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Reducing conflict graph of multi-step transactions accessing
ordered data with gaps

Rafat Alshorman and Hamed Fawareh

Abstract. Specifying the correctness of concurrent transactions competing to access a data-
base is a crucial work. In this research, we adopt the serializability to be the correctness
criterion for concurrent transactions accessing ordered data items. One of the most popu-
lar technique uses to test serializability is conflict graph. We add a realistic condition on

the data items to show that the conflict graph cyclicity can be reduced, in a way, to use
temporal-logic-based verification approach in proving serializability.
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1. Introduction and Previous Works

Usually, database techniques are scheduling a finite number of transactions [8], [7].
Recently, with the emergence of new techniques such as web transactions and mobile
databases, modeling and scheduling unlimited number of transactions, which may be
representing infinite histories, has been recognized [4], [6], [5]. Representing infinite
histories of iterative transactions can be performed using temporal logic formulas.
The availability of powerful model checkers such as NuSMV [1] and SPIN [11] gives
temporal logic formulas impetus and significance. Model checkers can carry out ex-
haustive checks of a correctness condition of serializability, and are fully automatic [2].
This means that no special expertise in mathematical proofs is required to carry out
such verification. In this paper, we add a realistic condition on the set of data items.
This addition makes testing and specifying of serializability more computationally
efficient and applicable [3]. Specifying the correctness of concurrent transactions can
be performed using temporal logics such as CTL (Computational Tree Logic) and
LTL (Linear-time Temporal Logic). The serializability is based on acyclicity of con-
flict graphs. In order to be able to use such a correctness condition, we consider that
acyclicity of conflict graphs corresponds to serializability for infinite schedules [10].
Then, we assume the further property for our transactions, that they access ordered
set of data items with ‘gaps’. We show that serializability that corresponds to the
efficient condition where only cycles of length n have to be tested, and this condition
is used for temporal logics specification. This work advances that of [5] and [4], which
both deal with two-step transactions, to the more normal case of multi-step transac-
tions. Moreover, in [9] and [10] they assumed that all transactions access the same
set of data items or access different sets of data items where each transaction accesses
consecutive data items in order. In this work, we assumed that each transaction ac-
cesses a set of data items in the same order with (or without) a gap between any two
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data items belonging to the set of all data items (see Definitions 2.5 and 2.6) that
have been accessed yet. This paper is organized as follows. In Section 2, we introduce
the transactions model and the definitions of serializability, gap, histories and conflict
graphs. In Section 3, we prove that the existence of maximum gap (Gn−2), in the set
of all data items, and the existence of a cycle in the corresponding conflict graph lead
to the existence of cycle of length n. Also, the time complexity gained is discussed
in Section 3. In Section 4, applications that may satisfy the transactions model are
introduced. Conclusion is given in Section 5.

2. Transactions Model and Serializability

In this section we introduce some of the basic definitions of the concurrent trans-
actions, and their histories, which may iterate infinitely many times. In this paper,
we assume that the aggregate of all iterations (repetitions) of n transactions will con-
stitute an infinite number of transactions, and consequently infinite histories. But, at
any point in time, the number of transactions will be less than or equal n.

2.1. Concurrent Transactions and Histories.

Definition 2.1. A multi-step transaction Ti, accessing a set of data items Di =
{x1, x2, . . . , xm}, is a sequence (totally ordered set) of read and write steps, as in [12],
where every read step ri(x) precedes a write step wi(x), ∀x ∈ Di such that

Ti = ri(x1)wi(x1) . . . ri(xm)wi(xm).

We shall denote the set of multi-step transactions by T = {Ti : i ∈ N1}, where N1

is the set of positive integers. A history (or schedule) h for the set T is an interleaved
sequence of all the read and write steps of all the transactions in T such that the
subsequence of h comprising the steps of Ti is exactly the sequence of steps of Ti

occurring in the order that they do in Ti. As in [9], for a history h, we denote si <h si′
if step si of Ti occurs before step si′ of Ti′ in h. In this paper, we shall adopt the
serializability as a correctness condition for transactions executing concurrently. The
produced history of the transactions should be an ‘equivalent’ to a serial execution of
all the Ti ∈ T . These definitions of equivalence and serializability are actually based
on those in [8]. Next, we shall define the serializability and the equivalence between
two histories.

Definition 2.2. Histories h1 and h2 of T = {Ti : i ∈ N1} are equivalent, written as
h1 ∼ h2, iff for all i, i′ ≥ 1, i ̸= i′, and for all x ∈ D,
(1) if ri(x) <h1 wi′(x), then ri(x) <h2 wi′(x),
(2) if wi(x) <h1 wi′(x), then wi(x) <h2 wi′(x) and
(3) if wi(x) <h1 ri′(x), then wi(x) <h2 ri′(x).

Definition 2.3. A history h of T = {Ti : i ∈ N1} is serializable iff there is a serial
history hS of T of the form, ∀i ∈ N1,

hS = . . . . . . ri(x) . . . wi(y) . . .︸ ︷︷ ︸
only (all) steps of Ti

. . .

such that h ∼ hS .
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2.2. Conflict Graph and Gap. Usually, the serializability of concurrent transac-
tions can be tested in a polynomial time using conflict graphs [7]. The definition
below shows how we can build a conflict graph for a history of transactions.

Definition 2.4. A directed graph is a pair G = (V,A), where V is a set of elements
called nodes, denoted nodes(G), and A ⊆ V × V is a set of elements called arcs,
denoted arcs(G). A walk in a directed graph G = (V,A) is a sequence of nodes
(v1, v2, . . . , vn) such that (vi; vi+1) ∈ A for i = 1, . . . , n − 1. A walk with no nodes
repeated is called a path; it is a cycle when only the first and last node coincide. For
each history h, there is a directed graph G(h) called the precedence graph or conflict
graph of h. This graph has the transactions of h as its nodes, and contains an arc
(Ti, Ti′), where Ti and Ti′ are distinct transactions of h, whenever there is a step of
Ti which ‘conflicts’ with a subsequent (in h) step of Ti′ .

Now, two steps are conflicting if they belong to different transactions, they access
the same data item and at least one of them is a write step. Next, Definitions 2.5, 2.6
and 2.7 give a condition on the set of data items that has been accessed by a set of
transactions at any point in time, and generated a history h. This condition will be
used to prove that the cycle in the corresponding conflict graph G(h) can be reduced.

Definition 2.5. Let D = {x1, x2, . . . , xm} be an irreflexively totally ordered, by <D

say, set of data items such that

x1 <D . . . <D xm

and T = {Ti : i ∈ N1} be the set of transactions participating in history h. Denote by
Di the totally ordered set of data items accessed in turn by transaction Ti assumed
to be of the form

Di = {xi1 , xi2 , . . . , xil},
where xi1 <D · · · <D xi2 · · · <D xil and Di ⊆ D.

For the remainder of this paper, if a set of data items D′ ⊆ D is denoted by
{xa, . . . , xb}, this will mean that xa <D . . . <D xb. In Definition 2.5, we have
defined formally an order on the set of data items D from which data is accessed by
transactions. As the set of data items D is finite, the number of different transactions
that can be comprised is also finite. But, the infinite histories are produced when
transactions access finite set of data items in a continuous stream.

Definition 2.6. Assume that the transaction Ti accesses a set of data items Di,
where Di ⊆ D such that

Di = {xa, xb, xc}
where xa <D . . . <D xb . . . <D xc. Then the gap Gi of the set Di, will be calculated
as follows:

Gi = (c− a+ 1)− (|Di|) (1)

where (c− a+ 1) is the number of elements in the sequence xa . . . xc, and |Di| is the
cardinality of the set Di.

For example, assume that D1 and D2 are

D1 = {x3, x4, x5}
D2 = {x1, x5}.

Then, by equation (1), G1 = 5 − 3 − 3 + 1 = 0. This means that there is no data
items that has not been accessed by T1 between x3 and x5. G2 = 5− 1− 2 + 1 = 3.
This means that there are 3 data items that have been ignored by T2 (x2,x3 and x4).
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Definition 2.7. Let T = {Ti : 1 ≤ i ≤ n} be a set of transactions that iterates
infinitely many times to constitute T = {Ti : i ∈ N1} and each Ti ∈ T accesses a set
of data items Di (as in Definition 2.5). At any point in time there exist k transactions,
where 1 ≤ k ≤ n, such that

k∪
i=1

Di = {xa, xa+1, . . . , xu}

where xa <D · · · <D xa+1 · · · <D xu. Then, the maximum gap G is calculated as
follows:

G =

{
0, ∀i, 1 ≤ i ≤ k,Gi = 0

u− a− 1, ∃i, 1 ≤ i ≤ k,Gi ̸= 0.
(2)

For example, assume that D1 and D2 are

D1 = {x1, x3, x5}
D2 = {x3, x5}.

Then, by equation (1), G1 = 2 and G2 = 1. Therefore, by equation (2), the maximum
gap G = 5 − 1 − 1 = 3. Hence, from Definition 2.6 and 2.7, we can say that, as the
set of data items D is finite, the maximum gap G will be always finite.

3. Reducing Conflict Graph with Gaps

Lemma 3.1. If we have a cycle in the conflict graph G(h) of length n, then we have
n number of distinct transactions participating in the cycle.

Proof. Assume that we have a cycle of length n and we don’t have n distinct transac-
tions participating in the cycle. This means that the cycle has repeated transactions,
as in Figure 1, where the dotted arrow means that there are an unknown number of
connected nodes by arcs. Therefore, the first occurrence of Ti (in the cycle) also pre-
cedes the transaction Tk in accessing xi so; there is at least an arc such that (Ti,Tk),
see Figure 2. This will reduce the cycle and contradicts with the assumption which
says that the cycle is of length n. �

•Tk

++ •Tn
xn

��
•Ti

xi

77

•T1

x1vv•Ti

ZZ

•T2kk

Figure 1. Cycle in G(h) of length n.

The next theorem proves that the serializability corresponds to the acyclicity of
conflict graph even though the transactions iterate infinitely many times.

Theorem 3.2. A history h of an infinite number of multi-step transactions T = {Ti :
i ∈ N1}, accessing data items in some finite set D (though not necessarily accessing
the same data items), is serializable iff the conflict graph G(h) is acyclic.
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Figure 2. Cycle reduction .

Proof. This theorem is proved as Theorem 4 in [10]. �

Theorem 3.3. Let h be a history over transactions T = {Ti : i ∈ N1}, where each
Ti ∈ T accesses the data items Di ⊆ D. Then, if G(h) has a cycle of length n and n ≥
3, there are two transactions Ti1, Ti2 such that G(h) has the cycle (Ti1, Ti2), (Ti2, Ti1).

Proof. This theorem is proved as Theorem 11 in [9]. �

The above theorem (Theorem 3.3) proves that if there is a cycle in the conflict
graph of length n and the set of data items that has been accessed has no gaps (the
maximum gap G = 0) then, there exists a cycle of length two. Moreover, this theorem
will be used in proving Theorem 3.4.

Theorem 3.4. Let D be a set of data items irreflexively totally ordered such that

D = {x1, x2, . . . , xn−1, xn}

and T be a set of transactions that are iterated infinitely many times such that T =
{Ti : i ∈ N1} and accessing the set D as in Definition 2.7. Assume we have the
maximum gap G = n− 2, in the set D, denoted by Gn−2, and there is a cycle in the
corresponding conflict graph G(h). Then, there exists a cycle of length n, denoted by
Cn, in the corresponding conflict graph G(h).

Proof. Assume that we have a gap of length n− 2 (Gn−2) and a cycle of length n+ k
(Cn+k), where k ̸= 0. By Lemma 3.1, we can have a cycle such that:

T1
x1→ T2

x2→ T3
x3→ . . . Tn+k−1

xn+k−1→ Tn+k
xn+k→ T1.

Therefore, the data items set that have been accessed by the transactions, in that
point in time, is

n+k∪
i=1

Di = {x1, . . . , xn+k}.

So, by equation (2) of Definition 2.7, the maximum gap, G = n+k−1−1 = n+k−2
(Gn+k−2). Otherwise, by equation (2) of Definition 2.7, the maximum gap Gn−2 = 0.
This means that there is no gap. In other words, the transactions, at that point in
time, access all data items in Di (x1, . . . , xn+k). Hence, by Theorem 3.3, there exists
a cycle of length 2. This means that Cn+k = C2 (n+ k = 2) and Gn−2 = G0 (n = 2).
Now, its easy to conclude that k = 0. This result contradicts with our assumption
which says we have k ̸= 0 and also means we have a cycle of length n (Cn). Moreover,
the maximum gap is G = n + k − 2 (Gn+k−2) and k ̸= 0. This contradicts our
assumption which says that the maximum gap is Gn−2. �
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For example, assume that we have four transactions T1, T2, T3 and T4 accessing
the set of data items D = {x1, x2, . . . , x7}, as in Definition 2.5, as follows:

D1 = {x3, x4}, D2 = {x3, x4},
D3 = {x3, x5}, D4 = {x4, x5}.

According to the Definition 2.6, G1, G2, G3 and G4 will be 0, 0, 1 and 0, respectively.
Also, by equation (2) in Definition 2.7, G = 1 (G1). By Theorem 3.4, the maximum
cycle will be of length 3 (C3). Thus, if we try to build a conflict graph, for the history
h of all transactions T1, T2, T3 and T4, G(h) that contains a cycle, we shall find a
cycle of length 3 (C3). This corresponds to our claim in Theorem 3.4. The main idea
behind this paper is to make the test for serializability of transactions computationally
efficient. This can be satisfied by testing only the cycle of length n+2 if the maximum
gap (in the set of data items that has been accessed at that point in time) equals n.
In other words, assume that we need to test whether the transactions are serializable
(or are in a correct execution) in some point in time. All we need is to test for the
existence of a cycle in the conflict graph (at the same point in time) of length n+2 if
the maximum gap in a set of data items equals n. Moreover, assume that we have 100
transactions, at any point in time, contending to access a set of data items D, where
|D| = 50 and the maximum gap G = 6. Now, we only need to test a cycle of length
n = 8 rather than cycle of length 100. This result is very useful for reducing the
time complexity of checking the correctness of the transactions. The next subsection
discusses the time complexity of checking the serializability of such transactions.

3.1. Time Complexity. Assume that we have n transactions (in a database sched-
uler) at a point in time, and we need to test whether the history that contains the
transactions is serializable or not. Now, to check for the existence of a cycle of length
k, the time complexity will be as follows:

TCk(n) = n(n− 1)...(n− k + 1)

=
k−1∏
i=0

(n− i) (3)

Now, to test for the existence of a cycle of any length, we test for the existence of
cycles of length 2, 3, ...n as follows

TC(n) =

n∑
i=2

TCi(n)

=

n∑
i=2

i−1∏
j=0

(n− j) (4)

where TC(n) denotes the time complexity of testing for a cycle of any length. Now,
from equation (4), it is easy to show that the time complexity to test a cycle of
any length TC(n) ∈ O(n!). But, to test for a cycle of length k (if the maximum
gap G = k − 2), see equation (3), the complexity is TCk(n) ∈ O(nk). Clearly,
the performance of testing for a cycle of k transactions is much better than testing
all cycles. Moreover, if the maximum gap G = n − 2 (therefore, the length of cycle
equals n (Cn)) and the number of concurrent transactions at that point in time equals
k such that k < n, then we only need to test for a cycle of length k. This result can
be concluded from Lemma 3.1.
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4. Applications

It becomes widely common to book an e-ticket from booking agencies around the
world. Clearly, the list of destinations is naturally ordered somehow. Therefore, a
passenger intending to book a ticket from location A to E has many choices depending
on the availability of destinations. To demonstrate this situation, we assume that the
set of all available destinations D (where |D| = k) are ordered as in Figure 3. Also,
the set D represents the available destinations starting from location A and ending at
location E. xi represents the next destination from location i such that xi ∈ D, see
Figure 3. The first choice, for the passenger, is that he/she can book a ticket directly
from A to E without transiting via any destination between A and E. The transaction
T1, that represents this choice, accesses the set D1 = {A,E}. From Definition 2.6,
the gap, of the set D1 is G1 = k − 2. This choice is depicted as arc 1 in Figure 4.
The second choice is that he/she can book a ticket from A to B and then from B
to E, see arcs 2 and 3 in Figure 4, and so on. This scenario can be implemented as
a multi-step transaction accessing ordered data with the existence of gaps, where a
read step corresponds to browsing journey times from a destination, and the write
step represents the booking of a chosen time to the next destination in the order,
see Definition 2.1. The set of ordered destinations represents the ordered set D that
has been defined in Definition 2.5. The gap represents the number of destinations
that have been ignored in transiting, between A to E, see Definition 2.6. Finally,
the maximum gap represents the number of all destinations that have been ignored
in transiting, if there is an available itinerary from A to E. The increase of number
of people using internet and also the increase in the number of passengers around
the world make the number of e-tickets transactions, incoming to and outgoing from
a web server, unknown. Even though, at any point in time, the number of active
transactions in a server is finite.

•A // •B // •C // •i
xi // • // •E

Figure 3. Ordered set of destinations.

•A
2

//
1

--•B //
3

11•C 33// •i
xi // • // •E

Figure 4. Ordered set of destinations with existence of gaps.

5. Conclusion

The traditional database concurrency control techniques deal with a finite number
of transactions that are executing concurrently in a system. But, the development
in wireless communications (or mobile computing) and portable devices has led to a
huge number of users executing their transactions concurrently at the same time.

In this paper, we have proven that the conflict graph can be reduced, under certain
condition on the set of data items. This reduction makes the time complexity for
testing the serializability of transactions much better than testing the serializability
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of all transactions participating in the conflict graph. Moreover, this reduction can be
used to specify the correctness of infinite histories that can model such large numbers
of transactions in the case where the data accessed are ordered. The main advantage
of this result, that has been given, is that the testing for serializability only requires
considering k number of transactions, if the maximum gap equals k − 2. This makes
testing for serializability efficient and easy to encode into the widely used temporal
logics CTL and LTL.

The modelling and verification of a scheduler include representing all possible his-
tories of transactions as a finite state transition system. The serializability of k
transactions, given here, are encoding into temporal logics (either CTL and LTL)
formula ϕ. Then, the model checker automatically runs to ensure that all possible
histories satisfy the formula ϕ. This can all be done using common model checkers
such as NuSMV and SPIN.

Further work will attempt to define a serializability condition for infinite histories
of concurrent multi-step transactions accessing sets of data items with different graph
properties which have other applications in the real-world such as debit and credit
transactions.
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