation of the game we used differs from the original. In this
regard some key aspects were changed in order to provide new challenges for the agent and
thus better test our controller. A neural network is used to compute a desirability value for
the locations to which the agent can move. The non-deterministic nature of the game does
not allow for fast and accurate feedback, thus a different method for training was developed.
Accordingly, we considered a genetic algorithm to evolve weights for the neural network. To
conclude, the controller adapts very well to the environment, resulting in well-trained agents
that can complete several consecutive levels of the game.
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1. Introduction

Implementing Artificial Intelligence (AI) methods in games has been a great way
to test new developments in the field for quite some time. This is due to the capacity
of games to simulate conditions that occur in the real world without complicating
the way in which these are represented. One of the games that is most used as an
AI testing platform is Pac-Man, an arcade game that proved very popular amongst
gamers and researchers alike.

Game controllers based on neural networks are nothing new, starting with their
use in classic board games [1] and continuing with more dynamic environments [2]
which are characteristic of new-age games. In terms of agent control a neural network
offers adaptability and a fast learning process with minimum supervision. The weak
point of such a network is the need for feedback, the learning process being dependent
on receiving the results of actions after they are taken.

In this paper we try to overcome the disadvantage a neural network faces when
no immediate feedback is available by using a genetic algorithm for training. The
evolutionary process produces an adaptable agent that learns by itself rather than
relying on hardcoded instructions. There is a need for such agents in new games [3]
as the game industry is trying to leave behind the era of hard-coded enemies and to
replace them with new ones that adapt to the actions of a player. The resulting agent
proves to be competitive by the game standards, surprising us by sometimes clearing
several levels of the game.
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2. Pac-Man in AI

As we mentioned before, Pac-Man is one of the most used games in testing AI
methods. The game offers a challenge that is simple to understand, yet requires
practice and strategy in order to overcome [4]. For this reason researchers have focused
on developing a controller that can understand and adapt to the certain situations
that the agent encounters during the game [5], [6].

In order to have a clear understanding of what those situations might be we will
first present the game mechanics and the differences between the original and our
implementation.

2.1. The Pac-Man Game. Pac-Man was launched in Japan on May 22, 1980 by
the Namco Company. Typical of the 80s, it is an arcade game that achieved great
success, being popular even 30 years after it appeared. Proof of this came when the
search engine Google honoured the game’s 30 year anniversary in 2010 by allowing
visitors to play a version of the game on the Google homepage. Due to the time spent
playing the game by employees the US economy suffered a 120 million dollar loss on
that day.

The game environment consists of a maze populated by 3 types of objects: 2 reward
types and an obstacle (or ”enemy”) type. The rewards are pellets and power-pills and
the obstacles are ghosts.

The agent must navigate through the maze and gather all rewards (for which he
gets points) while avoiding the enemies. Pellets are the most numerous objects in
the maze and they are worth the smallest amount of points. Power pills are rare
and spread across the maze. They bring the agent more points than the pellets and
also allow him to ”eat” the ghosts for a limited time. Eating a ghost brings the
agent even more points and also resets the ghost to the starting position from which
it cannot escape until the effect of the power pill is over. Ghosts are enemies that
move through the maze at different speeds. Usually there are 5 of them and all have
different behaviours when it comes to chasing the agent (from random movement to
aggressive following). When the agent eats a power pill the ghosts become scared
which means that they move slower and try to run away from the agent.

The agent has a limited number of lives (usually 3). When he is touched by a
ghost he loses a life and both he and the ghosts are reset to their starting positions.
If all 3 lives are lost so is the game. If the agent manages to collect all rewards in
the maze he receives points and moves to the next level which consists of a different
maze (keeping all remaining lives).

Considering the game mechanics and the objective of the game (gather as many
points as possible) there are many strategies for playing. For example, a player can
avoid ghosts and try to complete as many levels as possible, while another can chose
to chase ghosts and eat them, gathering points but also risking losing lives if ghosts
quickly change their scared state.

2.2. Changes to the Game. When implementing the mechanics of the game we
changed a few of the rules in order to simplify the representation of the game and take
out elements that only had entertainment value for human players. We also wanted to
provide additional challenges for our agent to overcome. The most important change
is the behaviour of the ghosts: all our ghosts chase the agent aggressively, except for
when they are scared. The exact way the ghosts work is the following: when not
in a scared state they try to minimize the distance to the agent; when in a scared
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state they try to maximize this distance. However, this behaviour makes the ghosts
behave deterministically, which is not realistic. A random element is added to ghost
movement by introducing, let us say, a 0.2 chance that a ghost will move in a random
direction excluding the one that minimizes/maximizes the distance to the agent. This
change, combined with the fact that ghosts are not allowed to turn back the way they
came (except when changing states) produces the desired behaviour, the ghosts being
a lot more aggressive than the ones in the original game.

In the classic implementation, when the player moves to a new level the map
changes to a new maze. Completing a level in our game will just reset the same map
(all entities are moved to their original positions and the score and number of agent
lives are maintained). We opted for this change because maze shape and size has no
influence on the way our agent learns, as long as all entities in the maze maintain the
same characteristics.

Another important change we made is removing ”out time” for ghosts. As we
mentioned before, in the original game, when a ghost is eaten, it is transported to a
”crypt” in the middle of the maze and it cannot escape until the effect of the power
pill is over. This mechanic takes ghosts out of the game, allowing players to collect
rewards uninhibited for a short period. In our emulation of the game, once a scared
ghost is eaten, it immediately spawns in the centre of the maze in the normal, not
scared state, and it starts chasing the agent again. Similar changes were made in [7]
in order to make ghosts more dangerous.

The original mazes sometimes contained tunnels through which the agent and
ghosts could pass to get to the opposite side of the map (effectively providing a point
at which the map wrapped around). Our maze contains no tunnel, as we considered
this would have minimal impact on evolved agent strategies.

Some other elements of the original game were left out of our emulation because
it was considered they had minimal impact on training the agent. These include:
Pac-Man does not slow down when collecting a reward; no fruit (another rare type of
reward) and no additional life at 10 000 points.

3. Methodology

Implementation of the game and controller was done in .NET using C# and the
Windows Forms interface. All entities were implemented in modular, object-oriented
style. For example, the map object contains a list of map square (location) objects
and the neural network is made up of several layer objects which, in turn, contain
several perceptron objects.

Each location object represents a square of the map grid and can contain walls (left,
right, upper, lower), a pellet or a power pill and is either accessible or inaccessible. All
these features are stored in a map array which can be quickly changed to represent a
different maze. Distances between such locations are useful when feeding input to the
neural network. In order to save time when training, these distances are calculated
recursively when the map is loaded and stored for later use. This method is described
in [7] and proves to be a very efficient approach.

When the application starts, the map and other entities in the game are initialized
and map distances are calculated. Upon initiating a new training session, a neural
network is created according to a specified architecture. Next a new genetic algorithm
is instanced using the selected evolution parameters. This algorithm adjusts the
weights of the neural network according to the evolutionary paradigm. When training
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is over, the best evolved individual is saved along with other information which reflects
the progression of the training session for later analysis.

3.1. Neural Network Approach. Before the agent moves to a new location all
possible locations are analysed (between 1 and 4 map locations adjacent to the current
location). For each of these locations several parameters are fed into the neural
network and the output represents the desirability of that certain location. The agent
then chooses the location with the highest desirability value and moves to it, repeating
this process until he dies.

The neural network that we used is a fully-connected multilayer perceptron (MLP)
that uses a hyperbolic tangent activation function. The input layer contains 6 weight-
less input units, each for a characteristic of the analysed location, as described in
Table 1.

Input Input Input Input
Perceptron Characteristic Range Significance

1 Dist Gh1 {0,. . . ,28} Distance to nearest
ghost.

2 State Gh1 {-1,1} State of nearest ghost
(-1 for normal, 1 for scared).

3 Dist Gh2 {0,. . . ,28} Distance to second
nearest ghost.

4 State Gh2 {-1,1} State of second
nearest ghost.

5 Dist Pellet {0,. . . ,28} Distance to nearest
pellet.

6 Dist Pill {0,. . . ,28} Distance to nearest
power pill.

Table 1. Input to the neural network.

The hidden layer consists of 10 computing units and is fully connected to the input
layer. This gives the hidden layer a total of 60 weights. Fully connected to the hidden
layer is the output layer which only contains 1 unit that produces the network output.
The output layer has 10 weights, bringing the total length of the weight vector of the
network to 70.

As mentioned above, all neurons use a hyperbolic tangent activation functions,
meaning that the activation function of the i -th neuron for vi, as weighted sum of
inputs, and yi as output, is given by:

φ(yi) = tanh(vi/4)

Note. Division of the weighted sum of inputs by 4 was added in order to determine
a smooth activation in the output layer for high input values.

3.2. The Hybrid Neural Network-Genetic Algorithm. Evolving weights for
the neural network is accomplished using a standard genetic algorithm. As we men-
tioned before, the total number of weights that control the output of the neural
network is 70. A vector consisting of these 70 weights (genes) is considered as a
chromosome in the evolutionary paradigm.

When the genetic algorithm assumes control of tuning the neural network weights,
it generates a population of individuals. The individuals (chromosomes) are generated
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using a random generator that produces uniformly distributed double values between
-1 and 1.

After the population is generated, each individual takes turns in controlling the
agent (via the neural network) for a set number of games. The total score achieved
in these games represents the fitness of the individual.

Once all individuals in the population have an updated fitness value (each has
assumed control of the agent once), the process of creating a new generation starts.
First, all individuals are ordered from worst to best according to their fitness value.
The worst performing n individuals (where n is the death rate) are eliminated from
the population.

The best performing n individuals are selected as parents for the children that will
replace the eliminated individuals. Every pair of parents produces 2 offspring, by
combining each half of the first vector with the corresponding half from the second
vector.

As soon as a new child is created he goes through the mutation phase. For each
gene (weight) a random double between 0 and 1 is generated. If the generated number
is less than the mutation chance the gene will be mutated. This consists of generating
another random number between 0 and 1 and adding or subtracting it to/from the
gene. Both addition and subtraction operations have equal chances to mutate the
gene, but only one is selected at random.

After mutation occurs for all new individuals, these are added to the new generation
that goes through the same process as the generation before it.

4. Results

An agent was evolved using the purposed method and his results were compared
with the results of different controllers [5], [7]. The main focus was on minimizing
the size of the input to the neural network as much as possible while still evolving a
well-playing agent.

4.1. Task. An efficient location evaluator was developed in [7] by providing the
neural network with the distances to all normal and scared ghosts, the distances to
the closest pellet and power pill and the distance to the closest junction. Such info
allows for a fine-tuned agent that adapts to specific situations in the environment.

By feeding the network with less information we aim to simplify the evolutionary
process by means of reducing the individual length, thus better covering the search
space using a relatively small population. Our goal is to shorten the evolution process
and the size of the input to the network as much as possible in order to still evolve a
competitive, adaptive agent.

4.2. Setup. The maze that we used is a simplified version of one of the classic Pac-
Man levels, consisting of a 15x15 grid and no tunnels (Fig. 1).

Technically, inside the maze there are 131 pellets and 4 power pills. The enemy
agents are 5 ghosts with speeds equal to that of the agent (when not scared). When the
agent collects a power pill the ghost speed drops to half and the ghosts enter scared
state for 20 moves (a move represents a transition from a grid square to another
adjacent one). The duration of the ghost scared state is cumulative.

Another important aspect of the testing setup is the amount of reward points the
agent receives for each action. These numbers are presented in Table 2.
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Figure 1. The maze in the initial state with all entities in the start-
ing positions.

Action Reward (points)
Eating a pellet 10

Eating a power pill 50
Eating a scared ghost 100
Completing a level 500
Table 2. Rewards for specific actions.

The evolution process is controlled by the parameters represented in Table 3 along
with the values we heuristically set for them when evolving our best agent.

Parameter Name Value
Population Size 100

Number of Generations 50
Mutation Chance 0.1

Life Span 10
Death Rate 20

Table 3. Parameters values controlling evolution.

Life span is the number of games for which each individual assumes control of the
agent, and death rate represents the percent of the old population that is replaced
when creating a new generation.

4.3. Experimental Results. The evolution process that produced our strongest
controller is presented in Fig. 2 (the evolution parameter values are the ones in Ta-
ble 3). For each individual in each generation a total fitness is determined by summing
all scores he obtained while controlling the agent. The total fitness is then divided by



82 D. NICOLESCU

Figure 2. The progression of individual best and mean scores dur-
ing evolution.

the life span and a mean fitness value is obtained (for the sake of simplicity, we will
refer to this value as individual fitness).

In Fig. 2 the Mean line describes the progression of the mean of all individual
fitness values in a generation. Values along the Best line represent the fitness of the
best individual in a generation. Mean starts at 382.32 (gen. nr. 1) and ends with
2327.84 (gen. nr. 50), while Best ranges from 2004 for the first generation to 3569
for the last one, with a peak value of 4083 for generation number 48.

After completing the training phase the best individual in the last generation was
chosen to enter the testing phase. In order to make for an easier comparison we
adopted the testing method used in [5]. The agent plays 100 games and the results
are analysed taking into consideration the mean over 100 for the following values: the
number of pellets and power pills collected, the number of eaten ghosts, the number
of wins and the score. For our agent these values are:
• Ghosts eaten (mean over 100 games): 2.28
• Games won (mean over 100 games): 0.35
• Power pills (mean over 100 games): 5.31
• Score (mean over 100 games): 2307.7

4.4. Observations and Discussion. A normal round of the game played by the
neural network based agent proceeds as follows:
(1) At the start of the game the agent focuses on the closest power pill, going straight

for it. Once the pill is collected ghosts are scared and start avoiding the agent,
trying to maximize the distance to his location.

(2) The agent moves to the next power pill, eating any ghosts he finds on the way.
However, he does not actively chase scared ghosts for more than a few moves if
this takes him further from the targeted power pill.

(3) Step 2 is repeated until there are no more power pills left. By this time the agent
has cleared the outskirts of the maze and the ghosts are still scared for a good
amount of time due to the cumulative effect of the pills. By this point the agent
would usually have eaten an average of 2 ghosts.
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(4) Once there are no more pills in the maze the agent takes advantage of the scared
time left to collect the remaining outermost pellets. At this stage he actively
avoids scared ghosts, being aware that the absence of any more power pills would
mean that a scared ghost, once eaten, would immediately return as an aggressive
enemy.

(5) During an average game the scared time ends when there are few pellets left
in the centre of the maze. Once this happens, the agent switches to avoiding
the aggressive ghosts at all costs, even if this takes him further away from the
remaining pellets. He tries to get all ghosts to follow him and then head for the
last rewards. The non-deterministic path of the ghosts (0.2 chance to make a
random move, 0.8 chance to close in on Pac-Man) means that often the agent is
ambushed inside a corridor and he loses a life (in which case he moves to step
6). In 10% of the cases the agent manages to complete the level without losing
any lives.

(6) If the agent has lost a life trying to collect the last remaining pellets he and the
ghosts are reset and his behaviour is the one described at step 5.

In order to obtain an objective evaluation of the minimum input neural network
based controller (MINNC) efficiency a comparison with other Pac-Man controllers is
required. It was decided to first compare the MINN with two Influence Map based con-
trollers [5]: LIMA (Limited Influence Map Agent) and IMA (Influence Map Agent).
IMA uses global knowledge about the environment, similarly to MINNC, while LIMA
uses minimal local knowledge. A second comparison is done between MINNC and the
neural network based controller (MLP-20) developed in [7]. This controller is similar
to MINNC, the difference being that MLP-20 feeds the neural network with more
information about the environment.

4.4.1. Neural Network vs. Influence Maps. A direct comparison between the results
of the neural network based controller and the influence map based controllers (LIMA
and IMA) implemented in [5] can be observed in Table 4.

Result NN Controller LIMA IMA
Ghosts 2.28 0.91 1.55
Wins 0.35 0.08 0
Pills 5.31 3.67 3.68
Score 2307.7 1515 1532

Table 4. Results of neural network, LIMA and IMA based controllers.

It is important to note that the environment in which the neural network based
controller was tested has a greater degree of difficulty due to the extremely aggressive
ghosts. Despite this fact, the controller described in this paper clearly performs better
when considering all analysed aspects. Due to the dangerous ghost behaviour, it was
expected that the controller would evolve to avoid ghosts at all times and rather focus
on pellets and pills. However, the agent proved to be very versatile, managing to find
the right time to eat ghosts and avoiding them for the rest of the game.

An important aspect of the comparison between the neural networks based agent
and the IMA and LIMA agents is the number of levels completed. For IMA the
number is 0 while LIMA manages to improve the influence map method and obtain 8
wins in 100 games. The neural network controller wins 35 games out of 100, which is a
remarkable number, considering the added difficulty of the environment. The number
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of wins also explains why the agent collects an average of 5.31 pills per game when
there are only 4 pills in a level. Every 3 levels the agent completes an additional level,
which means he collects (3+1)×4 pills every 3 games. This results in 16 collected pills
every 3 games, an average of 5.3 pills per game (close to the 5.31 value that the test
produced).

4.4.2. Minimum Input vs. Complete Input. In [7] the author develops 5 different
neural network based controllers for Pac-Man, testing them in deterministic and non-
deterministic versions of the game. The non-deterministic environment is very similar
to the one used in this paper. However, there are few important differences: the
environment used in [7] contains 220 pellets (89 more than our environment) and the
reward for eating a ghost starts at 200 and doubles for every other ghost ate in quick
succession (our reward has a constant value of 100). The scoring difference might not
seem great, but it means a difference of 10890 points for completing a level in ideal
conditions.

The best controller developed in [7] (MLP-20) is similar to MINNC, the difference
being that MLP-20 uses a larger input set. This additional information consists of
the distance to and state of all ghosts (as opposed to only the two closest ghosts as
is the case of MINNC) and the distance to the closest junction.

After 100 games MLP-20 obtained a mean score of 4781, which is almost double the
score of MINNC. However, MLP-20 was evolved over 1000 generations, while MINCC
is the result of only 50 generations. According to [7] MLP-20 did not score more than
2000 points before generation 200. This means that after just 50 generations MINNC
performs better than MLP-20 does after 200 generations. This happens despite the
difference in scoring which grants MLP-20 an advantage.

The fast evolution of MINNC is attributed to the smaller input that allows for
covering a more diverse population set while using less generations and individuals.
Given enough generations it is probable that both controllers will evolve to obtain
similar scores, but when considering a short evolution time MINNC is sure to produce
a better agent.

5. Conclusions and Further Research

This paper aimed to present a way to simplify the process of evolving a neural net-
work based controller for an agent in a non-deterministic environment. This objective
is accomplished by reducing the set of possible solutions through decreasing the size
of the input vector, resulting in a Minimum Input Neural Network based Controller
(MINNC).

When compared to other methods of controlling an agent, neural networks prove to
be well suited for the task, managing to learn fast and adapt easily to the environment.

In order to test if reducing the size of the input to the neural network can speed up
the learning process while producing the same results we opted for comparing MINNC
to a complete input neural network based controller. The MINNC produces results
similar to those of the complete input controller after a 5 times shorter evolution
process. Another effect of reducing the input size is the increased simplicity of the
neural network and the reduction in computational resources needed to implement
the controller.

The only downside to using a MINNC can be noticed in more complex environments
where the state of the environment cannot be fully captured in small feature vector.
In addition to this, a less complex neural network is not capable of learning very subtle
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behaviours, the kind that would be needed in order to accomplish complicated tasks.
This issue can be fixed by pre-processing the input in such a way that the vector size
is reduced, while still encapsulating rich information about the environment.

While reducing input size proves to be very efficient way of reducing the time and
resources needed to evolve a well-playing agent the optimization can be taken further
by adjusting the parameters of the evolution process. This direction can provide great
results and is sure to be the focus of further research.

Another interesting approach to using a neural network to control an agent is
based on real-time training of the network, eliminating the genetic algorithm. Such
an approach can prove to have a very fast response time and high adaptability to
sudden changes in the environment, being well suited for the non-deterministic nature
of the game.

Although Pac-Man came out more than 30 years ago, it still provides a challenging
environment for research into agent control and behaviour. Apart from the Pac-Man
agent the team of ghosts has also received attention from the scientific community,
resulting in interesting developments in cooperative agent behaviour. A lot of the
recent advances in Non-Player Character (NPC) AI which are implemented in modern
games with immersive gameplay are based on methods first tested using Pac-Man,
earning the game a special status both amongst players and researchers.
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