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On the stability of weak solutions of sediment transport
models

Jean De Dieu Zabsonré

Abstract. In this paper we are concerned with the stability of weak solutions for a family
of two-dimensional bed-load transport models which combines a viscous shallow water system
with a transport equation that describes the bottom evolution. Our analysis is performed in
a periodic domain where models with critical shear stress are used for the solid discharge.
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1. Introduction.

In this paper, we study the stability of weak solutions of a viscous sedimentation
model. We consider here the system proposed by Saint-Venant-Exner to model the
transport of sediment caused by a flow. It consists of a coupling between the hy-
drodynamic Saint-Venant system to a morphodynamic bed-load transport sediment
equation. It is well known that the equation that describes sediment transport is a
continuity equation. The expression of the conservation sediment volume equation is
given by

∂tzb + βdiv(qb(h, u)) = 0, (1)
where qb denotes the solid transport discharge, zb is the movable bed thickness, β =

1
1−ζ with ζ the porosity of the sediment layer (see [6],[7],[11]).

There are several formulae for qb available in the literature which are obtained
using empirical models. They depend on the height h of the fluid and the water
discharge q = hu, where u is the velocity. The most important used for rivers are :
• Grass model:

qb = Ag

∣∣∣ q

h

∣∣∣
mg−1 q

h
, 1 ≤ mg ≤ 4,

where the constant Ag (s2/m), which is usually obtained from experimental
data, takes into account the grain diameter and the kinematic viscosity, see
([6],[7],[12],[14]).

• the model proposed by Meyer-Peter & Müller [16], Van Rijn’s [20], Einstein [9],
Nielsen [17], Fernández-Luque & Van Beek [10] or Kalinske [13]. Such formulae
can be written under a general form

qb = α(τ)(|τ | − τ∗)m
+ , (2)

where m is a positive real number and α = α(τ) depends also on the grain diam-
eter of the sediment. These formulae imply that the movement of the sediment
only begins when the modulus of the shear stress is bigger than the critical one
denoted τ∗. Usually, one uses Manning’s law to define the shear stress: τ = ghSf
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where Sf =
gM2|u|
R

4/3
h

u, being Rh is the hydraulic ratio and M the Manning’s fric-

tion coefficient. Notice that Meyer-Peter & Müller’s formula [16], is the most
important formula used in Fluid Mechanics.

In this paper we consider a modified formula of qb given by (2) by choosing

α(τ) = βhu, τ = c1|u|u and τ∗ = c2

where β, c1 and c2 are real numbers. Thus, in our analysis we consider the following
discharge for the solid transport:

qb = βhu(c1|u|2 + c2)m
+ (3)

Next as it was presented in [8], in order to have a diffusion process, we add a
diffusive term in the sediment transport equation. Finally, we consider the following
system:

∂th + div(hu) = 0, (4)
∂t(hu) + div(hu⊗ u) + gh∇(h + zb)− νdiv(hD(u)) = 0, (5)

∂tzb + div(qb(h, u))− ν

2
∆zb = 0, (6)

in a two-dimensional periodic domain with periodic boundary conditions. Here qb is
given by (3), D(u) is the symmetric part of the gradient, that is, D(u) = (∇u +
t∇u)/2, and g > 0 denotes the gravity number. We assume that

c2 < 0, 0 < c1 <
1

4mβ
, 0 < m ≤ 1

2
.

The initial data are taken in such a way that

h|t=0 = h0 ≥ 0, zb|t=0 = zb0 , hu|t=0 = q0, (7)

where

h0 ∈ L2(Ω), zb0 ∈ L2(Ω),
|q0|2
h0

∈ L1(Ω), ∇
√

h0 ∈ (L2(Ω))2.
(8)

For c2 = 0, we obtain the Grass model studied in [21].
Let us next recall some results on viscous sedimentation models. In [19], the

authors obtained the existence of weak solutions of a viscous sedimentation model.
In that work, the viscous Saint-Venant system studied in [18] is coupled with a Grass
model of the type qb = hu. Notice that in [18], the authors chose a viscous term of
the form ν∆u. Assuming that the initial data are small enough as in [18] and using
Brower fixed point theorem, they obtained an existence result.

In [21], the authors obtained the stability of weak solutions of system (4)–(6) with
Grass model (1 ≤ mg ≤ 3/2). The key point in their analysis is the use of the
nice mathematical entropy inequality namely BD entropy, developed in ([1],[2]) for
shallow water equation and in ([2],[3],[4], [5]) for viscous compressible Navier-Stokes
equations. In [21], the stability is obtained by using one of the multipliers used in [15].
The authors proved that the bed-load transport system considered is energetically
consistent without any restriction on the data.

However, in the literature, most of the works related to sediment transport model
are done by using formula with critical shear stress (2) for the solid discharge.
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In this work, we extend the stability result of weak solutions considered in [21],
to the more general system (4)–(6). The difficulty in this paper comes from the form
of the discharge qb which makes difficult the energy estimates and the passage to the
limit in the sequence (qbn)n = (hnun(c1|un|2 + c2)m

+ )n.
The rest of the paper is organized as follows: in Section 2, we state the main

result. In Section 3 we state the energy inequality which is the main ingredient in
proving our main result. Sections 4 and 5 contain the proof of the main result and
the energy estimate respectively.

2. The main result

We start this section with the definition of the weak solution to (4)–(6).

Definition 2.1. We shall say (h, q = hu, zb) is a weak solution of (4)–(6) on (0, T )×Ω
with initial conditions (7) if
• System (4)–(6) holds in (D′((0, T )× Ω))4,
• Equation (7) (on initial conditions) holds in D′(Ω) with h ≥ 0 a.e.,
• the energy inequality (11) is satisfied for a.e. non-negative t and the following

regularity properties are satisfied:
√

hu ∈ L∞(0, T ; (L2(Ω))2),
√

h∇u ∈ L2(0, T ; (L2(Ω))4),
√

h(c1|u|2 + c2)
(m+1)/2
+ ∈ L∞(0, T ; (L2(Ω))2), h + zb ∈ L∞(0, T ; L2(Ω)),

∇h +∇zb ∈ L2(0, T ; (L2(Ω))2), ∇
√

h ∈ L∞(0, T ; (L2(Ω))2),
√

hD(u)(c1|u|2 + c2)
m/2
+ ∈ L2(0, T ; (L2(Ω))2),

• h and zb are in C0(0, T ; H−s(Ω)) and hu is in C0
(
0, T ; (H−s(Ω))2

)
for s large

enough.

We are now in a position to state our main result.

Theorem 2.1. Let (hn, qn = hnun, zbn) denote a sequence of weak solutions of (4)–
(6) which satisfy the entropy inequality (11), with initial data

hn|t=0 = hn
0 (x), hnun|t=0 = qn

0 (x) and zbn |t=0
= zn

b0(x),

where hn
0 , zn

b0
and un

0 verify

hn
0 ≥ 0, hn

0 → h0 in L1(Ω), zn
b0 → zb0 in L1(Ω), qn

0 → q0 in L1(Ω), (9)

and satisfy the following bounds:
∫

Ω

hn
0

|un
0 |2
2

+
|hn

0 + zn
b0
|2

2
+ hn

0

(
c1|un

0 |2 + c2

)m+1

+
< C,

∫

Ω

∣∣∣∇
√

hn
0

∣∣∣
2

< C and
∫

Ω

|hn
0 | < C. (10)

Then, up to a subsequence, (hn)n, (qn)n and (zbn)n converge strongly in C0(0, T ;
L2p/(2+p)(Ω)), C0(0, T ; W−1,2p/(2+p)(Ω)) and C0(0, T ;L2p/(2+p)(Ω)) respectively to a
weak solution of (4)–(6) satisfying entropy inequalities (11).
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3. Energy inequality

Proposition 3.1. For (h, q, zb) smooth solution of the model (4)–(6), we show the
following relation:

1
2

d

dt

∫

Ω

h|u + ν∇ log h|2 +
β

c1(m + 1)
d

dt

∫

Ω

h
(
c1|u|2 + c2

)m+1

+

+
1
2

d

dt

∫

Ω

h|u|2 + g
d

dt

∫

Ω

|zb + h|2 + gν

∫

Ω

|∇(h + zb)|2

+
ν

4

∫

Ω

h
∣∣∇u + t∇u

∣∣2 +
ν

4

∫

Ω

h
∣∣∇u− t∇u

∣∣2

+ 2(1− 4mβc1)ν
∫

Ω

h|D(u)|2 (
c1|u|2 + c2

)m

+
= 0. (11)

The proof of this Proposition is postponed to Section 5.

Remark 3.1. The energy inequality provides the following uniform estimates for a
smooth solution:

‖
√

hu‖L∞(0,T ;(L2(Ω))2) ≤ c ∈ R+, ‖∇
√

h‖L∞(0,T ;(L2(Ω))2) ≤ c,

‖zb + h‖L∞(0,T ;L2(Ω)) ≤ c, ‖
√

h
(
c1|u|2 + c2

)(m+1)/2

+
‖L∞(0,T ;(L2(Ω))2) ≤ c,

‖∇(h + zb)‖L2(0,T ;(L2(Ω))2) ≤ c, ‖
√

hD(u)‖L2(0,T ;(L2(Ω))2) ≤ c,

‖
√

hD(u)
(
c1|u|2 + c2

)m/2

+
‖L2(0,T ;(L2(Ω))2) ≤ c.

4. Proof of Theorem 2.1

In this section we give the proof of Theorem 2.1. With the previous a priori bounds,
we are able to prove the compactness of the sequence (hn, un, zbn) of approximate
solution of system (4)–(6) and pass to the limit in the different terms that compose
the three equations. Most of the convergence relies on the approach given in [21]. For
the sake of completeness, we present here a complete proof. Our argument will be
divided into four steps.

4.1. First step: Convergence of the sequences
(√

hn

)
n≥1

(√
hn

)
n≥1

(√
hn

)
n≥1

, (hn)n≥1(hn)n≥1(hn)n≥1 and (zbn)n≥1(zbn)n≥1(zbn)n≥1.
Integrating the mass equation, we directly get (

√
hn)n in L∞(0, T ;L2(Ω)). In addi-

tion, Remark 3.1 gives us ‖∇
√

h‖L∞(0,T ;(L2(Ω))2) ≤ c, so we obtain:

(
√

hn)n is bounded in L∞(0, T ; H1(Ω)). (12)

Using again the continuity equation on hn, we have the following equality:

∂t

√
hn =

1
2

√
hn div un − div

(√
hnun

)
,

which allows us to conclude that (∂t

√
hn)n is bounded in L2(0, T ; H−1(Ω)).

Thanks to Aubin-Simon lemma, we can extract a subsequence, still denoted (hn)n≥1,
such that

√
hn strongly converges to

√
h in C0(0, T ;L2(Ω)).

We study now the subsequence (hn)n. According to the property (12) and Sobolev
embeddings, we know that, for all finite p, (

√
hn)n is bounded in L∞(0, T ; Lp(Ω)). In

the following, we will assume p ≥ 6 in order to simplify our expressions and ensure
that (hn)n is in L∞(0, T ; L2(Ω)).
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The mass equation on hn reads: ∂thn = −div(hnun). Since hnun =
√

hn

√
hnun,

we deduce that (hnun)n is bounded in L∞(0, T ; (L2p/(2+p)(Ω))2). Then, the sequence
(∂thn)n is bounded in L∞(0, T ; W−1,2p/(2+p)(Ω)).

The equality ∇hn = 2
√

hn∇
√

hn implies that the sequence (∇hn)n is bounded in
L∞(0, T ; (L2p/(2+p)(Ω))2). Thus, the sequence (hn)n is bounded in
L∞(0, T ;W 1,2p/(2+p)(Ω)).

Thanks to Aubin-Simon lemma again, we find:

hn → h in C0(0, T ;L2p/(2+p)(Ω)).

Last, we perform the convergence of the bottom term (zbn
)n: combining the bound on

(
√

hn)n in L∞(0, T ; Lp(Ω)) and the bound on (∇zbn)n in L2(0, T ; (L2p/(2+p)(Ω))2),
we deduce:

(zbn
)n is bounded in L∞(0, T ; W 1,2p/(2+p)(Ω)).

Moreover, we have just shown that (∆zbn
)n belongs to L∞(0, T ; W−1,2p/(2+p)(Ω)).

Let us now write the discharge (qbn
)n under the following form:

hnun(c1|un|2 + c2)m
+ =

√
hnun

(√
hn(c1|un|2 + c2)

1/2
+

)2m

h
1
2−m
n . (13)

We have (c1|un|2 + c2)+ ≤ c1|un|2, so that
(√

hn(c1|un|2 + c2)
1/2
+

)
belongs to

L∞(0, T ;L2(Ω)). The term :
•

√
hnun is bounded in L∞(0, T ; L2(Ω)),

•
(√

hn(c1|un|2 + c2)
1/2
+

)2m

is bounded in L∞(0, T ; L1/m(Ω)),

• h
1
2−m
n is bounded in L∞(0, T ;Lp/2( 1

2−m)(Ω)).
We then have the sequence (qbn)n bounded in L∞(0, T ;Lp/(p+1)(Ω)) and div(qbn) ∈
L∞(0, T ;W−1,p/(p+1)(Ω)).

(∂tzbn)n is bounded in L∞(0, T ; W−1,p/(p+1)(Ω)).

For p large enough, we have the relations W 1,2p/(2+p)(Ω) ⊂⊂ L2p/(2+p)(Ω) ⊂
W−1,p/(p+1)(Ω). Next, by Aubin-Simon lemma we are able to assert that (zbn)n

converges strongly to zb in C0(0, T ; L2p/(2+p)(Ω)).

4.2. Second step: Convergence of the water discharge (qn)n≥1 = (hnun)n≥1(qn)n≥1 = (hnun)n≥1(qn)n≥1 = (hnun)n≥1.
We proved that the sequence (hnun)n is bounded in L∞(0, T ; (L2p/(2+p)(Ω))2) where
p is an integer greater than six in the first step. Writing the gradient as follows:

∇(hnun) = 2
√

hnun∇
√

hn +
√

hn

√
hn∇un,

since the first term is in L∞(0, T ; L1(Ω)) and the second one belongs to
L2(0, T ;L2p/(2+p)(Ω)), we have:

(hnun)n bounded in L2(0, T ; W 1,1(Ω)).

Moreover, the momentum equation (5) gives:

∂t(hnun) = −div(hnun ⊗ un)− 1
Fr2

hn∇(hn + zbn) + ν div (hnD(un)) .

Let us study each term separately:
• div(hnun ⊗ un) = div

(√
hnun ⊗

√
hnun

)
is in L∞(0, T ; W−1,1(Ω)),

• as hn is in L∞(0, T ;W 1,2p/(2+p)(Ω)), it is also in L∞(0, T ; Lp(Ω)) and then:
hn∇(hn + zbn) is in L2(0, T ; L2p/(2+p)(Ω)) ⊂ L2(0, T ; W−1,2p/(2+p)(Ω)),
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• remark that

hn∇un = ∇(hnun)− un ⊗∇hn

= ∇
(√

hn

√
hnun

)
− 2

√
hnun∇

√
hn ; (14)

we know that the first term is in L∞(0, T ; W−1,2p/(2+p)(Ω)) and the second one
in L∞(0, T ; L1(Ω)). So we have the sequence (hnD(un))n bounded in
L2(0, T ; W−1,2p/(2+p)(Ω)).

Finally, note that these three terms are included in L2(0, T ;W−2,2p/(2+p)(Ω)), which
means that ∂t(hnun) is also in this space for all n ≥ 1.

Then, applying Aubin-Simon lemma, we obtain:

(hnun)n converges strongly to q in C0(0, T ; W−1,2p/(2+p)(Ω)).

4.3. Third step: Convergence of
(√

hnun

)
n≥1

(√
hnun

)
n≥1

(√
hnun

)
n≥1

. The product
√

hnun is equal to
qn/

√
hn.We will prove a strong convergence for this term. We know that (qn/

√
hn)n

is bounded in L∞(0, T ; L2(Ω)); so Fatou lemma yields:

sup
t∈[0,T ]

∫

Ω

lim inf
q2
n

hn
≤ sup

t∈[0,T ]

lim inf
∫

Ω

q2
n

hn
< +∞.

In particular, q(t, x) is equal to zero for almost every x where h(t, x) vanishes. Then,
let us define the limit velocity by taking u(t, x) = q(t, x)/h(t, x) if h(t, x) 6= 0 or else
u(t, x) = 0. So we can write q(t, x) = h(t, x)u(t, x) and:

sup
t∈[0,T ]

∫

Ω

q2

h
= sup

t∈[0,T ]

∫

Ω

h|u|2 < +∞.

Moreover, we can use Fatou lemma again to write

∫

Ω

h(c1|u|2 + c2)m+1
+ ≤

∫

Ω

lim inf hn(c1|un|2 + c2)m+1
+

≤ lim inf
∫

Ω

hn(c1|un|2 + c2)m+1
+ ,

which gives
√

h(c1|u|2 + c2)
(m+1)/2
+ in L∞(0, T ; L2(Ω)).

As (qn)n and (hn)n converge almost everywhere, the sequence (
√

hnun)n = (qn/
√

hn)n

converges almost everywhere to
√

hu = q/
√

h when h does not vanish. Moreover, for
all M positive, (

√
hnun111|un|≤M )n converges almost everywhere to

√
hu111|u≤M (still as-

suming that h does not vanish). If h vanishes, we can write
√

hnun111|un|≤M ≤ M
√

hn

and then have convergence towards zero. Then, almost everywhere, we obtain the
convergence of (

√
hnun111|un|≤M )n.
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Finally, we have:
∫ T

0

∫

Ω

∣∣∣
√

hnun −
√

hu
∣∣∣
2

≤
∫ T

0

∫

Ω

(∣∣∣
√

hnuk111|un|≤M −
√

hu111|u|≤M

∣∣∣ +
∣∣∣
√

hnun111|un|>M

∣∣∣

+
∣∣∣
√

hu111|u|>M

∣∣∣
)2

≤ 3
∫ T

0

∫

Ω

∣∣∣
√

hnuk111|un|≤M −
√

hu111|u|≤M

∣∣∣
2

+ 3
∫ T

0

∫

Ω

∣∣∣
√

hnun111|un|>M

∣∣∣
2

+3
∫ T

0

∫

Ω

∣∣∣
√

hu111|u|>M

∣∣∣
2

.

Since (
√

hn)n is in L∞ (0, T ; Lp(Ω)), (
√

hnun111|un|≤M )n is bounded in this space. So,
as we have seen previously, the first integral tends to zero. Let us study the other
two terms:
for M large enough, we have hn(c1|un|2 + c2)+111|un|>M = hn(c1|un|2 + c2)111|un|>M .
Thus

∫ T

0

∫

Ω

∣∣∣
√

hnun111|un|>M

∣∣∣
2

=
1
c1

∫ T

0

∫

Ω

hn(c1|un|2 + c2)111|un|>M − 1
c1

∫ T

0

∫

Ω

c2hn111|un|>M

≤ 1
c1

∫ T

0

∫

Ω

hn(c1|un|2 + c2)111|un|>M +
1
c1

∫ T

0

∫

Ω

c2hn111|un|>M

≤ 1
(c1M2 + c2)m

+

∫ T

0

∫

Ω

hn(c1|un|2 + c2)m+1
+ +

c2

c1M2

∫ T

0

∫

Ω

hn|un|2111|un|>M

≤ k

M2
+

k

(c1M2 + c2)m
+

for some fixed k > 0 and for all M large enough. We also have
∫ T

0

∫

Ω

∣∣∣
√

hu111|u|>M

∣∣∣
2

≤ k

M2
+

k

(c1M2 + c2)m
+

.

To conclude this part, we let M tend to infinity which finally gives

(
√

hnun)n strongly converges to
√

hu in L2(0, T ; L2(Ω)).

4.4. Fourth step: Convergence of the diffusion terms, the pressure and the
solid transport flux. The sequence (∇(hnun))n converges to ∇(hu) in the sense
of the distributions, in (D′ ((0, T )× Ω))4. The weak convergence of the sequence
(∇√hn)n in L2(0, T ;(L2(Ω))2) and the strong convergence of (

√
hnun)n in this space

give the weak convergence in L1(0, T ; (L1(Ω))4) of (un ⊗∇hn)n. Then, relation (14)
implies that (hn∇un)n converges to h∇u in (D′((0, T )×Ω))4. This gives the conver-
gence of the complete diffusion term.

Due to Remark 3.1, the sequence (∇(hn + zbn))n converges weakly to ∇(h + zb)
in L2(0, T ; (L2(Ω))2). Moreover, the sequence (hn)n converges strongly in
C0(0, T ; L2p/(2+p)(Ω)); so the product converges weakly to h∇(h + zb) in
L2(0, T ; (Lp/(1+p)(Ω))2).
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The last term is the term of solid transport flux: first, we remark that hn(c1|un|2 +
c2)+ converges strongly to h(c1|u|2 + c2)+ in L1(0, T ; L1(Ω)) and then(√

hn(c1|un|2 + c2)
1/2
+

)2m

converges strongly to
(√

h(c1|u|2 + c2)
1/2
+

)2m

in

L1/m(0, T ;L1/m(Ω)). In addition, the sequence (h1/2−m
n )n converges converges to

h1/2−m in C0(0, T ; L2/(1−2m)(Ω)) and (
√

hnun)n converges strongly to
√

hu in
L2(0, T ; (L2(Ω))2). By using Equation (13), we obtain that the sequence (hnun(c1|un|2+
c2)m

+ )n converges strongly to hu(c1|u|2 +c2)m
+ in the space L2/(2m+1)(0, T ; (L1(Ω))2).

This ends the proof of Theorem 2.1.

5. Proof of the energy inequality

Lemma 5.1. Let (h, q, zb) be a smooth solution of (4)–(6). Then the following energy
inequality holds:

1
2

d

dt

∫

Ω

h|u|2 +
g

2
d

dt

∫

Ω

|zb + h|2 +
β

2c1(m + 1)
d

dt

∫

Ω

h
(
c1|u|2 + c2

)m+1

+

+
gν

2

∫

Ω

∇h · ∇zb +
gν

2

∫

Ω

|∇zb|2 +
ν

4

∫

Ω

h
∣∣∇u + t∇u

∣∣2

+ (1− 4mβc1)ν
∫

Ω

h|D(u)|2 (
c1|u|2 + c2

)m

+
≤ 0. (15)

Proof. We multiply Equation (5) by u, and integrate over Ω. Using (4) we deduce:
∫

Ω

h∂tu · u +
∫

Ω

(hu · ∇)u · u +
1

Fr2

∫

Ω

h∇(h + zb) · u− ν

∫

Ω

div (hD(u)) · u = 0.

Now let us simplify each term:

•
∫

Ω

h∂tu · u +
∫

Ω

(hu · ∇)u · u =
1
2

d

dt

∫

Ω

h|u|2,

•
∫

Ω

h∇(h + zb) · u =
∫

Ω

(h + zb) ∂th =
1
2

d

dt

∫

Ω

h2 +
∫

Ω

zb ∂th ,

•
∫

Ω

div (hD(u)) · u = −
∫

Ω

hD(u) : ∇u = −1
4

∫

Ω

h
∣∣∇u + t∇u

∣∣2.
Substituting all these terms, we find:

1
2

d

dt

∫

Ω

h|u|2 +
g

2
d

dt

∫

Ω

h2 + g

∫

Ω

zb ∂th +
ν

4

∫

Ω

h
∣∣∇u + t∇u

∣∣2 = 0. (16)

Next, we multiply Equation (5) by qb(h,u)
h and we integrate on Ω:

∫

Ω

h∂tu · qb(h, u)
h

+
∫

Ω

(hu · ∇)u · qb(h, u)
h

+
1

Fr2

∫

Ω

h∇(h + zb) · qb(h, u)
h

− ν

∫

Ω

div (hD(u)) · qb(h, u)
h

= 0.

Here again, we study separately each term:

•
∫

Ω

h∂tu· qb(h, u)
h

+
∫

Ω

(hu·∇)u· qb(h, u)
h

=
β

2c1(m + 1)
d

dt

∫

Ω

hu
(
c1|u|2 + c2

)m+1

+
,
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• g

∫

Ω

h∇(h + zb) · qb(h, u)
h

= −gβ

∫

Ω

(h + zb)div
(
hu

(
c1|u|2 + c2

)m

+

)
.

Next we use Equation (6) to write:

g

∫

Ω

h∇(h + zb) · qb(h, u)
h

= −gν

2

∫

Ω

(h + zb)∆zb + g

∫

Ω

(h + zb)∂tzb

=
gν

2

∫

Ω

∇h · ∇zb +
gν

2

∫

Ω

|∇zb|2 + g

∫

Ω

h∂tzb

+
g

2
d

dt

∫

Ω

zb
2,

• ∫

Ω

div (hD(u)) · qb(h, u)
h

= −βc1

∫

Ω

h (D(u) : ∇u) · (c1|u|2 + c2

)m

+

−2mβc1

∫

Ω

h (D(u)u∇)u · u (
c1|u|2 + c2

)m−1

+

Since c1 < 1, c1|u|2 + c2 ≤ |u|2 and so

∣∣∣∣2mc1

∫

Ω

h (D(u)u∇)u · u (
c1|u|2 + c2

)m−1

+

∣∣∣∣

≤ 4mc1

∫

Ω

h|D(u)|2|u|2 (
c1|u|2 + c2

)m−1

+

≤ 4mc1

∫

Ω

h|D(u)|2 (
c1|u|2 + c2

)m

+
.

Gathering all these results, we are led to:

β

2c1(m + 1)
d

dt

∫

Ω

h
(
c1|u|2 + c2

)m+1

+
+

gν

2

∫

Ω

∇h · ∇zb +
gν

2

∫

Ω

|∇zb|2

+ g

∫

Ω

h∂tzb +
g

2
d

dt

∫

Ω

zb
2 + (1− 4mβc1)ν

∫

Ω

h|D(u)|2 (
c1|u|2 + c2

)m

+
= 0. (17)

Now we add Equation (17) to Equation (16): we find the proclaimed inequality. ¤

Next we introduce the BD entropy in order to have more information on the integral
of ∇h · ∇zb.

Lemma 5.2. If (h, q, zb) is a smooth solution of (4)–(6), the following energy in-
equality holds:

1
2

d

dt

∫

Ω

h|u + ν∇ log h|2 +
β

2c1(m + 1)
d

dt

∫

Ω

h
(
c1|u|2 + c2

)m+1

+

+
g

2
d

dt

∫

Ω

|h + zb|2 + gν

∫

Ω

|∇h|2 +
2gν

3

∫

Ω

∇h · ∇zb +
gν

2

∫

Ω

|∇zb|2

+
ν

4

∫

Ω

h|∇u− t∇u|2 + (1− 4mβc1)ν
∫

Ω

h|D(u)|2 (
c1|u|2 + c2

)m

+
= 0 (18)
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Proof. We use the transport equation to find:

∂t∇h + div(h∇tu) + div(u⊗∇h) = 0

Replacing ∇h by h∇ log h and introducing the viscosity ν, it becomes

∂t(νh∇ log h) + νdiv(h∇tu) + div(hu⊗ ν∇ log h) = 0

Next, we add the momentum equation to obtain:

∂t(hu + ν∇ log h) + div(hu⊗ (u + ν∇ log h))

− νdiv(h(D(u)−∇tu)) + gh∇(h + zb) = 0 (19)

We multiply that equation by (u + ν∇ log h) and integrate over Ω. We study each
term which has not appeared in the classical energy:
•
∫

Ω

∂t(hu + ν∇ log h)(u + ν∇ log h)

+
∫

Ω

div(hu⊗ (u + ν∇ log h))(u + ν∇ log h) =
1
2

d

dt

∫

Ω

h|u + ν∇ log h|2.

• Using the definition of stress tensor, we deduce
∫

Ω

div(h(D(u)−∇tu))(u + ν∇ log h) =
ν

4

∫

Ω

h|∇u− t∇u|2

• ∫

Ω

h∇(h + zb) · ν∇ log h = ν

∫

Ω

|∇h|2 + ν

∫

Ω

∇h · ∇zb

Finally, we obtain the following equality :

1
2

d

dt

∫

Ω

h|u + ν∇ log h|2 +
ν

4

∫

Ω

h|∇u− t∇u|2 + gν

∫

Ω

|∇h|2

+ gν

∫

Ω

∇h · ∇zb +
g

2
d

dt

∫

Ω

h2 + g

∫

Ω

zb ∂th = 0 (20)

We add this equality to (17) to deduce the proclaimed result. ¤

The proof of Proposition 3.1 is now achieved by adding the estimate (15) with the
equality (18).
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