Annals of the University of Craiova, Mathematics and Computer Science Series Volume 39(1), 2012, Pages 110–120 ISSN: 1223-6934

Localization of MTL - algebras

ANTONETA JEFLEA AND JUSTIN PARALESCU

ABSTRACT. The aim of the present paper is to define the localization MTL - algebra of a MTL- algebra A with respect to a topology \mathcal{F} on A. In the last part of the paper is proved that the maximal MTL - algebra of quotients (defined in [15]) and the MTL - algebra of fractions relative to an \wedge - closed system (defined in [3]) are MTL - algebras of localization.

2010 Mathematics Subject Classification. 18B35, 18C05, 06D72, 03G25. Key words and phrases. MTL - algebra, BL - algebra, residuated lattice, topology, $\mathcal{F}-$ multiplier, strong $\mathcal{F}-$ multiplier, multiplier, MTL - algebra of fractions, maximal MTL - algebra of quotients, MTL - algebra of localization.

Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced by Hájek in [10] to cope with the logic of continuous t-norms and their residua. Monoidal logic (ML from now on), is a logic whose algebraic counterpart is the class of residuated; MTL-algebras (see [5]) are algebraic structures for the Esteva-Godo monoidal t-norm based logic (MTL), a many-valued propositional calculus that formalizes the structure of the real unit interval [0, 1], induced by a left–continuous t-norm. MTL algebras were independently introduced in [6] under the name weak-BL algebras.

A remarkable construction in ring theory is the *localization ring* $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} on a ring A.

Using the model of localization ring, in [9], G. Georgescu defined for a bounded distributive lattice L the localization lattice $L_{\mathcal{F}}$ of L with respect to a topology \mathcal{F} on L and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals); analogous results we have for lattices of fractions of bounded distributive lattices relative to \wedge - closed systems.

The main aim of this paper is to develop a theory of localization for MTL algebras. Since BL- algebras are particular classes of MTL- algebras, the results of this paper generalize a part of the results from [2] for BL- algebras. The main difference is that the axiom $x \odot (x \to y) = x \land y$ is not valid for MTL-algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [18]) is an algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ of type (2, 2, 2, 2, 0, 0) equipped with an order \leq satisfying the following:

 (a_1) $(A, \land, \lor, 0, 1)$ is a bounded lattice relative to the order \leq ;

 (a_2) $(A, \odot, 1)$ is a commutative ordered monoid;

 (a_3) (\odot, \rightarrow) is an adjoint pair, i.e. $z \leq x \rightarrow y$ iff $x \odot z \leq y$ for every $x, y, z \in A$.

The class \mathcal{RL} of residuated lattices is equational (see [11]). For examples of residuated lattices see [3] and [18].

Received June 11, 2012.

In what follows by A we denote the universe of a residuated lattice. For $x \in A$, we denote $x^* = x \to 0$ and $(x^*)^* = x^{**}$.

We review some rules of calculus for residuated lattices A used in this paper:

Theorem 1.1. ([1], [18]) Let $x, y, z \in A$. Then we have the following:

- (c₁) $1 \to x = x, x \to x = 1, y \le x \to y, x \odot (x \to y) \le y, x \to 1 = 1, 0 \to x = 1, x \odot 0 = 0;$
- $(c_2) x \leq y \text{ iff } x \rightarrow y = 1;$
- (c₃) $x \leq y$ implies $x \odot z \leq y \odot z, z \to x \leq z \to y$ and $y \to z \leq x \to z$;
- $\begin{array}{l} (c_4) \ x \to (y \to z) = (x \odot y) \to z = y \to (x \to z), \ so \ (x \odot y)^* = x \to y^* = y \to x^*; \\ (c_5) \ x \odot x^* = 0 \ and \ x \odot y = 0 \ iff \ x \le y^*; \end{array}$

If A is a complete residuated lattice and $(y_i)_{i \in I}$ is a family of elements of A, then: (c₆) $x \odot (\bigvee y_i) = \bigvee (x \odot y_i);$

$$i \in I$$
 $i \in I$

$$(c_7) \ x \to (\bigwedge_{i \in I} y_i) = \bigwedge_{i \in I} (x \to y_i)$$

By B(A) we denote the set of all complemented elements in the lattice $L(A) = (A, \land, \lor, 0, 1)$. Complements are generally not unique, unless the lattice is distributive; in the case of residuated lattices, however, although the underlying lattices need not be distributive, the complements are unique ([8]). Also, if b is the complement of a, then a is the complement of b, $b = a^*, a^2 = a$ and $a^{**} = a$ ([1], [3]). So, B(A) is a Boolean subalgebra of A, called the *Boolean center* of A.

Theorem 1.2. ([3]) For $e \in A$ the following assertions are equivalent:

(i) $e \in B(A);$ (ii) $e \lor e^* = 1.$

Theorem 1.3. ([3]) If $e, f \in B(A)$ and $x, y \in A$, then:

 $\begin{array}{l} (c_8) \ e \odot x = e \land x; \\ (c_9) \ x \odot (x \to e) = e \land x, e \odot (e \to x) = e \land x; \\ (c_{10}) \ e \odot (x \to y) = e \odot [(e \odot x) \to (e \odot y)]; \\ (c_{11}) \ x \odot (e \to f) = x \odot [(x \odot e) \to (x \odot f)]. \end{array}$

Definition 1.2. ([5], [6], [7]) A MTL- algebra is a residuated lattice satisfying the preliniarity equation:

 $(c_{12}) \ (x \to y) \lor (y \to x) = 1.$

The variety of MTL- algebras will be denoted by \mathcal{MTL} .

Proposition 1.1. ([5]) For a residuated lattice, the following conditions are equivalent:

(i) $A \in \mathcal{MTL};$

- (ii) A is a subdirect product of linearly ordered residuated lattices;
- (iii) For every $x, y, z \in A$ we have:

 $(c_{13}) \ x \to (y \lor z) = (x \to y) \lor (x \to z);$

(iv) For every $x, y, z \in A$ we have:

 $(c_{14}) \ (x \land y) \to z = (x \to z) \lor (y \to z).$

Corollary 1.1. ([5]) Let $A \in \mathcal{MTL}$. Then for every $x, y, z \in A$ we have:

- $(c_{15}) (x \wedge y)^* = x^* \vee y^*;$
- $(c_{16}) \ x \odot (y \land z) = (x \odot y) \land (x \odot z);$
- $(c_{17}) \ x \land (y \lor z) = (x \land y) \lor (x \land z);$
- $(c_{18}) \ x \lor y = ((x \to y) \to y) \land ((y \to x) \to x).$

Remark 1.1. From (c_{18}) we deduce that a MTL- algebra is a semi-Boolean lattice (see [13]).

Remark 1.2. Every linearly ordered residuated lattice is a MTL- algebra. A MTL- algebra A is a BL- algebra iff in A is verified the divisibility condition: $x \odot (x \rightarrow y) = x \land y$. So, BL- algebras are examples of MTL- algebras; for an example of MTL- algebra which is not BL- algebra consider the residuated lattice defined on the unit interval A = [0, 1], for all $x, y \in A$, such that

$$x \odot y = 0 \text{ if } x + y \leq \frac{1}{2} \text{ and } x \wedge y \text{ elsewhere,}$$
$$x \to y = 1 \text{ if } x \leq y \text{ and } \max\left\{\frac{1}{2} - x, y\right\} \text{ elsewhere (see [18], p.16).}$$

Let 0 < y < x, $x + y < \frac{1}{2}$. Then $y < \frac{1}{2} - x$ and $0 \neq y = x \land y$, but $x \odot (x \to y) = x \odot (\frac{1}{2} - x) = 0$. This residuated lattice is a chain, so is a MTL-algebra, but the divisibility condition not hold.

Definition 1.3. Let (P, \leq) an ordered set. A nonempty subset I of P is called *order ideal* if, whenever $x \in I, y \in P$ and $y \leq x$, we have $y \in I$; we denote by I(P) the set of all order ideals of P.

For a MTL-algebra A we denote by Id(A) the set of all ideals of the lattice L(A).

Remark 1.3. Clearly, $Id(A) \subseteq I(A)$ and if $I_1, I_2 \in I(A)$, then $I_1 \cap I_2 \in I(A)$. Also, if $I \in I(A)$, then $0 \in I$.

2. Topologies on a MTL-algebra

Definition 2.1. A non-empty set \mathcal{F} of elements $I \in I(A)$ will be called a *topology* on A if the following axioms hold:

 (a_4) If $I_1 \in \mathcal{F}, I_2 \in I(A)$ and $I_1 \subseteq I_2$, then $I_2 \in \mathcal{F}$ (hence $A \in \mathcal{F}$); (a_5) If $I_1, I_2 \in \mathcal{F}$, then $I_1 \cap I_2 \in \mathcal{F}$.

Remark 2.1. 1. \mathcal{F} is a topology on A iff \mathcal{F} is a filter of the lattice of power set of A; for this reason a topology on I(A) is usually called a Gabriel filter on I(A).

2. Clearly, if \mathcal{F} is a topology on A, then $(A, \mathcal{F} \cup \{\emptyset\})$ is a topological space.

Any intersection of topologies on A is a topology; so, the set T(A) of all topologies of A is a complete lattice with respect to inclusion.

Example 2.1. If $I \in I(A)$, then the set $\mathcal{F}(I) = \{I' \in I(A) : I \subseteq I'\}$ is a topology on A.

Remark 2.2. If in particular A = [0,1] is the MTL - algebra from Remark 1.2, then $I(A) = \{[0,x] : x \in A\}$. For x = 0, $\mathcal{F}(\{0\}) = I(A)$; for $x \in (0,1)$, $\mathcal{F}([0,x]) = \{[0,y] : x \leq y, y \in A\}$.

Definition 2.2. ([15]) A non-empty set $I \subseteq A$ will be called *regular* if for every $x, y \in A$ such that $e \wedge x = e \wedge y$ for every $e \in I \cap B(A)$, then x = y.

Example 2.2. If we denote $R(A) = \{I \subseteq A : I \text{ is a regular subset of } A\}$, then $I(A) \cap R(A)$ is a topology on A.

Remark 2.3. Clearly, if A = [0,1] is the MTL -algebra from Remark 1.2, since $B(A) = \{0,1\} = L_2$ then only I = A is a regular subset of A (I = [0,x] with $x \neq 1$ are non regular because contain 0 and for example we have $0 \land a = 0 \land b$ for every $a, b \in A$ and $a \neq b$). So, in this case $\mathcal{F} = I(A) \cap R(A) = \{A\}$.

Example 2.3. A nonempty set $I \subseteq A$ will be called dense (see [9]) if for $x \in A$ such that $e \wedge x = 0$ for every $e \in I \cap B(A)$, then x = 0. If we denote by D(A) the set of all dense subsets of A, then $R(A) \subseteq D(A)$ and $\mathcal{F} = I(A) \cap D(A)$ is a topology on A.

Remark 2.4. As above, for MTL- algebra A = [0,1] from Remark 1.2, $D(A) = \{A\}$ (because $I \in D(A)$ if $1 \in I$).

Definition 2.3. ([3]) A subset $S \subseteq A$ is called $\wedge -$ *closed* if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

Example 2.4. For any \wedge - closed subset S of A, the set $\mathcal{F}_S = \{I \in I(A) : I \cap S \cap B(A) \neq \emptyset\}$ is a topology on A.

Remark 2.5. In the case of MTL- algebra A = [0, 1] from Remark 1.2, $S \subseteq [0, 1]$ is $a \wedge -closed$ subset if $1 \in S$. Since $B(A) = \{0, 1\} = L_2$ then for $S \subseteq A$ $a \wedge -closed$ system, $\mathcal{F}_S = \{I \in I(A) : I \cap S \cap \{0, 1\} \neq \emptyset\}.$

1. If S is a \wedge -closed systems of A such that $0 \in S$ we have $I \cap S \cap B(A) \neq \oslash$ for every $I \in I(A)$, so $\mathcal{F}_S = I(A)$.

2. If $0 \notin S$ then $\mathcal{F}_S = \{A\}$ (because, if $I \in I(A)$ and $1 \in I$ implies I = A).

3. \mathcal{F} -multipliers and localization MTL-algebras

Let \mathcal{F} be a topology on a MTL-algebra A and we consider the relation $\theta_{\mathcal{F}}$ of A defined in the following way: $(x, y) \in \theta_{\mathcal{F}} \Leftrightarrow$ there exists $I \in \mathcal{F}$ such that $e \wedge x = e \wedge y$ for any $e \in I \cap B(A)$.

Lemma 3.1. $\theta_{\mathcal{F}}$ is a congruence on A.

Proof. See [2] for the case of BL- algebras.

We shall denote by $a/\theta_{\mathcal{F}}$ the congruence class of an element $a \in A$ and by $p_{\mathcal{F}}: A \to A/\theta_{\mathcal{F}}$ the canonical morphism of MTL-algebras.

Proposition 3.1. For $a \in A$, $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$ iff there exists $I \in \mathcal{F}$ such that $a \lor a^* \ge e$ for every $e \in I \cap B(A)$. So, if $a \in B(A)$, then $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$.

Proof. Using Theorem 1.2, for $a \in A$, we have $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}}) \Leftrightarrow a/\theta_{\mathcal{F}} \vee (a/\theta_{\mathcal{F}})^* = 1/\theta_{\mathcal{F}} \Leftrightarrow (a \vee a^*)/\theta_{\mathcal{F}} = 1/\theta_{\mathcal{F}} \Leftrightarrow$ there exist $I \in \mathcal{F}$ such that $(a \vee a^*) \wedge e = 1 \wedge e = e$, for every $e \in I \cap B(A) \Leftrightarrow a \vee a^* \geq e$, for every $e \in I \cap B(A)$. If $a \in B(A)$, then for every $I \in \mathcal{F}$, $1 = a \vee a^* \geq e$, for every $e \in I \cap B(A)$, hence $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$. \Box

Corollary 3.1. If $\mathcal{F} = I(A) \cap R(A)$, then for $a \in A$, $a \in B(A)$ iff $a/\theta_{\mathcal{F}} \in B(A/\theta_{\mathcal{F}})$.

Definition 3.1. Let \mathcal{F} be a topology on A. A \mathcal{F} - multiplier is a mapping $f : I \to A/\theta_{\mathcal{F}}$ where $I \in \mathcal{F}$ and for every $x \in I$ and $e \in B(A)$ the following axioms are fulfilled:

 $\begin{array}{ll} (a_6) & f(e \odot x) = e/\theta_{\mathcal{F}} \wedge f(x) = e/\theta_{\mathcal{F}} \odot f(x); \\ (a_7) & f(x) \leq x/\theta_{\mathcal{F}}; \\ (a_8) & x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f(x)) = f(x). \end{array}$

Remark 3.1. If A is a BL algebra, then the axiom (a_8) is a consequence of (a_7) (because in this case $x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f(x)) = x/\theta_{\mathcal{F}} \wedge f(x) \stackrel{a_7}{=} f(x)$, for every $x \in I$).

By $dom(f) \in \mathcal{F}$ we denote the domain of f; if dom(f) = A, we called f total.

To simplify language, we will use $\mathcal{F}-$ multiplier instead partial $\mathcal{F}-$ multiplier, using total to indicate that the domain of a certain $\mathcal{F}-$ multiplier is A.

If $\mathcal{F} = \{A\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of A so a \mathcal{F} - multiplier is a total multiplier in sense of [15], Definition 3, which verify the conditions M_1, M_2 and M_3 .

The maps $\mathbf{0}, \mathbf{1} : A \to A/\theta_{\mathcal{F}}$ defined by $\mathbf{0}(x) = 0/\theta_{\mathcal{F}}$ and $\mathbf{1}(x) = x/\theta_{\mathcal{F}}$ for every $x \in A$ are \mathcal{F} - multipliers in the sense of Definition 3.1.

Also, for $a \in B(A)$, $f_a : A \to A/\theta_{\mathcal{F}}$ defined by $f_a(x) = a/\theta_{\mathcal{F}} \wedge x/\theta_{\mathcal{F}}$ for every $x \in A$, is a \mathcal{F} - multiplier. If $dom(f_a) = A$, we denote f_a by $\overline{f_a}$; clearly, $\overline{f_0} = \mathbf{0}$.

We shall denote by $M(I, A/\theta_{\mathcal{F}})$ the set of all the \mathcal{F} - multipliers having the domain $I \in \mathcal{F}$ and $M(A/\theta_{\mathcal{F}}) = \bigcup_{I \in \mathcal{F}} M(I, A/\theta_{\mathcal{F}})$. If $I_1, I_2 \in \mathcal{F}$, $I_1 \subseteq I_2$ we have a canonical mapping $\varphi_{I_1,I_2} : M(I_2, A/\theta_{\mathcal{F}}) \to M(I_1, A/\theta_{\mathcal{F}})$ defined by $\varphi_{I_1,I_2}(f) = f_{|I_1}$ for $f \in M(I_2, A/\theta_{\mathcal{F}})$. Let us consider the directed system of sets

 $\langle \{M(I, A/\theta_{\mathcal{F}})\}_{I \in \mathcal{F}}, \{\varphi_{I_1, I_2}\}_{I_1, I_2 \in \mathcal{F}, I_1 \subseteq I_2} \rangle$ and denote by $A_{\mathcal{F}}$ the inductive limit (in the category of sets) $A_{\mathcal{F}} = \lim_{I \in \mathcal{F}} M(I, A/\theta_{\mathcal{F}})$. For any \mathcal{F} - multiplier $f: I \to A/\theta_{\mathcal{F}}$

we shall denote by (I, f) the equivalence class of f in $A_{\mathcal{F}}$.

Remark 3.2. If $f_i : I_i \to A/\theta_{\mathcal{F}}$, i = 1, 2, are \mathcal{F} -multipliers, then $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$ (in $A_{\mathcal{F}}$) iff there exists $I \in \mathcal{F}$, $I \subseteq I_1 \cap I_2$ such that $f_{1|I} = f_{2|I}$.

Proposition 3.2. If $I_1, I_2 \in \mathcal{F}$ and $f_i \in M(I_i, A/\theta_{\mathcal{F}}), i = 1, 2$, then (c₁₉) $f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] = f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)]$, for every $x \in I_1 \cap I_2$.

Proof. For $x \in I_1 \cap I_2$ we have $f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \stackrel{a_8}{=} x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x)) = [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_2(x))] \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \stackrel{a_8}{=} f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)].$

Let $f_i: I_i \to A/\theta_{\mathcal{F}}$, (with $I_i \in \mathcal{F}$, i = 1, 2), \mathcal{F} -multipliers. Let us consider the mappings $f_1 \wedge f_2, f_1 \vee f_2, f_1 \odot f_2, f_1 \to f_2: I_1 \cap I_2 \to A/\theta_{\mathcal{F}}$ defined by

$$(f_1 \wedge f_2)(x) = f_1(x) \wedge f_2(x), (f_1 \vee f_2)(x) = f_1(x) \vee f_2(x), (f_1 \odot f_2)(x) = f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \stackrel{c_{19}}{=} f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)], (f_1 \to f_2)(x) = x/\theta_{\mathcal{F}} \odot [f_1(x) \to f_2(x)],$$

for any $x \in I_1 \cap I_2$, and let

$$\widehat{(I_1,f_1)} \land \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \land f_2), \widehat{(I_1,f_1)} \lor \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \lor f_2),$$
$$\widehat{(I_1,f_1)} \otimes \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \odot f_2), \widehat{(I_1,f_1)} \longmapsto \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \to f_2).$$

Clearly, the definitions of the operations $\lambda, \Upsilon, \otimes$ and \longmapsto on $A_{\mathcal{F}}$ are correct.

Lemma 3.2. $f_1 \wedge f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}}).$

Proof. It is suffice to verify only a_8 (for a_6 and a_7 , see [2]).

For every $x \in I_1 \cap I_2$ we have $x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (f_1 \wedge f_2)(x)] = x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (f_1(x) \wedge f_2(x))] \stackrel{c_1}{=} x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to f_1(x)) \wedge (x/\theta_{\mathcal{F}} \to f_2(x))] \stackrel{c_{16}}{=} [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x))] \wedge [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_2(x))] \stackrel{a_8}{=} f_1(x) \wedge f_2(x) = (f_1 \wedge f_2)(x)$, that is, $f_1 \wedge f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}})$.

Lemma 3.3. $f_1 \lor f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}}).$

Proof. The axioms a_6 and a_7 are verified as in the case of BL-algebras (see [2]). To verify a_8 , let $x \in I_1 \cap I_2$. Then $x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (f_1 \vee f_2)(x)] = x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (f_1(x) \vee f_2(x))] \stackrel{c_{13}}{=} x/\theta_{\mathcal{F}} \odot [(x/\theta_{\mathcal{F}} \to f_1(x)) \vee (x/\theta_{\mathcal{F}} \to f_2(x))] \stackrel{c_{6}}{=} [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x))] \vee [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_2(x))] \stackrel{a_8}{=} f_1(x) \vee f_2(x) = (f_1 \vee f_2)(x)$, that is, $f_1 \vee f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}})$.

Lemma 3.4. $f_1 \odot f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}}).$

Proof. By using c_{10} , a_6 and a_7 are verified as in the case of BL-algebras (see [2]). For a_8 let $x \in I_1 \cap I_2$ and denote $f = f_1 \odot f_2$.

To prove the equality $x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f(x)) = f(x)$ it is suffice (using c_1) to prove that $f(x) \leq x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f(x))$. We have $f(x) = f_1(x) \odot (x/\theta_{\mathcal{F}} \to f_2(x)) = x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x))$ and $x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f(x)) = x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (f_1(x) \odot (x/\theta_{\mathcal{F}} \to f_2(x)))] = x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x)))] = x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x)))]$. So, to prove that $f(x) \leq x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f(x))$ it is suffice to prove that $x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x)) \leq x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x)))]$, that is, $\alpha \leq x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot \alpha)$ (with $\alpha \stackrel{not}{=} (x/\theta_{\mathcal{F}} \to f_1(x)) \odot (x/\theta_{\mathcal{F}} \to f_2(x))$), which is clearly, since $\alpha \to [x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot \alpha)] \stackrel{c_4}{=} (\alpha \odot x/\theta_{\mathcal{F}}) \to (x/\theta_{\mathcal{F}} \odot \alpha) = 1$, that is, $f_1 \odot f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}})$.

Lemma 3.5. $f_1 \rightarrow f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}}).$

Proof. By using c_{10} , a_6 and a_7 are verified as in the case of BL-algebras (see [2]). For a_8 , let $x \in I_1 \cap I_2$ and denote $f = f_1 \to f_2$; then $f(x) = x/\theta_{\mathcal{F}} \odot [f_1(x) \to f_2(x)]$. We have $f_1(x) \to f_2(x) \le x/\theta_{\mathcal{F}} \to [x/\theta_{\mathcal{F}} \odot (f_1(x) \to f_2(x))]$, hence $x/\theta_{\mathcal{F}} \odot [f_1(x) \to f_2(x)] \le x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot (f_1(x) \to f_2(x)))] \Leftrightarrow f(x) \le x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to f(x)]$, that is, $f_1 \to f_2 \in M(I_1 \cap I_2, A/\theta_{\mathcal{F}})$.

Proposition 3.3. $(A_{\mathcal{F}}, \boldsymbol{\lambda}, \boldsymbol{\Upsilon}, \boldsymbol{\otimes}, \longmapsto, \mathbf{0} = \widehat{(A, \mathbf{0})}, \mathbf{1} = \widehat{(A, \mathbf{1})})$ is a MTL-algebra.

Proof. We verify the axioms of *MTL*-algebras.

 (a_1) . Obviously $(A_{\mathcal{F}}, \lambda, \Upsilon, \mathbf{0} = (A, \mathbf{0}), \mathbf{1} = (A, \mathbf{1}))$ is a bounded lattice.

 (a_2) . As in the case of BL- algebras (see [2]), by using c_{19} and a_8 .

(a₃). $f_i \in M(I_i, A/\theta_{\mathcal{F}})$ where $I_i \in \mathcal{F}, i = 1, 2, 3$.

Since $f_1 \leq f_2 \to f_3$ for $x \in I_1 \cap I_2 \cap I_3$ we have $f_1(x) \leq (f_2 \to f_3)(x) \Leftrightarrow f_1(x) \leq x/\theta_{\mathcal{F}} \odot [f_2(x) \to f_3(x)]$. So, by c_3 , $f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \leq x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \odot [f_2(x) \to f_3(x)] \Leftrightarrow f_1(x) \odot [x/\theta_{\mathcal{F}} \to f_2(x)] \leq f_2(x) \odot [f_2(x) \to f_3(x)] \leq f_3(x) \Leftrightarrow (f_1 \odot f_2)(x) \leq f_3(x)$, for every $x \in I_1 \cap I_2 \cap I_3$, that is, $f_1 \odot f_2 \leq f_3$. Conversely, if $(f_1 \odot f_2)(x) \leq f_3(x)$, we have $f_2(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)] \leq f_3(x)$, for every $x \in I_1 \cap I_2 \cap I_3$. Obviously, $x/\theta_{\mathcal{F}} \to f_1(x) \leq f_2(x) \to f_3(x) \Leftrightarrow f_1(x) \leq f_2(x) \to f_3(x)$. So $f_1 \leq f_2 \to f_3$ iff $f_1 \odot f_2 \leq f_3$ for all $f_1, f_2, f_3 \in M(A/\theta_{\mathcal{F}})$ and so $(I_1, f_1) \leq (I_2, f_2) \mapsto (I_3, f_3)$ iff $(I_2, f_2) \otimes (I_1, f_1) \leq (I_3, f_3)$. Since the preliniarity equation c_{12} is proved as in the case of BL- algebras (see [2]) we deduce that $(A_{\mathcal{F}}, \lambda, \gamma, \otimes, \mapsto, \mathbf{0} = (A, \mathbf{0}), \mathbf{1} = (A, \mathbf{1})$) is a MTL-algebra.

Remark 3.3. $(M(A/\theta_{\mathcal{F}}), \wedge, \vee, \odot, \rightarrow, \mathbf{0}, \mathbf{1})$ is a MTL-algebra.

Definition 3.2. The *MTL*-algebra $A_{\mathcal{F}}$ will be called the *localization MTL-algebra* of A with respect to the topology \mathcal{F} .

Definition 3.3. ([5], [7]) A *MTL*-algebra A is called

- (i) An *IMTL-algebra (involutive algebra)* if it satisfies the equation (I) $x^{**} = x$;
- (*ii*) a *SMTL-algebra* if it satisfies the equation (S) $x \wedge x^* = 0$;
- (*iii*) a WNM-algebra (weak nilpotent minimum) if it satisfies the equation (W) $(x \odot y)^* \lor [(x \land y) \to (x \odot y)] = 1;$

(*iv*) a $\Pi SMTL-$ algebra if it is a SMTL-algebra satisfying the equation (Π) $[z^{**} \odot ((x \odot z) \rightarrow (y \odot z))] \rightarrow (x \rightarrow y) = 1.$

Theorem 3.1. If MTL-algebra A is a BL-algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a $\Pi SMTL$ -algebra), then $A_{\mathcal{F}}$ is also a BL-algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a $\Pi SMTL$ -algebra).

Proof. Suppose that A is a BL-algebra (see Remark 1.2). Since for $(I_1, f_1), (I_2, f_2) \in A_{\mathcal{F}}$, where $I_i \in \mathcal{F}, i = 1, 2, (I_1, f_1) \otimes ((I_1, f_1) \mapsto (I_2, f_2)) = (I_1, f_1) \wedge (I_2, f_2) \Leftrightarrow (I_1 \cap I_2, f_1 \odot (f_1 \to f_2)) = (I_1 \cap I_2, f_1 \wedge f_2)$, to prove that $A_{\mathcal{F}}$ is a BL-algebra, it is suffice to prove that for every $x \in I_1 \cap I_2, (f_1 \odot (f_1 \to f_2))(x) = (f_1 \wedge f_2)(x) \Leftrightarrow (f_1 \to f_2)(x) \odot [x/\theta_{\mathcal{F}} \to f_1(x)] = f_1(x) \wedge f_2(x) \Leftrightarrow x/\theta_{\mathcal{F}} \odot [f_1(x) \to f_2(x)] \odot [x/\theta_{\mathcal{F}} \to f_1(x)] = f_1(x) \wedge f_2(x) \Leftrightarrow (x/\theta_{\mathcal{F}} \to f_1(x)]) \odot [f_1(x) \to f_2(x)] = f_1(x) \wedge f_2(x) \Leftrightarrow BL$ -algebra, so $A/\theta_{\mathcal{F}}$ is also a BL-algebra.

Suppose that A is an IMTL-algebra; obviously, $A/\theta_{\mathcal{F}}$ is also an IMTL-algebra. For $\alpha = (\widehat{I, f}) \in A_{\mathcal{F}}$, where $I \in \mathcal{F}$, we have $f^{**} = (f \to \mathbf{0}) \to \mathbf{0}$ so $f^{**}(x) = x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \odot (f(x))^*]^* \stackrel{(I)}{=} x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to (f(x))^{**}] \stackrel{(I)}{=} x/\theta_{\mathcal{F}} \odot [x/\theta_{\mathcal{F}} \to f(x)] \stackrel{a_8}{=} f(x)$, for $x \in I$, hence $\alpha^{**} = \alpha$, that is, $A_{\mathcal{F}}$ is an IMTL-algebra.

Suppose that A is a SMTL-algebra; obviously, $A/\theta_{\mathcal{F}}$ is also a SMTL-algebra. If $\alpha = (\widehat{I}, f) \in A_{\mathcal{F}}$, then the equation $\alpha \land \alpha^* = \mathbf{0}$ is equivalent with $f \land (f \rightarrow \mathbf{0}) = \mathbf{0} \Leftrightarrow f(x) \land [x/\theta_{\mathcal{F}} \odot (f(x))^*] = 0$, for every $x \in I$, which is clearly (since $f(x) \land [x/\theta_{\mathcal{F}} \odot (f(x))^*] \le f(x) \land (f(x))^* = 0$), hence $\alpha \land \alpha^* = \mathbf{0}$, that is, $A_{\mathcal{F}}$ is a SMTL-algebra.

Suppose that A is a WNM-algebra. Let $\alpha = (\widehat{I, f}), \beta = (\widehat{J, g})$ and denote a = f(x), b = g(x) for $x \in I \cap J$. We have $(\alpha \otimes \beta)^* \curlyvee ((\alpha \land \beta) \longmapsto (\alpha \otimes \beta)) = [I \cap J, (f \odot g)^* \lor ((\widehat{f} \land g) \to (f \odot g))]$ and $((f \odot g)^* \lor ((f \land g) \to (f \odot g)))(x) = ((f \odot g)^*(x)) \lor (x/\theta_{\mathcal{F}} \odot ((f \land g)(x) \to (f \odot g)(x))) = (x/\theta_{\mathcal{F}} \odot (a \odot (x/\theta_{\mathcal{F}} \to b))^*) \lor (x/\theta_{\mathcal{F}} \odot ((a \land b) \to (a \odot (x/\theta_{\mathcal{F}} \to b))))) \stackrel{c_6}{=} x/\theta_{\mathcal{F}} \odot ((a \odot (x/\theta_{\mathcal{F}} \to b))^* \lor ((a \land b) \to (a \odot (x/\theta_{\mathcal{F}} \to b))))).$

Since $b \leq x/\theta_{\mathcal{F}} \to b$ we deduce that $a \wedge b \leq a \wedge (x/\theta_{\mathcal{F}} \to b)$, hence, using c_3 , $(a \wedge (x/\theta_{\mathcal{F}} \to b)) \to (a \odot (x/\theta_{\mathcal{F}} \to b)) \leq (a \wedge b) \to (a \odot (x/\theta_{\mathcal{F}} \to b))$.

Since A is supposed a WNM-algebra we deduce that $A/\theta_{\mathcal{F}}$ is also a WNM-algebra, so we obtain $1/\theta_{\mathcal{F}} = (a \odot (x/\theta_{\mathcal{F}} \to b))^* \lor ((a \land (x/\theta_{\mathcal{F}} \to b)) \to (a \odot (x/\theta_{\mathcal{F}} \to b)))$ $\leq (a \odot (x/\theta_{\mathcal{F}} \to b))^* \lor ((a \land b) \to (a \odot (x/\theta_{\mathcal{F}} \to b))), \text{ hence } (a \odot (x/\theta_{\mathcal{F}} \to b))^* \lor ((a \land b) \to (a \odot (x/\theta_{\mathcal{F}} \to b))) = 1/\theta_{\mathcal{F}}.$ Then $((f \odot g)^* \lor ((f \land g) \to (f \odot g)))(x) = x/\theta_{\mathcal{F}} \odot 1/\theta_{\mathcal{F}} = x/\theta_{\mathcal{F}} = \mathbf{1}(x) \Leftrightarrow (\alpha \otimes \beta)^* \lor ((\alpha \land \beta) \longmapsto (\alpha \otimes \beta)) = \mathbf{1}, \text{ that is } A_{\mathcal{F}} \text{ is a } WNM$ -algebra.

Suppose now A is a $\Pi SMTL$ -algebra, so $A/\theta_{\mathcal{F}}$ is also a $\Pi SMTL$ -algebra. From the condition $x \wedge x^* = 0$ $(x \in A)$, we deduce that $x^* \vee x^{**} \stackrel{c_{15}}{=} (x \wedge x^*)^* = 0^* = 1$, that is, $x^* \in B(A)$. Let $\alpha = (\widehat{I}, \widehat{f}), \beta = (\widehat{J}, \widehat{g}), \gamma = (\widehat{K}, \widehat{h}) \in A_{\mathcal{F}}$. Consider $x \in I \cap J \cap K$ and denote a = f(x), b = g(x) and c = h(x). Then $h^{**}(x) = x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to c^{**}) \stackrel{c_9}{=} x/\theta_{\mathcal{F}} \wedge c^{**} \stackrel{c_8}{=} x/\theta_{\mathcal{F}} \odot c^{**}, \ [h^{**} \odot ((\widehat{f} \odot h) \to (\widehat{g} \odot h))](x) = [x/\theta_{\mathcal{F}} \to h^{**}(x)] \odot [x/\theta_{\mathcal{F}} \odot [((x/\theta_{\mathcal{F}} \to a) \odot c) \to ((x/\theta_{\mathcal{F}} \to b) \odot c)]] = [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to (x/\theta_{\mathcal{F}} \odot c^{**}))] \odot [x/\theta_{\mathcal{F}} \odot [((x/\theta_{\mathcal{F}} \to a) \odot c) \to ((x/\theta_{\mathcal{F}} \to b) \odot c)]] = [x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to a) \odot c) \to ((x/\theta_{\mathcal{F}} \to b) \odot c)] = x/\theta_{\mathcal{F}} \odot [((x/\theta_{\mathcal{F}} \to a) \odot c) \to ((x/\theta_{\mathcal{F}} \to a) \odot c))$

b)] $\stackrel{c_4}{=} x/\theta_{\mathcal{F}} \odot [(x/\theta_{\mathcal{F}} \odot (x/\theta_{\mathcal{F}} \to a)) \to b] \stackrel{a_8}{=} x/\theta_{\mathcal{F}} \odot (a \to b) = (f \to g)(x)$, hence $[\gamma^{**} \otimes ((\alpha \otimes \gamma) \longmapsto (\beta \otimes \gamma))] \longmapsto (\alpha \longmapsto \beta) = \mathbf{1}$, so $A_{\mathcal{F}}$ is a $\Pi SMTL$ -algebra. \Box

Remark 3.4. If MTL- algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL- algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a $\Pi SMTL$ -algebra), then MTL- algebra $(M(A/\theta_{\mathcal{F}}), \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL- algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a $\Pi SMTL$ -algebra).

Remark 3.5. If MTL- algebra $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL- algebra in [2] will be called $(A_{\mathcal{F}}, \land, \curlyvee, \otimes, \longmapsto, \mathbf{0} = \widehat{(A, \mathbf{0})}, \mathbf{1} = \widehat{(A, \mathbf{1})})$ the localization BL-algebra of A with respect to the topology \mathcal{F} .

Lemma 3.6. Let the map $v_{\mathcal{F}} : B(A) \to A_{\mathcal{F}}$ defined by $v_{\mathcal{F}}(a) = (A, \overline{f_a})$ for every $a \in B(A)$. Then:

(i) $v_{\mathcal{F}}$ is a morphism of MTL-algebras;

(*ii*) For $a \in B(A)$, $(A, \overline{f_a}) \in B(A_{\mathcal{F}})$;

(*iii*) $v_{\mathcal{F}}(B(A)) \in R(A_{\mathcal{F}}).$

Proof. (i), (iii). As in the case of BL- algebras (see [2]).

(*ii*). For $a \in B(A)$ we have $a \vee a^* = 1$, hence $(a \wedge x) \vee [x \odot (a \wedge x)^*] \stackrel{c_{15}}{=} (a \wedge x) \vee [x \odot (a^* \vee x^*)] \stackrel{c_{6}}{=} (a \wedge x) \vee [(x \odot a^*) \vee (x \odot x^*)] \stackrel{c_{5}}{=} (a \wedge x) \vee [(x \odot a^*) \vee 0) \stackrel{c_{8}}{=} (a \wedge x) \vee (x \wedge a^*) \stackrel{c_{17}}{=} x \wedge (a \vee a^*) = x \wedge 1 = x$, for every $x \in A$. Since $A \in \mathcal{F}$ we deduce that $(a \wedge x)/\theta_{\mathcal{F}} \vee [x/\theta_{\mathcal{F}} \odot ((a \wedge x)/\theta_{\mathcal{F}})^*] = x/\theta_{\mathcal{F}}$ hence $\overline{f_a} \vee (\overline{f_a})^* = \mathbf{1}$, that is, $(\widehat{A, f_a}) \vee (\widehat{A, f_a})^* = (\widehat{A, \mathbf{1}})$, so $(\widehat{A, f_a}) \in B(A_{\mathcal{F}})$.

4. Applications

In the following we describe the localization MTL-algebra $A_{\mathcal{F}}$ in some special instances.

1. If $I \in I(A)$, and \mathcal{F} is the topology $\mathcal{F}(I) = \{I' \in I(A) : I \subseteq I'\}$ (see Example 2.1), then $A_{\mathcal{F}}$ is isomorphic with $M(I, A/\theta_{\mathcal{F}})$ and $v_{\mathcal{F}} : B(A) \to A_{\mathcal{F}}$ is defined by $v_{\mathcal{F}}(a) = \overline{f_a}_{|I|}$ for every $a \in B(A)$.

If I is a regular subset of A, then $\theta_{\mathcal{F}}$ is the identity, hence $A_{\mathcal{F}}$ is isomorphic with M(I, A) (see [15], Definition 3, conditions M_1, M_2 and M_3), which in generally is not a Boolean algebra. For example, if I = A = [0, 1] is the Lukasiewicz structure (see [18]) then $A_{\mathcal{F}}$ is not a Boolean algebra (see [2]).

Remark 4.1. If consider MTL-algebra A = [0, 1] from Remark 1.2, then

- 1. If $I = \{0\}$, then $\mathcal{F}(\{0\}) = I(A)$ (see Remark 2.2), so $A_{\mathcal{F}} \approx M(I, A/\theta_{\mathcal{F}}) = M(\{0\}, A/\theta_{\mathcal{F}}) = \mathbf{0}$.
- 2. If I = A, then $\mathcal{F}(A) = \{A\}$ and $\theta_{\mathcal{F}}$ is the identity, so $A_{\mathcal{F}} \approx M(A, A)$. Since $B(A) = L_2 = \{0, 1\}$, then $f \in M(A, A)$ iff $f(x) \leq x$ and $x \odot (x \to f(x)) = f(x)$, for every $x \in A$. So, f(0) = 0. For $x \geq \frac{1}{2}$ if we denote f(x) = y, then $y \leq x$ and we deduce that $x \odot (x \to f(x)) = x \odot (x \to y) = x \odot \max(\frac{1}{2} x, y) = x \odot y = x \land y = y = f(x)$, so for $x \geq \frac{1}{2}, f \in M(A, A)$ iff $f(x) \leq x$. If consider $f \in A_{\mathcal{F}} = M(A, A)$ such that $f(\frac{3}{4}) = \frac{1}{2}$, then $(f \lor f^*)(\frac{3}{4}) = f(\frac{3}{4}) \lor f^*(\frac{3}{4}) = \frac{1}{2} \lor [\frac{3}{4} \odot (\frac{1}{2})^*] = \frac{1}{2} \lor (\frac{3}{4} \odot 0) = \frac{1}{2} \lor 0 = \frac{1}{2} \neq \mathbf{1}(\frac{3}{4}) = \frac{3}{4}$, hence f is not a boolean element in $A_{\mathcal{F}}$ (hence in this case $A_{\mathcal{F}}$ is not a Boolean algebra). Also, f is not a principal multiplier (because $B(A) = \{0, 1\}$ hence the only principal multipliers are $f_0 = \mathbf{0}$ and $f_1 = \mathbf{1}$).

3. If I = [0, x] with $x \neq 0, 1, \mathcal{F}(I) = \{[0, a] : x \leq a, a \in (0, 1]\}$. Since $0 \in [0, a], a \neq 1$ and $0 \land x = 0 \land y$, then $(x, y) \in \theta_{\mathcal{F}}$ for every $x, y \in A$, hence in this case $A_{\mathcal{F}} \approx M(I, \mathbf{0}) = 0$.

2. Main remark. To obtain the maximal MTL -algebra of quotients Q(A) as a localization relative to a topology \mathcal{F} we have to develope another theory of multipliers (meaning we add new axioms for \mathcal{F} -multipliers).

Definition 4.1. Let \mathcal{F} be a topology on A. A strong - \mathcal{F} - multiplier is a mapping $f: I \to A/\theta_{\mathcal{F}}$ (where $I \in \mathcal{F}$) which verifies the axioms a_6, a_7 and a_8 (see Definition 3.1) and

(a₉) If $e \in I \cap B(A)$, then $f(e) \in B(A/\theta_{\mathcal{F}})$;

$$(a_{10})$$
 $(x/\theta_{\mathcal{F}}) \wedge f(e) = (e/\theta_{\mathcal{F}}) \wedge f(x)$, for every $e \in I \cap B(A)$ and $x \in I$.

Remark 4.2. If $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a MTL- algebra, the maps $\mathbf{0}, \mathbf{1} : A \rightarrow A/\theta_{\mathcal{F}}$ defined by $\mathbf{0}(x) = 0/\theta_{\mathcal{F}}$ and $\mathbf{1}(x) = x/\theta_{\mathcal{F}}$ for every $x \in A$ are strong - $\mathcal{F}-$ multipliers. We recall that if $f_i : I_i \rightarrow A/\theta_{\mathcal{F}}$, (with $I_i \in \mathcal{F}, i = 1, 2$) are $\mathcal{F}-$ multipliers $f_1 \land f_2, f_1 \lor f_2, f_1 \odot f_2, f_1 \rightarrow f_2 : I_1 \cap I_2 \rightarrow A/\theta_{\mathcal{F}}$ defined by $(f_1 \land f_2)(x) = f_1(x) \land f_2(x), (f_1 \lor f_2)(x) = f_1(x) \odot [x/\theta_{\mathcal{F}} \rightarrow f_2(x)] \stackrel{c_{19}}{=} f_2(x) \odot [x/\theta_{\mathcal{F}} \rightarrow f_1(x)], (f_1 \rightarrow f_2)(x) = x/\theta_{\mathcal{F}} \odot [f_1(x) \rightarrow f_2(x)], for any <math>x \in I_1 \cap I_2$ are $\mathcal{F}-$ multipliers. If f_1, f_2 are strong - $\mathcal{F}-$ multipliers then the multipliers $f_1 \land f_2, f_1 \lor f_2, f_1 \odot f_2, f_1 \rightarrow f_2$ are also strong - $\mathcal{F}-$ multipliers (the proof is as in the case of BL-algebras, see [2]).

Remark 4.3. Analogous as in the case of \mathcal{F} - multipliers if we work with strong- \mathcal{F} multipliers we obtain a MTL- subalgebra of $A_{\mathcal{F}}$ denoted by $s - A_{\mathcal{F}}$ which will be
called the strong-localization MTL- algebra of A with respect to the topology \mathcal{F} .

So, if $\mathcal{F} = I(A) \cap R(A)$ is the topology of regular ideals, then $\theta_{\mathcal{F}}$ is the identity congruence of A and we obtain the definition for multipliers on A, so

$$s - A_{\mathcal{F}} = \varinjlim_{I \in \mathcal{F}} (s - M(I, A)),$$

where s - M(I, A) is the set of strong multipliers of A having the domain I (see [15], Definition 3, conditions $M_1 - M_5$).

In this situation we obtain:

Proposition 4.1. In the case $\mathcal{F} = I(A) \cap R(A)$, $A_{\mathcal{F}}$ is exactly the maximal MTLalgebra Q(A) of quotients of A (introduced in [15]) which is a Boolean algebra (for the proof, see [14] Proposition 6.12, p.194, for the case of BL- algebras). If MTLalgebra A is a BL- algebra, $A_{\mathcal{F}}$ is exactly the maximal BL-algebra Q(A) of quotients of A.

Remark 4.4. If consider in particular MTL- algebra A = [0,1] from Remark 1.2, then $\mathcal{F} = \{A\}$, hence $A_{\mathcal{F}} \approx s - M(A, A)$. Consider $f \in s - M(A, A)$. Clearly, f(0) = 0and $f(1) \in \{0,1\}$. If f(1) = 0, then for every $x \in A$, $x \wedge f(1) = 1 \wedge f(x) \Leftrightarrow x \wedge 0 =$ $f(x) \Leftrightarrow f(x) = 0 \Leftrightarrow f = \mathbf{0}$. If f(1) = 1 then from a_{10} , $f(x) = x = \mathbf{1}(x)$, hence $f = \mathbf{1}$. So, in this case $s - A_{\mathcal{F}} \approx s - M(A, A) = L_2$.

3. Denoting by \mathcal{D} the topology of dense ordered ideals of A, then (since $R(A) \subseteq D(A)$) there exists a morphism of MTL -algebras $\alpha : Q(A) \to s - A_{\mathcal{D}}$ such that the diagrame

$$\begin{array}{ccc} B(A) & \xrightarrow{v_A} & Q(A) \\ v_D \searrow & & \alpha \swarrow \\ & s - A_{\mathcal{D}} \end{array}$$

is commutative (i.e. $\alpha \circ \overline{v_A} = v_D$). Indeed, if $[f, I] \in Q(A)$ (with $I \in I(A) \cap R(A)$ and $f: I \to A$ a strong multiplier in the sense of [15]) we denote by f_D the strong - \mathcal{D} -multiplier $f_D: I \to A/\theta_D$ defined by $f_D(x) = f(x)/\theta_D$ for every $x \in I$. Thus, α is defined by $\alpha([f, I]) = [f_D, I]$.

4. Let $S \subseteq A$ a \wedge -closed system of *MTL*- algebra *A*. Consider the following congruence on $A : (x, y) \in \theta_S \Leftrightarrow$ there exists $e \in S \cap B(A)$ such that $x \wedge e = y \wedge e$ (see [3]). $A[S] = A/\theta_S$ is called in [3] the *MTL*-algebra of fractions of *A* relative to the \wedge -closed system *S*.

As in the case of BL-algebras we obtain the following result:

Proposition 4.2. If \mathcal{F}_S is the topology associated with a \wedge -closed system $S \subseteq A$, then the MTL-algebra $s - A_{\mathcal{F}_S}$ is isomorphic with B(A[S]).

Remark 4.5. In the proof of Proposition 4.2 the axiom a_{10} is not necessarily.

Remark 4.6. If A is MTL- algebra A = [0,1], from Remark 1.2, since $B(A) = \{0,1\} = L_2$ then for $S \subseteq A$ a \wedge - closed system, $\mathcal{F}_S = \{I \in I(A) : I \cap S \cap \{0,1\} \neq \emptyset\}$ and $s - A_{\mathcal{F}_S}$ is isomorphic with B(A[S]):

- 1. If S is a \wedge -closed systems of A such that $0 \in S$, then $\mathcal{F}_S = I(A)$ (see Remark 2.5) and $s A_{\mathcal{F}_S} = s A_{I(A)} \approx B(A[S]) = B(\mathbf{0}) = \mathbf{0}$.
- 2. If $0 \notin S$, $\mathcal{F}_S = A$ (see Remark 2.5) and $s A_{\mathcal{F}_S} = s A_A \approx B(A[S]) = B(A) = \{0, 1\} = L_2$.

Concluding remarks

Since in particular a MTL- algebra is a BL- algebra we obtain a part of the results about localization of BL- algebras (see [2]), so we deduce that the main results of this paper are generalization of the analogous result relative to BL- algebras from [2].

We use in the construction of localization MTL- algebra $A_{\mathcal{F}}$ the Boolean center B(A) of MTL- algebra A; as a consequence of this fact, $s - A_{\mathcal{F}}$ is a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the localization for MTL algebras or residuated lattices without use the Boolean center.

References

- [1] T. S. Blyth, M. F. Janovitz, Residuation Theory, Pergamon Press, 1972.
- [2] D. Buşneag, D. Piciu, Localization of BL-algebras, Soochow Journal of Mathematics 32, no.1 (2006), 127–159.
- [3] D. Buşneag, D. Piciu, Residuated lattices of fractions relative to an A-closed system, Bull. Math. Soc. Math. Roumanie, Tome 49, (97), no. 1 (2006), 13–24.
- W. H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra 32 (1974), 339–355.
- [5] F. Esteva, L. Godo, Monoidal t-norm based logic : towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (2001), 271–288.
- [6] P. Flondor, G. Georgescu, A. Iorgulescu, Pseudo t-norms and pseudo-BL algebras, Soft Computing 5, no. 5 (2001), 355–371.
- [7] H. Freytes, Injectives in residuated algebras, Algebra Universalis 51 (2004), 373–393.
- [8] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, *Residuated lattices: an algebraic glimpse at struc*tural logic, Studies in Logic and the foundations of math., Vol. 151, Elsevier Science, 2007.
- [9] G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis 21 (1985), 181–197.
- [10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
- [11] P. M. Idziak, Lattice operations in BCK-algebras, Mathematica Japonica 29 (1984), 839-846.
- [12] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.

- [13] W. Nemitz, Semi-Boolean lattices, Notre Dame Journal of Formal Logic 10, no. 3 (1969), 235–238.
- [14] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
- [15] D. Piciu, A. Jeflea, MTL-algebra of fractions and maximal MTL-algebra of quotients, submitted to *Bull. Soc. Sci. Math. Roumanie*.
- [16] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics 6, no. 3 (1980).
- [17] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai 33, Szeged, Hungary, (1980).
- [18] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.

(Antoneta Jeflea, Justin Paralescu) FACULTY OF BOOKKEEPING FINANCIAL MANAGEMENT, UNIVERSITY SPIRU HARET, 32-34, UNIRII ST., CONSTANTZA, ROMANIA, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA, 13 A.I. CUZA STREET, CRAIOVA, 200585, ROMANIA *E-mail address:* antojeflea@yahoo.com, paralescu_iustin@yahoo.com