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Approximate analytical solutions to the Bagley-Torvik
equation by the Fractional Iteration Method
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Abstract. In this paper we solve the Bagley-Torvik equation, which is an ordinary fractional
differential equation, where the solution procedure is easier, more effective and straightforward.

The validity and the accuracy of this method is shown by the obtained results.

2010 Mathematics Subject Classification. Primary 26A33, 65L05; Secondary 65K10.

Key words and phrases. Bagley-Torvik equation, Fractional Iteration Method (FIM), Series

solution.

1. Introduction

Owing to their frequent appearances in various applications in fluid mechanics,
viscoelasticity, biology, physics and engineering, fractional differential equations have
been the focus of numerous studies. Therefore, considerable attention has been given
to how solving fractional ordinary differential equations, integral equations and frac-
tional partial differential equations. However, there exists no method that yields
exact solutions to differential equations of fractional order, consequently some analyt-
ical techniques to handle such equations have been proposed, for example, Adomian
decomposition method [4], [12], the homotopy analysis method [3], the homotopy
perturbation method [1], the Taylor series method [10], variational iteration method
(VIM) [8], [15], etc. Recently, Ghorbani [7] introduced a new alternative technique for
solving nonlinear differential equations of fractional order which requires no Lagrange
multiplier or variational theory. This method can be very effective and reliable for
solving nonlinear fractional differential equations.

The paper is organized as follows: section 2 is devoted to describe some necessary
definitions on fractional calculus which will be used throughout the paper, in section
3 we describe briefly the basic concept of the fractional iteration method (FIM). In
section 4 we apply successfully the FIM to solve the fractional Bagley-Torvik equation.
Some concluding remarks are also given in section 5.

2. Preliminaries definitions

The idea of fractional calculus has been known since the development of the reg-
ular calculus, with the first reference probably being associated with Leibniz and
L’Hospital in 1695 where half-order derivative was mentioned. The commonly used
definitions for the general fractional are Riemann-Liouville and Caputo. In this pa-
per, the derivatives are considered in the Caputo sense, which has the advantage of
defining integer order initial conditions for fractional order differential equations.
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Definition 2.1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R if
there exits a real number λ > µ such that f(x) = xλg(x), where g(x) ∈ C[0,∞) and
it is said to be in the space Cmµ if and only if f (m) ∈ Cµ for m ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α of a
real function f(x) ∈ Cµ, µ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0 and J0f(x) = f(x). (1)

The the operators Jα have the following proprieties, for α, β ≥ 0, γ, µ ≥ −1 :
• JαJβf(x) = Jα+βf(x),
• JαJβf(x) = JβJαf(x),
• Jαxξ = Γ(ξ+1)

Γ(α+ξ+1)x
α+ξ.

Next we define the Caputo fractional derivatives Dα of a function f(x) of any real
number α such that m− 1 < α ≤ m, m ∈ N, for x > 0 and f ∈ Cm−1 in the terms of
Jα as

Dαf(x) = Jm−αDmf(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt (2)

and has the following proprieties for m− 1 < α ≤ m, m ∈ N, µ ≥ −1 and f ∈ Cmµ
• DαJαf(x) = f(x),

• JαDα = f(x)−
m−1∑
k=0

f (k)(0+)x
k

k! , for x > 0.

3. The Variational Iteration Method

In this section we recall briefly the basic concept of VIM [8]. We begin with
considering a differential equation in the general form,

L(y(t)) +N(y(t)) = F (t, y(t)), (3)

where L is a linear operator, N a nonlinear operator and F is the source term.
According to the variational iteration method [8], one can construct a correction
functional as follow

yn+1(t) = yn(t) + Jα (λ(τ)[L(yn(τ)) +N(ỹn(τ))− F (τ, y(τ))]) (4)

where λ is a general Lagrangian multiplier, the subscript n denotes the nth order
approximation, y0(t) is an initial approximation which can be known according to
the initial conditions or the boundary conditions, and the function ỹn is a restricted
variation which means δỹn = 0. It is clear that the successive approximation yn, n ≥
1, can be established by determining a general Lagrangian multiplier λ, which can
be identified optimally via the variational theory. The successive approximations
yn+1, n ≥ 0 of the solution y(t) will be readily obtained upon using the obtained
Lagrange multiplier and by using any selective function y0(t). When λ is known, then
other several approximations yn, n ≥ 1, follow immediately. Consequently, the exact
solution can be obtained by using

y(t) = lim
n→∞

yn(t). (5)
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4. The Fractional Iteration Method

Based on [7], we will explain briefly the basic concept of FIM, by considering a
nonlinear fractional differential equation in the following form:

Dα
t y(t)− F (t, y(t)) = 0, (6)

with the condition
y(k)(0) = ak, k = 0, 1, ...,m− 1, (7)

where m − 1 ≤ α ≤ m, m ∈ N, F is a given nonlinear function of y and y is
the unknown function to be determined. The main task is to fond a solution y to
problem (6), (7) under the form

y(t) = lim
n→∞

yn(t). (8)

Let H(t) 6= 0 denote the so-called auxiliary function. Multiplying (6) by H(t) and
applying the Riemann-Liouville integral operator Jα on both sides we get

Jα(H(t)[Dα
t y(t)− F (t, y(t))]) = 0. (9)

Let h be the so-called auxiliary parameter. Multiplying (9) by h and adding y on
both sides we get

y(t) = y(t) + hJα(H(t)[Dα
t y(t)− F (t, y(t))]). (10)

Consequently, equation (9) can be solved iteratively as follows

yn+1(t) = yn(t) + hJα(H(t)[Dα
t yn(t)− F (t, yn(t))]). (11)

Where the subscript n denotes the iteration order. The convergence of (11) is en-
sured by the Banach’s fixed point theorem, provided that the right hand of (11) is a
contractive mapping [7]. On the other hand the convergence region and the rate of
the convergence of the obtained series solutions can be controlled by the convergence
parameter h as it is described in the framework of the homotopy analysis method
(HAM) [9]. Actually, by plotting the solution (or one of its derivatives) at a partic-
ular point with respect to the auxiliary parameter h which is the so-called h−curve,
one can get a proper value of h that ensures the convergence of the obtained solution
series. For more details about the mathematical properties of the h−curve we refer
the readers to a recent paper by Abbasdandy et al. [2].

5. Numerical implementation and discussion

In this section we will solve the Bagley Torvik equation by the so-called fractional
iteration method. The obtained solutions will be compared to the exact ones and to
those obtained via the variational iteration method.

The Bagley-Torvik equation is originally formulated in the studies on behavior of
real material by use of fractional calculus [5]-[13]. It has raised its importance since
than in many engineering and applied sciences applications. In particular, the equa-
tion with 1

2 -order derivative or 3
2 -order derivative can model the frequency-dependent

damping materials quite satisfactorily. It can also describe motion of real physical
systems, the modeling of the motion of a rigid plate immersed in a Newtonian fluid
and a gas in a fluid, respectively [14]. Approximate solutions have recently been
proposed in the book and papers of Podlubny in which the solution obtained with
approximate methods is compared to the exact solution.



254 T. MEKKAOUI AND Z. HAMMOUCH

Let us consider the following Bagley-Torvik equation with fractional order

y′(t) +D
3
2
t y(t) + y(t) = F (t), (12)

with the initial conditions
y(0) = 1, y′(0) = 1. (13)

where

F (t) = 7 t+ 8
t3/2√
π

+ t3 + 1. (14)

and the exact solution is
y(t) = t3 + t+ 1. (15)

First, we begin by solving the Bagley-Torvik equation by VIM as follows.
The Lagrange multiplier can be identified as λ = −1, and from (4), we have the
following iteration formula for solving equation (12):

yn+1(t) = yn(t) + Jα
(
λ(τ)[ỹ′n(t) +D

3
2
t ỹn(t) + ỹn(t)− F (t)]

)
, (16)

In view of (13), we choose the initial guess in the form of y0(t) = 1 + t, we have then
the following recursive relation:

y0(t) = 1 + t,

y1(t) = 1 + t+
16
5
t5/2√
π

+ t3 +
64
315

t9/2√
π

y2(t) = 1 + t+ t3 − 3 t2 − 1/2 t4 − 1
120

t6

y3(t) = 1 + t+ t3 − 6 t2 − t4 − 1
60
t6 + 8

t3/2√
π
− 96

35
t7/2√
π
− 128

1155
t11/2

√
π
− 512

675675
t15/2

√
π

.

.

. (17)

and so on. On the other hand, using FIM (11) and starting with the same initial
approximation y0(t) = 1 + t and the auxiliary function H(t) = 1, we obtain the
following

y0(t) = 1 + t,

y1(t) = 1 + t− 16
5
ht5/2√
π
− ht3 − 64

315
ht9/2√
π

y2(t) = 1 + t− 32
5
ht5/2√
π
− 2ht3 − 128

315
ht9/2√
π
− 3h2t2 − 32

5
h2t5/2√

π

−1/2h2t4 − h2t3 − 128
315

h2t9/2√
π
− 1

120
h2t6

.

.

. (18)

and so on. In general, by means of the h-curve, it is straightforward to choose a
proper value of h which ensures that the solution series is convergent. This proper
value of h corresponds to the curve segment nearly parallel to the horizontal axis. For
this study we take h = −0.4 (see Figure 1).
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Table 1. Comparison of the FIM solutions of (12) with the exact
and the VIM solution

t yV IM yexact yFIM |yV IM − yexact| |yFIM − yexact|
0.10 1.183140356 1.101000 1.103763584 0.082140356 0.00276358
0.25 1.43878394 1.265625 1.269040456 0.173158944 0.00341545
0.50 1.51984451 1.625000 1.623997167 0.105155480 0.00100283
0.75 0.83083557 2.171875 2.166900262 1.341039427 0.00497473
1.00 −1.11359385 3.000000 2.994988879 4.113593854 0.00501112

In order to verify numerically whether the proposed methodology leads to high
accuracy, we evaluate the numerical solutions using third-order approximation and
compare it with both of the exact analytical solution and the VIM solution. Table
1 shows the absolute errors between exact solution and the FIM and VIM solutions.
Table 1 and Figures 2(a) and (b) show that the FIM numerical approximate solution
has a high degree of accuracy, compared with the VIM solution. As we know, the
more terms added to the approximate solution, the more accurate it will be.

Figure 1. h−curve of y(t) for the second and third order approxi-
mation by FIM.

(a) (b)
Figure 2. Comparison of the exact solution of (12) with: (a) the
FIM solution, (b) both of the FIM and VIM solutions.
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6. Conclusion

The fractional iteration method has proven as an efficient technique to solve non-
linear fractional differential equations. Comparison with the variational method has
been shown, the simplicity of the method and the obtained exact results show that it
is a powerful mathematical tool for solving nonlinear fractional differential equations.
The method was used in a direct way without need for the Lagrange multiplier, correc-
tion functional, stationary conditions, linearization or discretization. It also provides
more realistic series solutions that converge very rapidly in real physical problems.
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