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Localization of MTL - algebras

Antoneta Jeflea and Justin Paralescu

Abstract. The aim of the present paper is to define the localization MTL - algebra of a
MTL− algebra A with respect to a topology F on A. In the last part of the paper is proved
that the maximal MTL - algebra of quotients (defined in [15]) and the MTL - algebra of
fractions relative to an ∧− closed system (defined in [3]) are MTL - algebras of localization.
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Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced
by Hájek in [10] to cope with the logic of continuous t-norms and their residua.
Monoidal logic (ML from now on), is a logic whose algebraic counterpart is the
class of residuated; MTL-algebras (see [5]) are algebraic structures for the Esteva-
Godo monoidal t-norm based logic (MTL), a many-valued propositional calculus that
formalizes the structure of the real unit interval [0, 1], induced by a left–continuous
t-norm. MTL algebras were independently introduced in [6] under the name weak-BL
algebras.

A remarkable construction in ring theory is the localization ring AF associated
with a Gabriel topology F on a ring A.

Using the model of localization ring, in [9], G. Georgescu defined for a bounded
distributive lattice L the localization lattice LF of L with respect to a topology F on
L and prove that the maximal lattice of quotients for a distributive lattice is a lattice
of localization (relative to the topology of regular ideals); analogous results we have
for lattices of fractions of bounded distributive lattices relative to ∧− closed systems.

The main aim of this paper is to develop a theory of localization for MTL -
algebras. Since BL− algebras are particular classes of MTL− algebras, the results
of this paper generalize a part of the results from [2] for BL− algebras. The main
difference is that the axiom x¯ (x → y) = x ∧ y is not valid for MTL-algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [18]) is an algebra (A,∧,∨,¯,→, 0, 1) of
type (2, 2, 2, 2, 0, 0) equipped with an order ≤ satisfying the following:
(a1) (A,∧,∨, 0, 1) is a bounded lattice relative to the order ≤;
(a2) (A,¯, 1) is a commutative ordered monoid;
(a3) (¯, →) is an adjoint pair, i.e. z ≤ x → y iff x¯ z ≤ y for every x, y, z ∈ A.

The class RL of residuated lattices is equational (see [11]).
For examples of residuated lattices see [3] and [18].
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In what follows by A we denote the universe of a residuated lattice. For x ∈ A, we
denote x∗ = x → 0 and (x∗)∗ = x∗∗.

We review some rules of calculus for residuated lattices A used in this paper:

Theorem 1.1. ([1], [18]) Let x, y, z ∈ A. Then we have the following:
(c1) 1 → x = x, x → x = 1, y ≤ x → y, x ¯ (x → y) ≤ y, x → 1 = 1, 0 → x =

1, x¯ 0 = 0;
(c2) x ≤ y iff x → y = 1;
(c3) x ≤ y implies x¯ z ≤ y ¯ z, z → x ≤ z → y and y → z ≤ x → z;
(c4) x → (y → z) = (x¯ y) → z = y → (x → z), so (x¯ y)∗ = x → y∗ = y → x∗;
(c5) x¯ x∗ = 0 and x¯ y = 0 iff x ≤ y∗;

If A is a complete residuated lattice and (yi)i∈I is a family of elements of A, then:
(c6) x¯ (

∨
i∈I

yi) =
∨
i∈I

(x¯ yi);

(c7) x → (
∧
i∈I

yi) =
∧
i∈I

(x → yi).

By B(A) we denote the set of all complemented elements in the lattice L(A) =
(A,∧,∨, 0, 1). Complements are generally not unique, unless the lattice is distributive;
in the case of residuated lattices, however, although the underlying lattices need not
be distributive, the complements are unique ([8]). Also, if b is the complement of a,
then a is the complement of b, b = a∗, a2 = a and a∗∗ = a ([1], [3]). So, B(A) is a
Boolean subalgebra of A, called the Boolean center of A.

Theorem 1.2. ([3]) For e ∈ A the following assertions are equivalent:
(i) e ∈ B(A);

(ii) e ∨ e∗ = 1.

Theorem 1.3. ([3]) If e, f ∈ B(A) and x, y ∈ A, then:
(c8) e¯ x = e ∧ x;
(c9) x¯ (x → e) = e ∧ x, e¯ (e → x) = e ∧ x;

(c10) e¯ (x → y) = e¯ [(e¯ x) → (e¯ y)];
(c11) x¯ (e → f) = x¯ [(x¯ e) → (x¯ f)].

Definition 1.2. ([5], [6], [7]) A MTL− algebra is a residuated lattice satisfying the
preliniarity equation:

(c12) (x → y) ∨ (y → x) = 1.

The variety of MTL− algebras will be denoted by MT L.

Proposition 1.1. ([5]) For a residuated lattice, the following conditions are equiva-
lent:
(i) A ∈MT L;

(ii) A is a subdirect product of linearly ordered residuated lattices;
(iii) For every x, y, z ∈ A we have:
(c13) x → (y ∨ z) = (x → y) ∨ (x → z);
(iv) For every x, y, z ∈ A we have:

(c14) (x ∧ y) → z = (x → z) ∨ (y → z).

Corollary 1.1. ([5]) Let A ∈MT L. Then for every x, y, z ∈ A we have:
(c15) (x ∧ y)∗ = x∗ ∨ y∗;
(c16) x¯ (y ∧ z) = (x¯ y) ∧ (x¯ z);
(c17) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);
(c18) x ∨ y = ((x → y) → y) ∧ ((y → x) → x).
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Remark 1.1. From (c18) we deduce that a MTL− algebra is a semi-Boolean lattice
(see [13]).

Remark 1.2. Every linearly ordered residuated lattice is a MTL− algebra. A MTL−
algebra A is a BL− algebra iff in A is verified the divisibility condition: x ¯ (x →
y) = x ∧ y. So, BL− algebras are examples of MTL− algebras; for an example of
MTL− algebra which is not BL− algebra consider the residuated lattice defined on
the unit interval A = [0, 1], for all x, y ∈ A, such that

x¯ y = 0 if x + y ≤ 1
2

and x ∧ y elsewhere,

x → y = 1 if x ≤ y and max
{

1
2
− x, y

}
elsewhere (see [18], p.16).

Let 0 < y < x, x + y < 1
2 . Then y < 1

2 − x and 0 6= y = x ∧ y, but x ¯ (x → y) =
x ¯ ( 1

2 − x) = 0. This residuated lattice is a chain, so is a MTL−algebra, but the
divisibility condition not hold.

Definition 1.3. Let (P,≤) an ordered set. A nonempty subset I of P is called order
ideal if, whenever x ∈ I, y ∈ P and y ≤ x, we have y ∈ I; we denote by I(P ) the set
of all order ideals of P.

For a MTL-algebra A we denote by Id(A) the set of all ideals of the lattice L(A).

Remark 1.3. Clearly, Id(A) ⊆ I(A) and if I1, I2 ∈ I(A), then I1 ∩ I2 ∈ I(A). Also,
if I ∈ I(A), then 0 ∈ I.

2. Topologies on a MTL-algebra

Definition 2.1. A non-empty set F of elements I ∈ I(A) will be called a topology
on A if the following axioms hold:
(a4) If I1 ∈ F , I2 ∈ I(A) and I1 ⊆ I2, then I2 ∈ F (hence A ∈ F);
(a5) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F .

Remark 2.1. 1. F is a topology on A iff F is a filter of the lattice of power set of
A; for this reason a topology on I(A) is usually called a Gabriel filter on I(A).

2. Clearly, if F is a topology on A, then (A,F ∪{∅}) is a topological space.

Any intersection of topologies on A is a topology; so, the set T (A) of all topologies
of A is a complete lattice with respect to inclusion.

Example 2.1. If I ∈ I(A), then the set F(I) = {I ′ ∈ I(A) : I ⊆ I ′} is a topology on
A.

Remark 2.2. If in particular A = [0, 1] is the MTL - algebra from Remark 1.2, then
I(A) = {[0, x] : x ∈ A}. For x = 0, F({0}) = I(A); for x ∈ (0, 1),F([0, x]) = {[0, y] :
x ≤ y, y ∈ A}.
Definition 2.2. ([15]) A non-empty set I ⊆ A will be called regular if for every
x, y ∈ A such that e ∧ x = e ∧ y for every e ∈ I ∩B(A), then x = y.

Example 2.2. If we denote R(A) = {I ⊆ A : I is a regular subset of A}, then
I(A) ∩R(A) is a topology on A.

Remark 2.3. Clearly, if A = [0, 1] is the MTL -algebra from Remark 1.2, since
B(A) = {0, 1} = L2 then only I = A is a regular subset of A (I = [0, x] with x 6= 1
are non regular because contain 0 and for example we have 0 ∧ a = 0 ∧ b for every
a, b ∈ A and a 6= b). So, in this case F = I(A) ∩R(A) = {A}.



LOCALIZATION OF MTL - ALGEBRAS 113

Example 2.3. A nonempty set I ⊆ A will be called dense (see [9]) if for x ∈ A such
that e∧ x = 0 for every e ∈ I ∩B(A), then x = 0. If we denote by D(A) the set of all
dense subsets of A, then R(A) ⊆ D(A) and F = I(A) ∩D(A) is a topology on A.

Remark 2.4. As above, for MTL− algebra A = [0, 1] from Remark 1.2, D(A) = {A}
(because I ∈ D(A) if 1 ∈ I).

Definition 2.3. ([3]) A subset S ⊆ A is called ∧− closed if 1 ∈ S and x, y ∈ S
implies x ∧ y ∈ S .

Example 2.4. For any ∧− closed subset S of A, the set FS = {I ∈ I(A) : I ∩ S ∩
B(A) 6= ®} is a topology on A .

Remark 2.5. In the case of MTL- algebra A = [0, 1] from Remark 1.2, S ⊆ [0, 1] is
a ∧− closed subset if 1 ∈ S. Since B(A) = {0, 1} = L2 then for S ⊆ A a ∧− closed
system, FS = {I ∈ I(A) : I ∩ S ∩ {0, 1} 6= ®}.

1. If S is a ∧−closed systems of A such that 0 ∈ S we have I ∩ S ∩ B(A) 6= ® for
every I ∈ I(A), so FS = I(A).

2. If 0 /∈ S then FS = {A} (because, if I ∈ I(A) and 1 ∈ I implies I = A).

3. F-multipliers and localization MTL-algebras

Let F be a topology on a MTL−algebra A and we consider the relation θF of A
defined in the following way: (x, y) ∈ θF ⇔ there exists I ∈ F such that e∧x = e∧ y
for any e ∈ I ∩B(A).

Lemma 3.1. θF is a congruence on A.

Proof. See [2] for the case of BL− algebras. ¤

We shall denote by a/θF the congruence class of an element a ∈ A and by
pF : A → A/θF the canonical morphism of MTL-algebras.

Proposition 3.1. For a ∈ A, a/θF ∈ B(A/θF ) iff there exists I ∈ F such that
a ∨ a∗ ≥ e for every e ∈ I ∩B(A). So, if a ∈ B(A), then a/θF ∈ B(A/θF ).

Proof. Using Theorem 1.2, for a ∈ A, we have a/θF ∈ B(A/θF ) ⇔ a/θF ∨ (a/θF )∗ =
1/θF ⇔ (a ∨ a∗)/θF = 1/θF ⇔ there exist I ∈ F such that (a ∨ a∗) ∧ e = 1 ∧ e = e,
for every e ∈ I ∩ B(A) ⇔ a ∨ a∗ ≥ e, for every e ∈ I ∩ B(A). If a ∈ B(A), then for
every I ∈ F , 1 = a ∨ a∗ ≥ e, for every e ∈ I ∩B(A), hence a/θF ∈ B(A/θF ). ¤

Corollary 3.1. If F = I(A) ∩R(A), then for a ∈ A, a ∈ B(A) iff a/θF ∈ B(A/θF ).

Definition 3.1. Let F be a topology on A. A F− multiplier is a mapping f : I
→ A/θF where I ∈ F and for every x ∈ I and e ∈ B(A) the following axioms are
fulfilled:
(a6) f(e¯ x) = e/θF ∧ f(x) = e/θF ¯ f(x);
(a7) f(x) ≤ x/θF ;
(a8) x/θF ¯ (x/θF → f(x)) = f(x).

Remark 3.1. If A is a BL algebra, then the axiom (a8) is a consequence of (a7)
(because in this case x/θF ¯ (x/θF → f(x)) = x/θF ∧ f(x) a7= f(x), for every x ∈ I).

By dom(f) ∈ F we denote the domain of f ; if dom(f) = A, we called f total.
To simplify language, we will use F− multiplier instead partial F− multiplier,

using total to indicate that the domain of a certain F− multiplier is A.
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If F = {A}, then θF is the identity congruence of A so a F− multiplier is a total
multiplier in sense of [15], Definition 3, which verify the conditions M1, M2 and M3.

The maps 0,1 : A → A/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every
x ∈ A are F− multipliers in the sense of Definition 3.1.

Also, for a ∈ B(A), fa : A → A/θF defined by fa(x) = a/θF ∧ x/θF for every
x ∈ A, is a F− multiplier. If dom(fa) = A, we denote fa by fa ; clearly, f0 = 0.

We shall denote by M(I, A/θF ) the set of all the F− multipliers having the domain
I ∈ F and M(A/θF ) =

⋃
I∈F

M(I, A/θF ). If I1, I2 ∈ F , I1 ⊆ I2 we have a canonical

mapping ϕI1,I2 : M(I2, A/θF ) → M(I1, A/θF ) defined by ϕI1,I2(f) = f|I1 for f ∈
M(I2, A/θF ). Let us consider the directed system of sets
〈{M(I, A/θF )}I∈F , {ϕI1,I2}I1,I2∈F ,I1⊆I2〉 and denote by AF the inductive limit

(in the category of sets) AF = lim−−→
I∈F

M(I,A/θF ). For any F− multiplier f : I → A/θF

we shall denote by (̂I, f) the equivalence class of f in AF .

Remark 3.2. If fi : Ii → A/θF , i = 1, 2, are F− multipliers, then (̂I1, f1) = (̂I2, f2)
(in AF) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Proposition 3.2. If I1, I2 ∈ F and fi ∈ M(Ii, A/θF ), i = 1, 2, then
(c19) f1(x)¯ [x/θF → f2(x)] = f2(x)¯ [x/θF → f1(x)], for every x ∈ I1∩ I2.

Proof. For x ∈ I1∩ I2 we have f1(x) ¯ [x/θF → f2(x)] a8= x/θF ¯ (x/θF → f1(x)) ¯
(x/θF → f2(x)) = [x/θF ¯ (x/θF → f2(x))] ¯ (x/θF → f1(x)) a8= f2(x) ¯ [x/θF →
f1(x)]. ¤

Let fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2), F−multipliers. Let us consider the
mappings f1 ∧ f2, f1 ∨ f2, f1 ¯ f2, f1 → f2 : I1 ∩ I2 → A/θF defined by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x), (f1 ∨ f2)(x) = f1(x) ∨ f2(x),

(f1 ¯ f2)(x) = f1(x)¯ [x/θF → f2(x)] c19= f2(x)¯ [x/θF → f1(x)],
(f1 → f2)(x) = x/θF ¯ [f1(x) → f2(x)],

for any x ∈ I1 ∩ I2, and let

(̂I1, f1) f (̂I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2), (̂I1, f1) g (̂I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2),

(̂I1, f1)⊗ (̂I2, f2) = ̂(I1 ∩ I2, f1 ¯ f2), (̂I1, f1) 7−→ (̂I2, f2) = ̂(I1 ∩ I2, f1 → f2).
Clearly, the definitions of the operations f, g,⊗ and 7−→ on AF are correct.

Lemma 3.2. f1 ∧ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. It is suffice to verify only a8 (for a6 and a7, see [2]).
For every x ∈ I1∩ I2 we have x/θF ¯ [x/θF → (f1 ∧ f2)(x)] = x/θF ¯ [x/θF →

(f1(x) ∧ f2(x))] c7= x/θF ¯ [(x/θF → f1(x)) ∧ (x/θF → f2(x))] c16= [x/θF ¯ (x/θF →
f1(x))] ∧ [x/θF ¯ (x/θF → f2(x))] a8= f1(x) ∧ f2(x) = (f1 ∧ f2)(x), that is, f1 ∧ f2 ∈
M(I1 ∩ I2, A/θF ). ¤
Lemma 3.3. f1 ∨ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. The axioms a6 and a7 are verified as in the case of BL−algebras (see [2]). To
verify a8, let x ∈ I1∩ I2. Then x/θF ¯ [x/θF → (f1 ∨ f2)(x)] = x/θF ¯ [x/θF →
(f1(x) ∨ f2(x))] c13= x/θF ¯ [(x/θF → f1(x)) ∨ (x/θF → f2(x))] c6= [x/θF ¯ (x/θF →
f1(x))] ∨[x/θF ¯ (x/θF → f2(x))] a8= f1(x) ∨ f2(x) = (f1 ∨ f2)(x), that is, f1 ∨ f2 ∈
M(I1 ∩ I2, A/θF ). ¤
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Lemma 3.4. f1 ¯ f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. By using c10, a6 and a7 are verified as in the case of BL−algebras (see [2]).
For a8 let x ∈ I1∩ I2 and denote f = f1 ¯ f2.

To prove the equality x/θF ¯ (x/θF → f(x)) = f(x) it is suffice (using c1) to prove
that f(x) ≤ x/θF¯(x/θF → f(x)). We have f(x) = f1(x)¯(x/θF → f2(x)) = x/θF¯
(x/θF → f1(x)) ¯ (x/θF → f2(x)) and x/θF ¯ (x/θF → f(x)) = x/θF ¯ [x/θF →
(f1(x) ¯ (x/θF → f2(x)))] = x/θF ¯ [x/θF → (x/θF ¯ (x/θF → f1(x)) ¯ (x/θF →
f2(x)))]. So, to prove that f(x) ≤ x/θF ¯ (x/θF → f(x)) it is suffice to prove that
x/θF ¯ (x/θF → f1(x)) ¯ (x/θF → f2(x)) ≤ x/θF ¯ [x/θF → (x/θF ¯ (x/θF →
f1(x)) ¯ (x/θF → f2(x)))], that is, α ≤ x/θF → (x/θF ¯ α) (with α

not= (x/θF →
f1(x)) ¯ (x/θF → f2(x))), which is clearly, since α → [x/θF → (x/θF ¯ α)] c4=
(α¯ x/θF ) → (x/θF ¯ α) = 1, that is, f1 ¯ f2 ∈ M(I1 ∩ I2, A/θF ). ¤
Lemma 3.5. f1 → f2 ∈ M(I1 ∩ I2, A/θF ).

Proof. By using c10, a6 and a7 are verified as in the case of BL−algebras (see [2]).
For a8, let x ∈ I1∩ I2 and denote f = f1 → f2; then f(x) = x/θF ¯ [f1(x) → f2(x)].
We have f1(x) → f2(x) ≤ x/θF → [x/θF ¯ (f1(x) → f2(x))], hence x/θF ¯ [f1(x) →
f2(x)] ≤ x/θF ¯ [x/θF → (x/θF ¯ (f1(x) → f2(x)))] ⇔ f(x) ≤ x/θF ¯ [x/θF →
f(x)] c1⇔ f(x) = x/θF ¯ [x/θF → f(x)], that is, f1 → f2 ∈ M(I1 ∩ I2, A/θF ). ¤

Proposition 3.3. (AF , f, g,⊗, 7−→,0 = (̂A,0),1 = (̂A,1)) is a MTL-algebra.

Proof. We verify the axioms of MTL-algebras.
(a1). Obviously (AF ,f,g,0 = (̂A,0),1 = (̂A,1)) is a bounded lattice.
(a2). As in the case of BL− algebras (see [2]), by using c19 and a8.
(a3). fi ∈ M(Ii, A/θF ) where Ii ∈ F , i = 1, 2, 3.
Since f1 ≤ f2 → f3 for x ∈ I1 ∩ I2 ∩ I3 we have f1(x) ≤ (f2 → f3)(x) ⇔ f1(x) ≤

x/θF ¯ [f2(x) → f3(x)]. So, by c3, f1(x) ¯ [x/θF → f2(x)] ≤ x/θF ¯ [x/θF →
f2(x)] ¯ [f2(x) → f3(x)] a8⇔ f1(x) ¯ [x/θF → f2(x)] ≤ f2(x) ¯ [f2(x) → f3(x)] ≤
f3(x) ⇔ (f1 ¯ f2)(x) ≤ f3(x), for every x ∈ I1 ∩ I2 ∩ I3, that is, f1 ¯ f2 ≤ f3.
Conversely, if (f1¯ f2)(x) ≤ f3(x) we have f2(x)¯ [x/θF → f1(x)] ≤ f3(x), for every
x ∈ I1 ∩ I2 ∩ I3. Obviously, x/θF → f1(x) ≤ f2(x) → f3(x) c3⇔ x/θF ¯ (x/θF →
f1(x)) ≤ x/θF ¯ (f2(x) → f3(x)) ⇔ f1(x) ≤ (f2 → f3)(x). So f1 ≤ f2 → f3 iff
f1 ¯ f2 ≤ f3 for all f1, f2, f3 ∈ M(A/θF ) and so (̂I1, f1) ≤ (̂I2, f2) 7−→ (̂I3, f3) iff
(̂I2, f2)⊗ (̂I1, f1) ≤ (̂I3, f3). Since the preliniarity equation c12 is proved as in the case
of BL− algebras (see [2]) we deduce that (AF ,f,g,⊗, 7−→,0 = (̂A,0),1 = (̂A,1)) is
a MTL-algebra. ¤
Remark 3.3. (M(A/θF ),∧,∨,¯,→,0,1) is a MTL-algebra.

Definition 3.2. The MTL-algebra AF will be called the localization MTL-algebra
of A with respect to the topology F .

Definition 3.3. ([5], [7]) A MTL-algebra A is called
(i) An IMTL-algebra (involutive algebra) if it satisfies the equation

(I) x∗∗ = x;
(ii) a SMTL-algebra if it satisfies the equation

(S) x ∧ x∗ = 0;
(iii) a WNM−algebra (weak nilpotent minimum) if it satisfies the equation

(W ) (x¯ y)∗ ∨ [(x ∧ y) → (x¯ y)] = 1;
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(iv) a ΠSMTL− algebra if it is a SMTL−algebra satisfying the equation
(Π) [z∗∗ ¯ ((x¯ z) → (y ¯ z))] → (x → y) = 1.

Theorem 3.1. If MTL-algebra A is a BL−algebra (resp. an IMTL-algebra, a
SMTL-algebra, a WNM -algebra, a ΠSMTL-algebra), then AF is also a BL−algebra
(resp. an IMTL-algebra, a SMTL-algebra, a WNM -algebra, a ΠSMTL-algebra).

Proof. Suppose that A is a BL−algebra (see Remark 1.2). Since for (̂I1, f1), (̂I2, f2) ∈
AF , where Ii ∈ F , i = 1, 2, (̂I1, f1) ⊗ ((̂I1, f1) 7−→ (̂I2, f2)) = (̂I1, f1) f (̂I2, f2) ⇔

̂(I1 ∩ I2, f1 ¯ (f1 → f2) = ̂(I1 ∩ I2, f1 ∧ f2), to prove that AF is a BL−algebra, it is
suffice to prove that for every x ∈ I1 ∩ I2, (f1 ¯ (f1 → f2))(x) = (f1 ∧ f2)(x) ⇔
(f1 → f2)(x)¯ [x/θF → f1(x)] = f1(x)∧ f2(x) ⇔ x/θF ¯ [f1(x) → f2(x)]¯ [x/θF →
f1(x)] = f1(x) ∧ f2(x) ⇔ (x/θF ¯ [x/θF → f1(x)])¯ [f1(x) → f2(x)] = f1(x) ∧ f2(x)
a8⇔ f1(x) ¯ [f1(x) → f2(x)] = f1(x) ∧ f2(x), which is true because A is supposed a
BL−algebra, so A/θF is also a BL−algebra.

Suppose that A is an IMTL−algebra; obviously, A/θF is also an IMTL−algebra.
For α = (̂I, f) ∈ AF , where I ∈ F , we have f∗∗ = (f → 0) → 0 so f∗∗(x) = x/θF ¯
[x/θF ¯ (f(x))∗]∗ c4= x/θF ¯ [x/θF → (f(x))∗∗]

(I)
= x/θF ¯ [x/θF → f(x)] a8= f(x), for

x ∈ I, hence α∗∗ = α, that is, AF is an IMTL-algebra.
Suppose that A is a SMTL−algebra; obviously, A/θF is also a SMTL−algebra.

If α = (̂I, f) ∈ AF , then the equation α f α∗ = 0 is equivalent with f ∧ (f →
0) = 0 ⇔ f(x) ∧ [x/θF ¯ (f(x))∗] = 0, for every x ∈ I, which is clearly (since
f(x) ∧ [x/θF ¯ (f(x))∗] ≤ f(x) ∧ (f(x))∗ = 0), hence α f α∗ = 0, that is, AF is a
SMTL-algebra.

Suppose that A is a WNM−algebra. Let α = (̂I, f), β = (̂J, g) and denote
a = f(x), b = g(x) for x ∈ I ∩ J . We have (α ⊗ β)∗ g ((α f β) 7−→ (α ⊗ β)) =

̂[I ∩ J, (f ¯ g)∗ ∨ ((f ∧ g) → (f ¯ g))] and ((f ¯ g)∗ ∨ ((f ∧ g) → (f ¯ g)))(x) =
((f ¯ g)∗(x)) ∨ (x/θF ¯ ((f ∧ g)(x) → (f ¯ g)(x))) = (x/θF ¯ (a ¯ (x/θF →
b))∗)∨(x/θF¯((a∧b) → (a¯(x/θF → b)))) c6= x/θF¯((a¯(x/θF → b))∗∨((a∧b) →
(a¯ (x/θF → b)))).

Since b ≤ x/θF → b we deduce that a ∧ b ≤ a ∧ (x/θF → b), hence, using c3,
(a ∧ (x/θF → b)) → (a¯ (x/θF → b)) ≤ (a ∧ b) → (a¯ (x/θF → b)).

Since A is supposed a WNM−algebra we deduce that A/θF is also a WNM−algebra,
so we obtain 1/θF = (a ¯ (x/θF → b))∗ ∨ ((a ∧ (x/θF → b)) → (a ¯ (x/θF → b)))
≤ (a¯(x/θF → b))∗∨((a∧b) → (a¯(x/θF → b))), hence (a¯(x/θF → b))∗∨((a∧b) →
(a¯ (x/θF → b))) = 1/θF . Then ((f ¯ g)∗ ∨ ((f ∧ g) → (f ¯ g)))(x) = x/θF ¯ 1/θF =
x/θF = 1(x) ⇔ (α⊗β)∗g ((αfβ) 7−→ (α⊗β)) = 1, that is AF is a WNM−algebra.

Suppose now A is a ΠSMTL−algebra, so A/θF is also a ΠSMTL−algebra. From
the condition x∧x∗ = 0 (x ∈ A), we deduce that x∗ ∨x∗∗ c15= (x∧x∗)∗ = 0∗ = 1, that
is, x∗ ∈ B(A). Let α = (̂I, f), β = (̂J, g), γ = (̂K,h) ∈ AF . Consider x ∈ I ∩ J ∩K

and denote a = f(x), b = g(x) and c = h(x). Then h∗∗(x) = x/θF ¯ (x/θF → c∗∗) c9=
x/θF ∧ c∗∗ c8= x/θF ¯ c∗∗, [h∗∗ ¯ ((f ¯ h) → (g ¯ h))](x) = [x/θF → h∗∗(x)] ¯
[x/θF ¯ [(f ¯ h)(x) → (g ¯ h)(x)]] = [x/θF → (x/θF ¯ c∗∗)] ¯ [x/θF ¯ [((x/θF →
a)¯c) → ((x/θF → b)¯c)]] = [x/θF ¯ (x/θF → (x/θF ¯c∗∗))]¯ [((x/θF → a)¯c) →
((x/θF → b)¯ c)]

c1≤ (x/θF ¯ c∗∗)¯ [((x/θF → a)¯ c) → ((x/θF → b)¯ c)] = x/θF ¯
[c∗∗ ¯ [((x/θF → a) ¯ c) → ((x/θF → b) ¯ c)]]

(Π)

≤ x/θF ¯ [(x/θF → a) → (x/θF →
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b)] c4= x/θF ¯ [(x/θF ¯ (x/θF → a)) → b] a8= x/θF ¯ (a → b) = (f → g)(x), hence
[γ∗∗ ⊗ ((α⊗ γ) 7−→ (β ⊗ γ))] 7−→ (α 7−→ β) = 1, so AF is a ΠSMTL−algebra. ¤

Remark 3.4. If MTL− algebra (A,∧,∨,¯,→, 0, 1) is a BL− algebra (resp. an
IMTL-algebra, a SMTL-algebra, a WNM -algebra, a ΠSMTL-algebra), then MTL−
algebra (M(A/θF ),∧,∨,¯,→,0,1) is a BL− algebra (resp. an IMTL-algebra, a
SMTL-algebra, a WNM -algebra, a ΠSMTL-algebra).

Remark 3.5. If MTL− algebra (A,∧,∨,¯,→, 0, 1) is a BL− algebra in [2] will be
called (AF , f, g,⊗, 7−→,0 = (̂A,0),1 = (̂A,1)) the localization BL-algebra of A with
respect to the topology F .

Lemma 3.6. Let the map vF : B(A) → AF defined by vF (a) = (̂A, fa) for every
a ∈ B(A). Then:
(i) vF is a morphism of MTL-algebras;

(ii) For a ∈ B(A), (̂A, fa) ∈ B(AF );
(iii) vF (B(A)) ∈ R(AF ).

Proof. (i), (iii). As in the case of BL− algebras (see [2]).
(ii). For a ∈ B(A) we have a ∨ a∗ = 1, hence (a ∧ x) ∨ [x ¯ (a ∧ x)∗] c15= (a ∧

x) ∨ [x ¯ (a∗ ∨ x∗)] c6= (a ∧ x) ∨ [(x ¯ a∗) ∨ (x ¯ x∗)] c5= (a ∧ x) ∨ [(x ¯ a∗) ∨ 0) c8=
(a ∧ x) ∨ (x ∧ a∗) c17= x ∧ (a ∨ a∗) = x ∧ 1 = x, for every x ∈ A. Since A ∈ F we
deduce that (a ∧ x)/θF ∨ [x/θF ¯ ((a ∧ x)/θF )∗] = x/θF hence fa ∨ (fa)∗ = 1 , that

is, (̂A, fa) g (̂A, fa)
∗

= (̂A,1), so (̂A, fa) ∈ B(AF ). ¤

4. Applications

In the following we describe the localization MTL-algebra AF in some special
instances.

1. If I ∈ I(A), and F is the topology F(I) = {I ′ ∈ I(A) : I ⊆ I ′} (see Example
2.1), then AF is isomorphic with M(I, A/θF ) and vF : B(A) → AF is defined by
vF (a) = fa|I for every a ∈ B(A).

If I is a regular subset of A, then θF is the identity, hence AF is isomorphic with
M(I, A) (see [15], Definition 3, conditions M1,M2 and M3), which in generally is not
a Boolean algebra. For example, if I = A = [0, 1] is the Lukasiewicz structure (see
[18]) then AF is not a Boolean algebra (see [2]).

Remark 4.1. If consider MTL−algebra A = [0, 1] from Remark 1.2, then
1. If I = {0}, then F({0}) = I(A) (see Remark 2.2), so AF ≈ M(I, A/θF ) =

M({0}, A/θF ) = 0.
2. If I = A, then F(A) = {A} and θF is the identity, so AF ≈ M(A,A). Since

B(A) = L2 = {0, 1}, then f ∈ M(A,A) iff f(x) ≤ x and x¯ (x → f(x)) = f(x),
for every x ∈ A. So, f(0) = 0. For x ≥ 1

2 if we denote f(x) = y, then y ≤ x

and we deduce that x ¯ (x → f(x)) = x ¯ (x → y) = x ¯ max( 1
2 − x, y) =

x ¯ y = x ∧ y = y = f(x), so for x ≥ 1
2 , f ∈ M(A,A) iff f(x) ≤ x. If consider

f ∈ AF = M(A, A) such that f( 3
4 ) = 1

2 , then (f ∨ f∗)( 3
4 ) = f(3

4 ) ∨ f∗( 3
4 ) =

f( 3
4 ) ∨ [ 34 ¯ (f(3

4 ))∗] = 1
2 ∨ [ 34 ¯ ( 1

2 )∗] = 1
2 ∨ ( 3

4 ¯ 0) = 1
2 ∨ 0 = 1

2 6= 1( 3
4 ) = 3

4 ,
hence f is not a boolean element in AF (hence in this case AF is not a Boolean
algebra). Also, f is not a principal multiplier (because B(A) = {0, 1} hence the
only principal multipliers are f0 = 0 and f1 = 1).
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3. If I = [0, x] with x 6= 0, 1, F(I) = {[0, a] : x ≤ a, a ∈ (0, 1]}. Since 0 ∈ [0, a], a 6= 1
and 0 ∧ x = 0 ∧ y, then (x, y) ∈ θF for every x, y ∈ A, hence in this case
AF ≈M(I,0) = 0.

2. Main remark. To obtain the maximal MTL -algebra of quotients Q(A) as a
localization relative to a topology F we have to develope another theory of multipliers
(meaning we add new axioms for F-multipliers).

Definition 4.1. Let F be a topology on A. A strong - F− multiplier is a mapping
f : I → A/θF (where I ∈ F) which verifies the axioms a6, a7 and a8 (see Definition
3.1) and
(a9) If e ∈ I ∩B(A), then f(e) ∈ B(A/θF );

(a10) (x/θF ) ∧ f(e) = (e/θF ) ∧ f(x), for every e ∈ I ∩B(A) and x ∈ I.

Remark 4.2. If (A,∧,∨,¯,→, 0, 1) is a MTL− algebra, the maps 0,1 : A → A/θF
defined by 0(x) = 0/θF and 1(x) = x/θF for every x ∈ A are strong - F− multipliers.
We recall that if fi : Ii → A/θF , (with Ii ∈ F , i = 1, 2) are F−multipliers f1∧f2, f1∨
f2, f1 ¯ f2, f1 → f2 : I1 ∩ I2 → A/θF defined by (f1 ∧ f2)(x) = f1(x) ∧ f2(x), (f1 ∨
f2)(x) = f1(x) ∨ f2(x), (f1 ¯ f2)(x) = f1(x) ¯ [x/θF → f2(x)] c19= f2(x) ¯ [x/θF →
f1(x)], (f1 → f2)(x) = x/θF ¯ [f1(x) → f2(x)], for any x ∈ I1∩ I2 are F−multipliers.
If f1, f2 are strong - F− multipliers then the multipliers f1∧f2, f1∨f2, f1¯f2, f1 → f2

are also strong - F− multipliers (the proof is as in the case of BL−algebras, see [2]).

Remark 4.3. Analogous as in the case of F− multipliers if we work with strong-F−
multipliers we obtain a MTL− subalgebra of AF denoted by s − AF which will be
called the strong-localization MTL− algebra of A with respect to the topology F .

So, if F = I(A) ∩ R(A) is the topology of regular ideals, then θF is the identity
congruence of A and we obtain the definition for multipliers on A, so

s−AF = lim−−→
I∈F

(s−M(I, A)),

where s−M(I, A) is the set of strong multipliers of A having the domain I (see [15],
Definition 3, conditions M1 −M5).

In this situation we obtain:

Proposition 4.1. In the case F = I(A) ∩ R(A), AF is exactly the maximal MTL-
algebra Q(A) of quotients of A (introduced in [15]) which is a Boolean algebra (for
the proof, see [14] Proposition 6.12, p.194, for the case of BL− algebras). If MTL−
algebra A is a BL− algebra, AF is exactly the maximal BL-algebra Q(A) of quotients
of A.

Remark 4.4. If consider in particular MTL- algebra A = [0, 1] from Remark 1.2,
then F = {A}, hence AF ≈ s−M(A,A). Consider f ∈ s−M(A, A). Clearly, f(0) = 0
and f(1) ∈ {0, 1}. If f(1) = 0, then for every x ∈ A , x ∧ f(1) = 1 ∧ f(x) ⇔ x ∧ 0 =
f(x) ⇔ f(x) = 0 ⇔ f = 0. If f(1) = 1 then from a10, f(x) = x = 1(x), hence f = 1.
So, in this case s−AF ≈ s−M(A,A) = L2.

3. Denoting by D the topology of dense ordered ideals of A, then (since R(A) ⊆
D(A)) there exists a morphism of MTL -algebras α : Q(A) → s− AD such that the
diagrame

B(A) vA−→ Q(A)
vD↘ α↙

s−AD
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is commutative (i.e. α ◦ vA = vD). Indeed, if [f, I] ∈ Q(A) (with I ∈ I(A) ∩ R(A)
and f : I → A a strong multiplier in the sense of [15]) we denote by fD the strong -
D−multiplier fD : I → A/θD defined by fD(x) = f(x)/θD for every x ∈ I. Thus, α is
defined by α([f, I]) = [fD, I].

4. Let S ⊆ A a ∧−closed system of MTL- algebra A. Consider the following
congruence on A : (x, y) ∈ θS ⇔ there exists e ∈ S ∩ B(A) such that x ∧ e = y ∧ e
(see [3]). A[S] = A/θS is called in [3] the MTL-algebra of fractions of A relative to
the ∧−closed system S.

As in the case of BL−algebras we obtain the following result:

Proposition 4.2. If FS is the topology associated with a ∧−closed system S ⊆ A,
then the MTL-algebra s−AFS

is isomorphic with B(A[S]).

Remark 4.5. In the proof of Proposition 4.2 the axiom a10 is not necessarily.

Remark 4.6. If A is MTL− algebra A = [0, 1], from Remark 1.2, since B(A) =
{0, 1} = L2 then for S ⊆ A a ∧− closed system, FS = {I ∈ I(A) : I ∩S ∩{0, 1} 6= ®}
and s−AFS

is isomorphic with B(A[S]):
1. If S is a ∧−closed systems of A such that 0 ∈ S , then FS = I(A) (see Remark

2.5 ) and s−AFS = s−AI(A) ≈ B(A[S]) = B(0) = 0.
2. If 0 /∈ S, FS = A (see Remark 2.5) and s−AFS

= s−AA ≈ B(A[S]) = B(A) =
{0, 1} = L2.

Concluding remarks
Since in particular a MTL− algebra is a BL− algebra we obtain a part of the results

about localization of BL− algebras (see [2]), so we deduce that the main results of
this paper are generalization of the analogous result relative to BL− algebras from
[2].

We use in the construction of localization MTL− algebra AF the Boolean center
B(A) of MTL− algebra A; as a consequence of this fact, s−AF is a Boolean algebra
in some particular cases.

A very interesting subject for future research would be a treatment of the localiza-
tion for MTL algebras or residuated lattices without use the Boolean center.
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