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1. Introduction

The origin of residuated lattices is in Mathematical Logic without contraction.
They have been investigated by Krull ([12]), Dilworth ([5]), Ward and Dilworth ([18]),
Ward ([17]), Balbes and Dwinger ([2]) and Pavelka ([14]). In [10], Idziak prove that
the class of residuated lattices is equational. These lattices have been known under
many names: BCK-latices in [9], full BCK-algebras in [12], FLew-algebras in [13],
and integral, residuated, commutative l-monoids in [3].

The paper is organized as follows. In Section 2 we recall the basic definitions
and we put in evidence many rules of calculus in a residuated lattice which we need
in the rest of the paper.

In Section 3 we give examples of residuated lattices which are not distributive
and this is the reason why we start the study when a residuated lattice becomes
distributive.

2. Preliminaries

Definition 2.1. ([16]) An algebra (L,∨,∧,¯,→, 0, 1) of type (2, 2, 2, 2, 0, 0) will be
called residuated lattice if

Lr1 : (L,∨,∧, 0, 1) is a bounded lattice;
Lr2 : (L,¯, 1) is a commutative monoid;
Lr3 : For every x, y, z ∈ L, x ≤ y → z ⇔ x¯ y ≤ z.

For examples of residuated lattices see [11], [15]-[18].
In what follow by L we denote the univers of a residuated lattice. For x ∈ L and

n ≥ 1 we define x∗ = x → 0, x∗∗ = (x∗)∗, x0 = 1 and xn = xn−1 ¯ x for n > 1.

Theorem 2.1. ([15]-[18]) Let L be a residuated lattice. Then for every x, y, z ∈ L,
we have:

1 → x = x; (1)
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x → x = 1; (2)

x¯ y ≤ x, y, so x¯ y ≤ x ∧ y; (3)

y ≤ x → y; (4)

x ≤ y ⇔ x → y = 1; (5)

x → y = y → x = 1 ⇒ x = y; (6)

x → 1 = 1; (7)

0 → x = 1; (8)

x¯ (x → y) ≤ y, so x ≤ (x → y) → y; (9)

x → y ≤ (x¯ z) → (y ¯ z); (10)

If x ≤ y, then x¯ z ≤ y ¯ z; (11)

x → y ≤ (y → z) → (x → z) and x → y ≤ (z → x) → (z → y); (12)

x ≤ y ⇒ z → x ≤ z → y and x ≤ y ⇒ y → z ≤ x → z; (13)

x → (y → z) = (x¯ y) → z, so x → (y → z) = y → (x → z); (14)

x¯ (y ∨ z) = (x¯ y) ∨ (x¯ z) and x¯ (y ∧ z) ≤ (x¯ y) ∧ (x¯ z); (15)

x¯ x∗ = 0, 1∗ = 0, 0∗ = 1, x ≤ x∗∗; (16)

x → y ≤ y∗ → x∗; (17)

x∗∗∗ = x∗. (18)

Consider the following identities:

x ∧ y = x¯ (x → y) (divisibility), (19)

(x → y) ∨ (y → x) = 1 (pre− linearity). (20)

Definition 2.2. A residuated lattice L is called:
(i) Divisible if L verify (19);
(ii) MTL-algebra if L verify (20);
(iii) BL-algebra if L verify (19) and (20);
(iv) G-algebra if x2 = x for every x ∈ L.

We denote by RLd, (MT L, BL) the classes of divisible residuated lattices (MTL-
algebras, respectively BL-algebras).
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Proposition 2.1. ([7]) For a residuated lattice L, the following assertions are equiv-
alent:

(i) L ∈MT L;
(ii) L is subdirect product of linearly ordered residuated lattices;
(iii) x → (y ∨ z) = (x → y) ∨ (x → z) for every x, y, z ∈ L;
(iv) (x ∧ y) → z = (x → z) ∨ (y → z) for every x, y, z ∈ L.

Corollary 2.1. ([7],[8]) If L ∈MT L, then for every x, y, z ∈ L we have:
(i) (x ∧ y)∗ = x∗ ∨ y∗;
(ii) x¯ (y ∧ z) = (x¯ y) ∧ (x¯ z) ;
(iii) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(iv) x ∨ y = ((x → y) → y) ∧ ((y → x) → x).

Proposition 2.2. ([17],[18]) For a residuated lattice L, the following assertions are
equivalent:

(i) L ∈ RLd;
(ii) For any x, y ∈ L such x ≤ y, there is z ∈ L such that x = y ¯ z;
(iii) x → (y ∧ z) = (x → y)¯ [(x ∧ y) → z] for every x, y, z ∈ L.

Remark 2.1. ([4]) In a G− algebra L, x¯ y = x ∧ y for every x, y ∈ L.

Proposition 2.3. ([4]) In a residuated lattice L the following assertions are equiva-
lent:

(i) L is a G− algebra,
(ii) x¯ (x → y) = x¯ y = x ∧ y for any x, y ∈ L.

Remark 2.2. In [6] MTL-algebras are known under the name of normal residuated
lattices.

Definition 2.3. ([4]) An algebra (L,→, ∗, 1) of type (2, 1, 0) will be called Wajsberg
algebra if for every x, y, z ∈ L are verified the axioms (1), (12) from the Theorem 2.1
and the axioms:

(x → y) → y = (y → x) → x, (21)
(x∗ → y∗) → (y → x) = 1. (22)

Remark 2.3. In a residuated lattice L the axiom (22) is equivalent with x∗∗ =
x, for every x ∈ L.

Proof. x∗ → y∗ = (x → 0) → (y → 0) = y → ((x → 0) → 0) = y → x∗∗ = y → x, so
(x∗ → y∗) → (y → x) = 1, for every x, y ∈ L. ¤
Remark 2.4. A residuated lattice with (21) becomes a Wajsberg algebra.

Proof. (x → 0) → 0 = (0 → x) → x, so x∗∗ = 1 → x = x for any x ∈ L. ¤
Theorem 2.2. ([16], Theorem 10, pag. 46) A residuated lattice (L,∨,∧,¯,→, 0, 1)
is a Wajsberg algebra (L,→, ∗, 1) if, and only if it satisfy an additional condition

(x → y) → y = (y → x) → x, for any x, y ∈ L,

with an abbreviation x∗ = x → 0.
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Figure 1. (M5) (N5) Example 2.1 Example 2.2
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Theorem 2.3. ([1],[2]) For a lattice (L,∨,∧) the following assertions are equivalent:
(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), for all x, y, z ∈ L;
(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), for all x, y, z ∈ L;
(iii) If x, y, z ∈ L and x ∧ z = y ∧ z, x ∨ z = y ∨ z, then x = y;
(iv) (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), for every x, y, z ∈ L;
(v) Neither of the lattices (M5) and (N5) are sublattices of L;
(vi) For all a, b ∈ L with a ≤ b, there exists a join-endomorphism f of L such that

f(b) = a and f(x) ≤ x, for all x ∈ L;
(vii) For all a, b ∈ L whit a ≤ b, there exists a meet-endomorphism f of L such that

f(a) = b and x ≤ f(x), for all x ∈ L.

Definition 2.4. The lattice (L,∨,∧) is called distributive if L verify one of the
equivalent conditions (i)− (vii) from the Theorem 2.3.

For the next result see Corollary 5.13.7 from ([4]).

Remark 2.5. Every Wajsberg algebra is a MTL-algebra, so it is distributive.

Remark 2.6. There are residuated lattices which are not distributive.

For this we will offer the following two examples:

Example 2.1. Let L = {0, a, c, d, m, 1} with 0 < a < m < 1, 0 < c < d < m < 1,
but a incomparable with c and d. Then ([11], pag. 233) L becomes a residuated lattice
relative to the following operations:

→ 0 a c d m 1
0 1 1 1 1 1 1
a d 1 d d 1 1
c a a 1 1 1 1
d a a m 1 1 1
m 0 a d d 1 1
1 0 a c d m 1

¯ 0 a c d m 1
0 0 0 0 0 0 0
a 0 a 0 0 a a
c 0 0 c c c c
d 0 0 c c c d
m 0 a c c m m
1 0 a c d m 1

L is not distributive because c ∨ (a ∧ d) = c ∨ 0 = c, (c ∨ a) ∧ (c ∨ d) = m ∧ d =
d and c 6= d.

Example 2.2. Let L = {0, a, b, c, d, m, 1} with 0 < a < b < m < 1, 0 < c < d < m <
1 and elements {a, c} and {b, d} are pairwise incomparable. Then ([11], pag. 234) L
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becomes a residuated lattice relative to the following operations:

→ 0 a b c d m 1
0 1 1 1 1 1 1 1
a d 1 1 d d 1 1
b d m 1 d d 1 1
c b b b 1 1 1 1
d b b b m 1 1 1
m 0 b b d d 1 1
1 0 a b c d m 1

¯ 0 a b c d m 1
0 0 0 0 0 0 0 0
a 0 a a 0 0 a a
b 0 a a 0 0 a b
c 0 0 0 c c c c
d 0 0 0 c c c d
m 0 a a c c m m
1 0 a b c d m 1

L is not distributive because c ∨ a ∧ d) = c ∨ 0 = c, (c ∨ a) ∧ (c ∨ d) = m ∧ d =
d and c 6= d.

3. Sufficient conditions for distributivity

In this section we put in evidence some sufficient conditions for the distributivity
of a residuated lattice.

Theorem 3.1. For a residuated lattice (L,∨,∧,¯,→, 0, 1) we consider the following
assertions:

(i) (L,∨,∧) is a distributive residuated lattice;
(ii) x¯ y = x ∧ y for all x, y ∈ L;
(iii) L is divisible;
(iv) L is a MTL-algebra;
(v) If x, y, z ∈ L, such that z → x = z → y and z ≥ x, y, then x = y;
(vi) x ∨ y = (x → y) → y for all x, y ∈ L;
(vii) If a, x, y ∈ L, a∗ ¯ x = a∗ ¯ y and a → x = a → y, then x = y;
(viii) x → (y → z) = (x → y) → (x → z) for all x, y, z ∈ L.

Then,
a) (ii), (iii), (iv), (v), (vi), (vii), (viii) ⇒ (i);
b) (i) ; (ii), (iii), (iv), (v), (vi), (vii), (viii).

Proof. (ii) ⇒ (i) Since for every x, y, z ∈ L, x¯ (y ∨ z)
(15)
= (x¯ y)∨ (x¯ z), by (ii)

we deduce that x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), that is, L is distributive.
(i) ; (ii) Consider the following counterexample:

Example 3.1. Let L = {0, a, b, c, 1, 2, 3}, with 0 < a < c < 1 < 2 < 3, 0 < b < c <
1 < 2 < 3, and the elements a, b are incomparable. Then ([11], pag. 232) L becomes
a distributive residuated lattice relative to the operations:

→ 0 a b c 1 2 3
0 3 3 3 3 3 3 3
a b 3 b 3 3 3 3
b a a 3 3 3 3 3
c 0 a b 3 3 3 3
1 0 a b 2 3 3 3
2 0 a b 1 1 3 3
3 0 a b c 1 2 3

¯ 0 a b c 1 2 3
0 0 0 0 0 0 0 0
a 0 a 0 a a a a
b 0 0 b b b b b
c 0 a b c c c c
1 0 a b c c c 1
2 0 a b c c 2 2
3 0 a b c 1 2 3

Since for 1, 2 ∈ L we have 1 ¯ 2 = c, 1 ∧ 2 = 1 and c 6= 1, then it is not a
G-algebra.
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Figure 2. Example 3.1 Example 3.2 Example 3.3 Example 3.4
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(iii) ⇒ (i) Let x, y, z ∈ L. Clearly, x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z). We have

x ∧ (y ∨ z) = (y ∨ z)¯ ((y ∨ z) → x)
(15)
= {y ¯ [(y ∨ z) → x]} ∨ {z ¯ [(y ∨ z) → x]} ≤

[y ¯ (y → x)] ∨ [z ¯ (z → x)]
(19)
= (y ∧ x) ∨ (z ∧ x) = (x ∧ y) ∨ (x ∧ y), hence

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ y).
(i) ; (iii) Consider the following counterexample:

Example 3.2. ([11], pag. 218) Consider the chain L5 = {0, 1, 2, 3, 4}, organized as
a distributive residuated lattice by natural ordering, with the operations → and ¯ as
in the following tables:

→ 0 1 2 3 4
0 4 4 4 4 4
1 0 4 4 4 4
2 0 3 4 4 4
3 0 3 3 4 4
4 0 1 2 3 4

¯ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 1 1 1
2 0 1 1 1 2
3 0 1 1 1 3
4 0 1 2 3 4

Since for 2, 3 ∈ L5 we have 3∧ 2 = 2, 3¯ (3 → 2) = 1 and 2 6= 1, then L5 is not
divisible.

(iv) ⇒ (i) See Corollary 2.1, (iii).
(i) ; (iv) Consider the following counterexample:

Example 3.3. Let L = {0, n, a, b, c, d, 1} with 0 < n < a < b, c < d < 1, but b and
c are incomparable. Then ([11], pag. 231) L becomes a distributive residuated lattice
relative to the operations:

→ 0 n a b c d 1
0 1 1 1 1 1 1 1
n c 1 1 1 1 1 1
a n n 1 1 1 1 1
b 0 n c 1 c 1 1
c n n b b 1 1 1
d 0 n a b c 1 1
1 0 n a b c d 1

¯ 0 n a b c d 1
0 0 0 0 0 0 0 0
n 0 0 0 n 0 n n
a 0 0 a a a a a
b 0 n a b a b b
c 0 0 a a c c c
d 0 n a b c d d
1 0 n a b c d 1

Since for b, c ∈ L, (b → c) ∨ (c → b) = c ∨ b = d 6= 1, then L is not a MTL-algebra.
(v) ⇒ (i) Consider x, y ∈ L. Since x¯ (x → y) ≤ y ⇒ x → [x¯ (x → y)] ≤ x → y.

Since x → y ≤ x → [x¯ (x → y)] we deduce that x → [x¯ (x → y)] = x → y.
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Figure 3. Example 3.5 Example 3.6 Example 3.7
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From x → (x ∧ y) = (x → x) ∧ (x → y) = x → y and x → [x¯ (x → y)] = x → y we
deduce that

x → (x ∧ y) = x → [x¯ (x → y)]. (23)

But x ∧ y, x ¯ (x → y) ≤ x, so x ∧ y = x ¯ (x → y), that is, L is divisible, hence
distributive.

(i) ; (v) Consider the following counterexample:

Example 3.4. Let L = {0, n, a, b, c, d, 1} with 0 < n < a < b < c, d < 1, but c and
d are incomparable. Then ([11], pag. 229) L becomes a distributive residuated lattice
relative to the following operations:

→ 0 n a b c d 1
0 1 1 1 1 1 1 1
n d 1 1 1 1 1 1
a n n 1 1 1 1 1
b n n a 1 1 1 1
c 0 n a d 1 d 1
d n n a c c 1 1
1 0 n a b c d 1

¯ 0 n a b c d 1
0 0 0 0 0 0 0 0
n 0 0 0 0 n 0 n
a 0 0 a a a a a
b 0 0 a b b b b
c 0 n a b c b c
d 0 0 a b b d d
1 0 n a b c d 1

Since for a, n, 0 ∈ L, a → n = a → 0 = n, a ≥ n, 0 and n 6= 0, we have that L
not verify (v).

(vi) ⇒ (i) Since for any x, y ∈ L,

x ∨ y = (x → y) → y = (y → x) → x,

then by Theorem 2.2, L becomes a Wajsberg algebra, so it is a distributive MTL-algebra
(see [16]).

(i) ; (vi) Consider the following counterexample:

Example 3.5. Let L = {0, a, b, c, 1} with 0 < a, b < c < 1, but a and b are incompa-
rable. Then ([4], pag. 239) L becomes a distributive residuated lattice relative to the
following operations:
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→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

¯ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

Since for a, b ∈ L ⇒ a∨ b = c, (a → b) → b = b → b = 1 and c 6= 1, then L not
verify (vi).

(vii) ⇒ (i) it can be proved the fact that (vii) ⇒ (iii) : We have by (23), x →
[x¯ (x → y)] = x → (x ∧ y). We shall prove that

x∗ ¯ (x ∧ y) = x∗ ¯ [x¯ (x → y)]. (24)

From x¯ (x → y) ≤ x, y ⇒ x¯ (x → y) ≤ x ∧ y, hence, by (11) and the operation ¯
is commutative,

x∗ ¯ [x¯ (x → y)] ≤ x∗ ¯ (x ∧ y). (25)

Conversely, by (15), x∗ ¯ (x ∧ y) ≤ (x∗ ¯ x) ∧ (x∗ ¯ y)
(16)
= 0 ∧ (x∗ ¯ y) = 0. Hence

x∗ ¯ (x ∧ y) = 0. It follows,

x∗ ¯ (x ∧ y) ≤ x∗ ¯ [x¯ (x → y)]. (26)

Therefore, by (25) and (26), (24) holds. It follows, by (vii), that x∧ y = x¯ (x → y).
That is, L is divisible, hence distributive.

(i) ; (vii) Consider the following counterexample:

Example 3.6. Let L = {0, a, b, c, d, 1} with 0 < a < b < c, d < 1, but c and d
are incomparable. Then ([11], pag. 228) L becomes a distributive residuated lattice
relative to the following operations:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 1 1 1 1
b a a 1 1 1 1
c 0 a d 1 d 1
d a a c c 1 1
1 0 a b c d 1

¯ 0 a b c d 1
0 0 0 0 0 0 0
a 0 0 0 a 0 a
b 0 0 b b b b
c 0 a b c b c
d 0 0 b b d d
1 0 a b c d 1

Since for a, b, c ∈ L, a∗ = a → 0 = d, a∗ ¯ b = d¯ b = b = d¯ c = a∗ ¯ c, a →
b = 1 = a → c and b 6= c.

(viii) ⇒ (i) Since x → (y → z) = (x ¯ y) → z and x → (y → z) = (x → y) →
(x → z) from

(x → y) → (x → z) = ((x¯ (x → y)) → z,

we deduce that x¯ y = x¯ (x → y), so L is divisible, hence distributive.
(i) ; (viii) for this we offer the example from the proof of (i) ; (v), because for

x = y = n and z = 0 we have n → (n → 0) = n → d = 1, (n → n) → (n → 0) = 1 →
d = d and 1 6= d.

¤

Remark 3.1. There are distributive residuated lattices which don’t verify the condi-
tions (ii)− (viii) from the Theorem 3.1, like in the example from below.
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Example 3.7. Let L={0, n, a, b, c, d, e, f, m, 1} with 0 < n < a < c < e < m < 1,
0 < n < b < d < f < m < 1 and the elements {a, b}, {c, d}, {e, f} are pairwise
incomparable.Then L becomes a distributive residuated lattice relative to the following
operations:

→ 0 n a b c d e f m 1
0 1 1 1 1 1 1 1 1 1 1
n m 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 1 1 1 1 1
c d d e f 1 f 1 f 1 1
d c c c e e 1 1 1 1 1
e b b c d e f 1 f 1 1
f a a a c c e e 1 1 1
m n n a b c d e f 1 1
1 0 n a b c d e f m 1

¯ 0 n a b c d e f m 1
0 0 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 n
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 0 0 0 0 b b b
c 0 0 a 0 a 0 a b c c
d 0 0 0 0 0 b b d d d
e 0 0 a 0 a b c d e e
f 0 0 0 b b d d f f f
m 0 0 a b c d e f m m
1 0 n a b c d e f m 1

Then
(ii) n¯ n = 0 6= n = n ∧ n;
(iii) a ∧ n = n 6= 0 = a¯ f = a¯ (a → n);
(iv) (b → a) ∨ (a → b) = e ∨ f = m 6= 1;
(v) d ≥ b, c and d → b = d → c = e, but b 6= c;
(vi) m ∨ d = m 6= 1 = (m → d) → d;
(vii) c∗ = c → 0 = d and d¯m = d¯ 1 = d, c → m = c → 1 = 1, but m 6= 1;
(viii) n → (n → 0) = n → m = 1 6= m = 1 → m = (n → n) → (n → 0).

Remark 3.2. Unfortunately, we did not find any references in the literature to the
necessary and sufficient conditions for the distributivity of the residuated lattices.

In consequence we propose the following
Open problem : Find necessary conditions for a residuated lattice to become

distributive.
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physikalisch medizinischen Societäd der Erlangen 56 (1924), 47-63.

[13] M. Okada, K. Terui, The finite model property for various fragments of intuitionistic linear
logic, Journal of Symbolic Logic, 64 (1999), 790-802.

[14] J. Pavelka, On fuzzy logic II. Enriched residuated lattices and semantics of propositional calcu-
lus, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 25 (1979), 119-134.

[15] D. Piciu, Algebras of Fuzzy Logic, Editura Universitaria, Craiova (2007).
[16] E. Turunen, Mathematics Behind Fuzzy logic, Physica-Verlag, New York 1999.
[17] M. Ward, Residuated distributive lattices, Duke Math. J. Volume 6, Number 3 (1940), 641-651.
[18] M. Ward, R. P. Dilworth, Residuated lattices, Transactions of the American Mathematical

Society 45 (1939), 335-354.
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