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Localization of MT'L - algebras

ANTONETA JEFLEA AND JUSTIN PARALESCU

ABSTRACT. The aim of the present paper is to define the localization MTL - algebra of a
MTL— algebra A with respect to a topology F on A. In the last part of the paper is proved
that the maximal MTL - algebra of quotients (defined in [15]) and the MTL - algebra of
fractions relative to an A— closed system (defined in [3]) are MTL - algebras of localization.
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Basic Fuzzy logic (BL from now on) is the many-valued residuated logic introduced
by Hajek in [10] to cope with the logic of continuous t-norms and their residua.
Monoidal logic (ML from now on), is a logic whose algebraic counterpart is the
class of residuated; MT L-algebras (see [5]) are algebraic structures for the Esteva-
Godo monoidal t-norm based logic (MTL), a many-valued propositional calculus that
formalizes the structure of the real unit interval [0, 1], induced by a left—continuous
t-norm. MTL algebras were independently introduced in [6] under the name weak-BL
algebras.

A remarkable construction in ring theory is the localization ring Ax associated
with a Gabriel topology F on a ring A.

Using the model of localization ring, in [9], G. Georgescu defined for a bounded
distributive lattice L the localization lattice Ly of L with respect to a topology F on
L and prove that the maximal lattice of quotients for a distributive lattice is a lattice
of localization (relative to the topology of regular ideals); analogous results we have
for lattices of fractions of bounded distributive lattices relative to A— closed systems.

The main aim of this paper is to develop a theory of localization for MTL -
algebras. Since BL— algebras are particular classes of MT L— algebras, the results
of this paper generalize a part of the results from [2] for BL— algebras. The main
difference is that the axiom x ® (z — y) = « A y is not valid for MT L-algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [18]) is an algebra (A, A,V,®,—,0,1) of
type (2,2,2,2,0,0) equipped with an order < satisfying the following:

(a1) (A,A,V,0,1) is a bounded lattice relative to the order <;

(a2) (A,®,1) is a commutative ordered monoid;

(as) (®, —) is an adjoint pair, i.e. z <z —y iff  ® z <y for every z,y,z € A.

The class RL of residuated lattices is equational (see [11]).
For examples of residuated lattices see [3] and [18].
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In what follows by A we denote the universe of a residuated lattice. For z € A, we
denote z* =z — 0 and (z*)* = «™*.
We review some rules of calculus for residuated lattices A used in this paper:

Theorem 1.1. ([1], [18]) Let z,y,z € A. Then we have the following:
(1)l mz=zc—-z=1Ly<z—yzo0(z—y <yzx—>1=10—z=
1,x®0=0;
() x<yiff s —y=1
(03) r<yimpliesz®©z<y®z,z—rz<z—yandy— z<x— 2
(c1) oo (y—2) = (2O y) > 2=y — (3= 2), 50 (TOY) =3 — y* = y — 2
(c5) 20z*=0and 2Oy =0 iff x <y*;
If A is a complete residuated lattice and (y;)icr is a family of elements of A, then:

(c6) z© (.\E/I yi) = ‘\6/1(33 ©Yi);
(1) = (Awi) = N\ (@ = yi).
el i€l

By B(A) we denote the set of all complemented elements in the lattice L(A) =
(A, A,V,0,1). Complements are generally not unique, unless the lattice is distributive;
in the case of residuated lattices, however, although the underlying lattices need not
be distributive, the complements are unique ([8]). Also, if b is the complement of a,
then a is the complement of b, b = a*,a% = a and a** = a ([1], [3]). So, B(4) is a
Boolean subalgebra of A, called the Boolean center of A.

Theorem 1.2. ([3]) For e € A the following assertions are equivalent:
(i) e € B(A);
(ii) eve* =1.

Theorem 1.3. ([3]) Ife, f € B(A) and x,y € A, then:
(cg) ez =eAu;

(c9) 2O (x —e)=eNhz,e® (e —>x)=eAx;

(c0) e®(z —y)=e0[leOr) = (cOY);

(cn) z0(e—fl=z0(z0e) = (0O f)].

Definition 1.2. ([5], [6], [7]) A MTL— algebra is a residuated lattice satisfying the
preliniarity equation:
(c12) (& —=y)V(y—m)=1

The variety of MT L— algebras will be denoted by M7 L.

Proposition 1.1. ([5]) For a residuated lattice, the following conditions are equiva-
lent:
(i) Ae MTL;
(i1) A is a subdirect product of linearly ordered residuated lattices;
(1ii) For every x,y,z € A we have:
(e13) &= (yV 2) = (& — ) V (z = 2);
(iv) For every x,y,z € A we have:
(c14) (EAY) — 2= (2 —2)V (y — 2).

Corollary 1.1. ([5]) Let A € MTL. Then for every x,y,z € A we have:
(c15) (@ Ay)" =a"Vy*

(c16) 2O (YA 2)=(x0y)A(z O 2);

(e17) A (yV2) = (zAy)V (2 A2);

(c18) eVy=(z =y) =y Ay = z) — ).
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Remark 1.1. From (c15) we deduce that a MTL— algebra is a semi-Boolean lattice
(see [13]).

Remark 1.2. Fvery linearly ordered residuated lattice is a MT L— algebra. A MT L—
algebra A is a BL— algebra iff in A is verified the divisibility condition: © ® (z —
y) = x Ay. So, BL— algebras are examples of MTL— algebras; for an example of
MTL— algebra which is not BL— algebra consider the residuated lattice defined on
the unit interval A =[0,1], for all z,y € A, such that

1
x@y:Oifx+y§§ and x ANy elsewhere,

1
r—y=1ifzx<y and max{2 — x,y} elsewhere (see [18], p.16).

Let0<y<z az+y<s2 Theny<i-zand0#y=zhy butzo(z—y) =
HAO] (% —x) = 0. This residuated lattice is a chain, so is a MT L—algebra, but the
divisibility condition not hold.

Definition 1.3. Let (P, <) an ordered set. A nonempty subset I of P is called order
ideal if, whenever z € I,y € P and y < x, we have y € I; we denote by I(P) the set
of all order ideals of P.

For a MTL-algebra A we denote by Id(A) the set of all ideals of the lattice L(A).

Remark 1.3. Clearly, Id(A) C I(A) and if I, Is € I(A), then Iy N 15 € I(A). Also,
if I € I(A), then 0 € I.

2. Topologies on a MTL-algebra

Definition 2.1. A non-empty set F of elements I € I(A) will be called a topology
on A if the following axioms hold:

(ag) It I € F, Iy € I(A) and I C I, then I, € F (hence A € F);

(CL5) If Il,IQ e F ,then 1Nl e F.

Remark 2.1. 1. F s a topology on A iff F is a filter of the lattice of power set of
A; for this reason a topology on I(A) is usually called a Gabriel filter on I(A).
2. Clearly, if F s a topology on A, then (A, F U{0}) is a topological space.

Any intersection of topologies on A is a topology; so, the set T'(A) of all topologies
of A is a complete lattice with respect to inclusion.

Example 2.1. If I € I(A), then the set F(I) ={I' € I(A): I C I'} is a topology on
A.

Remark 2.2. If in particular A = [0,1] is the MTL - algebra from Remark 1.2, then
I(A) ={[0,2] : w € A}. For x =0, F({0}) = I(A); for z € (0,1), 7([0, z]) = {[0, 9] :
<y, yc A}

Definition 2.2. ([15]) A non-empty set I C A will be called regular if for every
x,y € A such that e Ax = e Ay for every e € I N B(A), then = = y.

Example 2.2. If we denote R(A) = {I C A : I is a regular subset of A}, then
I(A)N R(A) is a topology on A.

Remark 2.3. Clearly, if A = [0,1] is the MTL -algebra from Remark 1.2, since
B(A) ={0,1} = Ly then only I = A is a regular subset of A (I = [0,z] with x # 1
are non regular because contain 0 and for example we have 0 Aa = 0 A b for every
a,b € A and a #b). So, in this case F = I(A) N R(A) = {A}.
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Example 2.3. A nonempty set I C A will be called dense (see [9]) if for x € A such
that e N\ = 0 for every e € I N B(A), then x = 0. If we denote by D(A) the set of all
dense subsets of A, then R(A) C D(A) and F = I(A) N D(A) is a topology on A.

Remark 2.4. As above, for MT L— algebra A = [0,1] from Remark 1.2, D(A) = {A}
(because I € D(A) if 1 € I).

Definition 2.3. ([3]) A subset S C A is called A— closed if 1 € S and z,y € S
impliesx Ay € S .

Example 2.4. For any A— closed subset S of A, the set Fg ={I € I(A): INSN
B(A) # @} is a topology on A .

Remark 2.5. In the case of MTL- algebra A = [0,1] from Remark 1.2, S C [0,1] is
a A— closed subset if 1 € S. Since B(A) = {0,1} = Ly then for S C A a A— closed
system, Fs ={I € I(A) : INSN{0,1} # @}.
1. If S is a A—closed systems of A such that 0 € S we have IN SN B(A) # @ for
every I € I(A), so Fs = I(A).
2. If0 ¢ S then Fg = {A} (because, if I € I(A) and 1 € I implies I = A).

3. F-multipliers and localization MTL-algebras

Let F be a topology on a MT L—algebra A and we consider the relation £ of A
defined in the following way: (x,y) € 05 < there exists I € F such that e Az =eAy
for any e € I N B(A).

Lemma 3.1. 0x is a congruence on A.
Proof. See [2] for the case of BL— algebras. O

We shall denote by a/0x the congruence class of an element a € A and by
pr : A — A/6x the canonical morphism of MT L-algebras.

Proposition 3.1. For a € A, a/0r € B(A/0F) iff there exists I € F such that
aVa* >e for everye € INB(A). So, if a € B(A), then a/0x € B(A/0x).

Proof. Using Theorem 1.2, for a € A, we have a/0r € B(A/0F) < a/07V (a/0F)" =
1/0F < (aVa*)/0r =1/0F < there exist [ € F such that (aVa*) Ae=1ANe=¢,
for every e € IN B(A) & aVa* > e, for every e € IN B(A). If a € B(A), then for
every [ € F,1=aVa* > e, for every e € I N B(A), hence a/0r € B(A/0F). d

Corollary 3.1. If F = I(A)N R(A), then fora € A, a € B(A) iff a/0r € B(A/0x).

Definition 3.1. Let F be a topology on A. A F— multiplier is a mapping f : I
— A/0x where I € F and for every z € I and e € B(A) the following axioms are
fulfilled:

(ag) fle@x)=¢/0r A f(x) =¢/0r O f(2);

(a7) f(z) <z/0F;

(ag) z/0F © (z/0F — f(z)) = f(2).

Remark 3.1. If A is a BL algebra, then the aziom (ag) is a consequence of (ay)
(because in this case x/0F ® (x/0F — f(x)) = x/0F A f(x) E f(x), for every x € I).

By dom(f) € F we denote the domain of f; if dom(f) = A, we called f total.
To simplify language, we will use F— multiplier instead partial F— multiplier,
using total to indicate that the domain of a certain F— multiplier is A.
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If 7 = {A}, then 0f is the identity congruence of A so a F— multiplier is a total
multiplier in sense of [15], Definition 3, which verify the conditions M;, My and Ms3.

The maps 0,1 : A — A/0x defined by 0(z) = 0/0x and 1(z) = z/0x for every
r € A are F— multipliers in the sense of Definition 3.1.

Also, for a € B(A), fo, : A — A/0x defined by f,(x) = a/0x N x/05 for every
r € A, is a F— multiplier. If dom(f,) = A, we denote f, by f, ; clearly, fo = 0.

We shall denote by M (I, A/0x) the set of all the F— multipliers having the domain
Ie€e Fand M(A/0r) = U M(I,A/0F). It I,,I, € F , I, C I, we have a canonical
IeF

mapping ¢y, : M(l2, A/0F) — M(I1, A/07) defined by @1, 1,(f) = fir, for f €
M(I5, A/0F). Let us consider the directed system of sets
({M(I,A/0F)}1eF, {vn 1.} 1, 1eF,1,C1,) and denote by Az the inductive limit
(in the category of sets) Ar = lim M (I, A/0F). For any F— multiplier f : I — A/0F
IeF

we shall denote by (/I,-f\) the equivalence class of f in Ar.

—_—

Remark 3.2. If f; : I, — A/0r , i = 1,2, are F— multipliers, then (I1, f1) = (12, f2)
(in Ar) iff there exists I € F , I C Iy N Iy such that fi; = fo1.

Proposition 3.2. If I;,I, € F and f; € M(I;,A/0x),i = 1,2, then
(c19) fi(2) © [2/0F — fao(2)] = fo(2) © [2/0F — fi(x)], for every x € LN L.
Proof. For x € I;N I we have fi(x) ® [2/0F — fa(z)] £ 2/07 © (x/0F — fi1(z)) ©
(z/0F — fo(x)) = [2/07 © (x/0F — fo(2))] © (x/0F — fi(x)) = fo(x) O [¢/0F —
fi(z)]. O
Let f; : I; — A/0F , (with I; € F, i = 1,2), F—multipliers. Let us consider the
mappings f1 A fo, 1V f2, 1 © f2, L = f2: [1 N Ia — A/OF defined by

(fi A fa)(x) = fi(x) A fo(2), (f1 V f2)(z) = fi(2) V fa(2),

(10 f2)(@) = fi(z) © [2/0F — fo(z)] E folz) © [x/0F — fi(z)],
(f1 = fo)(x) = 2/0F © [fi(z) — fa(2)],
for any x € I; N I, and let

(I, f1) A (I, fo2) = (L NI, fi A f), (T, f1) Y (T, o) = (N T, f1 V fo),

—_— —_—

(11, f1) @ (T2, f2) = (11 N 12, f1 © f2), (11, f1) ¥ (I2, f2) = (11 N Iz, f1 — f2).
Clearly, the definitions of the operations A, Y,® and — on Az are correct.

Lemma 3.2. fi A fo e M(I1 N1y, A/0F).

Proof. Tt is suffice to verify only ag (for ag and ar, see [2]).

For every x € 11N I, we have z/07 © [x/0Fr — (fi A f2)(2)] = /07 © [x/0F —
(fi(2) A fo(2))] = 2/0F © [(2/0F — fi(2) A (@/0F — fo(2))] = [2/07 © (/07 —
@A [2/0F © (2/0F — f2(2))] = fi(@) A falz) = (f1 A fo) (@), that is, f1 A f2 €
M(I; N I, AJ0F). O
Lemma 3.3. f1V fo e M(I1 N1y, A/0F).

Proof. The axioms ag and ay are verified as in the case of BL—algebras (see [2]). To
verify ag, let € I1N Iy. Then z/0F © [x/0x — (f1 V f2)(2)] = z/0F © [2/0F —
(fi(@) V fo(2))] = 2/07 © [(2/07 — f1(@)) V (@/0F — fo(2)] = [2/07 © (v/0F —
F@)] V[z/0r © (2/07 = fo(@)] = fi(2) V fa2(z) = (f1V f2)(2), that is, f1V f2 €
M(Ii NI, AJOF). O
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Lemma 3.4. f1 O) f2 € M(Il ﬂIQ,A/Q}-)

Proof. By using cj0, ag and a7 are verified as in the case of BL—algebras (see [2]).
For ag let x € I1N Iy and denote f = f1 ® f5.

To prove the equality z/07 ® (x/0F — f(x)) = f(z) it is suffice (using ¢;) to prove
that f(z) < z/0r0(x/0x — f(x)). We have f(z) = fr(2)O(z/0r — f2(z)) = 2/0xO
(x/0F — f1(z)) © (x/0F — fo(z)) and z/0F © (z/0F — f(2)) = /07 © [2/0F —
(filz) © (z/0F — fo2))] = 2/0F © [2/0F — (x/0F © (x/0F — fi1(z)) © (z/0F —
f2(x)))]. So, to prove that f(z) < x/0x ® (x/0x — f(z)) it is suffice to prove that
z/0F © (z/0F — fi(2) © (2/0Fr — fo(2)) < 2/0F © [x/0F — (2/0F7 © (z/0F —
f1(2) © (2/0F — fo(x)))], that is, a < z/0r — (2/0F ® @) (with a "2 (2/0F —
fi(x) ® (z/0F — fa(x))), which is clearly, since a — [z/0r — (z/0r © a)] 2
(a@z/0F) — (x/0r ©a) =1, that is, f1 ® fo € M(I1 NIz, A/0F). O

Lemma 3.5. f1 — fg S M(Il N IQ,A/G]:)

Proof. By using cj9, ag and a7 are verified as in the case of BL—algebras (see [2]).
For ag, let x € I;N I and denote f = f1 — fa; then f(z) = z/07 © [fi(x) — fa(z)].
We have f1(z) — fa(x) < z/0r — [2/0F © (f1(x) — f2(x))], hence z/0F © [f1(z) —
fa@)] < x/0F ©[2/0F — (/07 © (fi(z) = f2(2)))] & f(2) < 2/0F © [2/0F —
f@)] & f(z) =2/07© [2/0F — f(x)], that is, fi — fo € M(I1 (12, A/6F). 0

Proposition 3.3. (Az, A, Y,®,—,0=(A,0),1 = (A,1)) is a MT L-algebra.
Proof. We verify the axioms of MT L-algebras.

—

(a1). Obviously (Ax, A,Y,0=(A,0),1= (A/,\l)) is a bounded lattice.

(az2). As in the case of BL— algebras (see [2]), by using c¢19 and as.

(as). fi € M(1;,A/0x) where I; € F,i=1,2,3.

Since f1 < fa — f3 for x € I; N Ia N I3 we have fi(z) < (f2 — f3)(z) & fi(z) <
z/0F © [f2(x) — f3(x)]. So, by cs, fi(x) © [z/0F — folz)] < 2/0F © [x/0F —
F(2)] © [f2(2) = f3(2)] & fil2) © [2/0F — fo(@)] < f2(2) O [falz) = f3(2)] <
fa(x) & (f1i © fa)(x) < f3(x), for every © € I} NIy N I3, that is, f1 © fa < f3.
Conversely, if (f1 © f2)(z) < f3(z) we have fo(z) © [2/0F — fi(x)] < f3(x), for every
x € I; NI, N I. Obviously, 2/0r — fi(z) < fo(z) — f3(z) & 2/0F © (/05 —
hix) < z/07 O (f2le) — f3(2)) & filz) < (fo = f3)(@). So fr < fo = fs iff
f;@\fg < f3 for all/fl,\fg,f:; S M(A/@]:) and so (Ilafl) < (Ig,fg) — (Ig,fg) iff

—

(I2, fo)® (11, f1) < (I3, f3). Since the preliniarity equation ¢ is proved as in the case

of BL— algebras (see [2]) we deduce that (Ax, A, Y,®,—,0 = (71,\0), 1= (A/,\l)) is
a MT L-algebra. U

Remark 3.3. (M(A/0£),A,V,®,—,0,1) is a MT L-algebra.

Definition 3.2. The MT L-algebra Ax will be called the localization MT L-algebra
of A with respect to the topology F .

Definition 3.3. ([5], [7]) A MT L-algebra A is called
(1) An IMT L-algebra (involutive algebra) if it satisfies the equation
(I) o** = x;
(73) a SMT L-algebra if it satisfies the equation
(S) xAz*=0;
(i4i) a WNM—algebra (weak nilpotent minimum) if it satisfies the equation
(W) (@ oy V(@ Ay) — (O y)] =1
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(iv) a ILSMTL— algebra if it is a SMT L—algebra satisfying the equation
) " o(zoz) = yoz)—(@—y =1

Theorem 3.1. If MTL-algebra A is a BL—algebra (resp. an IMTL-algebra, a
SMTL-algebra, a W N M -algebra, a IISMT L-algebra), then Az is also a BL—algebra
(resp. an IMT L-algebra, a SMT L-algebra, a W N M-algebra, a ILSMT L-algebra).

Proof. Suppose that A isa BL— algebra (see Remark 1. 2) Since for (Il/,\ﬁ), (IQ/,\fg) €

Ag, where I; € F, i = 1,2, (Il,/fi (10, 11) — (I, f2)) = (I 1) A (I o) &
(NI, f1©(f1 = fo) = (I1 N 13, f1 A f2), to prove that Ax is a BL—algebra, it is
suffice to prove that for every x € I N Iz, (f1 © (fi — f2))(x) = (f1 A fo)(z) &
(i — £2)(2) © [2/0F — Filw)] = fi() A fal) > 205 © [f2 () — fo(@)] © /0 —
@) = £i(2) A fol@) < (2/65 6 [2/07 = Fi@) © [fi() — fal@)] = file) A fo(o)
& fi(x) O [fi(x) = fa(x)] = fi(z) A fo(z), which is true because A is supposed a
BL—algebra, so A/fr is also a BL—algebra.

Suppose that A is an IMT L—algebra; obviously, A/ff is also an IMT L—algebra.

For o = (I, f) € Ar, where I € F, we have f** = (f - 0) — 0so f**(z) =2/0r ©
(/07 © (F(@)]* 2 2/07 © [/07 — (f)*] L 0/65 © [0/05 — F()] 2 f(2), for
x € I, hence o** = a, that is, Ar is an IMT L-algebra.

Suppose that A is a SMT L—algebra; obviously, A/ is also a SMT L—algebra.
If a = (I/}) € Az, then the equation v A a* = 0 is equivalent with f A (f —
0) = 0& f(z) Az/0r © (f(x))*] = 0, for every x € I, which is clearly (since
F@)AN[z/0F © (f(x)*] < f(x) A(f(z))* = 0), hence a A a* = 0, that is, Ar is a
SMT L-algebra.

Suppose that A is a WNM—algebra. Let @ = (I,f), (J g) and denote
a = f(z),b = g(z) for x € INJ . We have (« 5)*Y(( B) — (a®p)) =

UﬁJ (fog*vV{(fAg)— (fog)) and ((f ©g9)" Vv ((f ) (f ®9)))(3@) =
(f ©9) @) Vv (@/0r © (f A g)x) = (f ©9)(2) = (2/0F © (a© (z/0F —
b))V (z/07 O ((aAb) — (a® (x/0F — 1)) £ 2/07 O ((a® (x/0F — 1))V ((aAb) —
(a© (z/6F —b)))).

Since b < z/0F — b we deduce that a Ab < a A (z/0F — b), hence, using cs,
(@ (2/65 — b)) = (0 ® (2/65 — b)) < (@ Ab) > (a® (2/0x — b)),

Since A is supposed a W N M —algebra we deduce that A/0x is also a W N M —algebra,
so we obtain 1/0x = (a ® (x/0F — b))*V ((a A (/0 — b)) — (a © (x/0x — b))
< (a®(z/0r — b))*V((andb) — (a®(x/0x — b))), hence (a®(x/0x — b))*V((aAb) —
(@ (/05 — b)) = 1/0x. Then ((f © )"V ((f Ag) — (f © 9)))(x) = 2/07©1/07 =
z/0r =1(z) © (a®0)* Y ((a AB) — (a®B)) =1, that is Ar is a WNM —algebra.

Suppose now A is a IISMT L—algebra, so A/0f is also a IISMT L—algebra. From
the condition z A2* = 0 (x € A), we deduce that 2* vV 2** & (x Ax*)* = 0* = 1, that
is, 2* € B(A). Let o = (T,\f),ﬁ = @),7 = @L) € Ar. Consider z e INJNK
and denote a = f(z),b = g(x) and ¢ = h(z). Then h**(z) = 2/07 ® (/05 — c**) 2
z/0F N ZE x/0r O, WO (fOh) — (g0 h)(z) = [z/0F — ()] ©
[z/0F © [(f © h)(z) — (9 © ) (@)]] = [z/0F — (z/0F © )] © [z/0F © [((z/0F —
0)oc) = (2/07 — D)0 = [2/07 ©(2/0F — (/07 ©c))]O[(2/0F — 0)Oc) —
((z/0Fr = b)©c)] < (/07 © ™) O[((2/0F — a) Oc) = ((#/0F = D) O )] = /07 ©

€ © [((@/0F — a) © ) — (@/0r — )@ )] < 2/07 (/05 — a) — (205 —
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D] £ 205 © [(0/05 © (2/05 — ) — b = 2/05 ® (a — b) = (f — g)(x), hence
Y*® (a®9)— (8®7))] — (a— B) =1,s0 A is a ISMT L—algebra. O
Remark 3.4. If MTL— algebra (A,A,V,®,—,0,1) is a BL— algebra (resp. an
IMTL-algebra, a SMT L-algebra, a W N M-algebra, a ILISMT L-algebra), then MTL—
algebra (M(A/0£),N\,V,®,—,0,1) is a BL— algebra (resp. an IMTL-algebra, a
SMTL-algebra, a WN M -algebra, a ILSMT L-algebra).

Remark 3.5. If MTL— algebm (A, N, V, v, 0, =, 0,1) is a BL— algebra in [2] will be

called (A, \,Y,®,—,0 = (A70) (A 1)) the localization BL-algebra of A with
respect to the topology .7-' .

—

Lemma 3.6. Let the map vy : B(A) — Ax defined by vr(a) = (A, f,) for every
a € B(A). Then:
(i) vF is a morphiSﬂo\fMTL—algebms;
(ii) For a € B(A), (A, f,) € B(Ar);
(iii) vr(B(A)) € R(A7).
Proof. (i), (#i1). As in the case of BL— algebras (see [2]).

(7). For a € B(A
) V[z e (a* V)]
(anz)V(zAa*) 2

x

) we have a V a* = 1, hence (a Az)V [z ® (a Az)] E (an
e (a/\x)\/[(x@a*)v(a:@x*)] 2 (aAx)V[(zea)V0) =

A(aVa*)=xAN1l=uzx, for every z € A. Since A € F we
deducethat(

/\)*7 [a:/ef ©) ((a Ax)/0F)*] = x/0F hence f, V (f.)* =1, that
is, (A, J2) Y (A, Ja) = (A1), so (4. T.) € B(Az). O

4. Applications

In the following we describe the localization MT L-algebra Az in some special
instances.

1. If I € I(A), and F is the topology F(I) = {I' € I(A) : I C I'} (see Example
2.1), then Az is isomorphic with M(I,A/07) and vg : B(A) — Ax is defined by
vr(a) = ﬁ\f for every a € B(A).

If I is a regular subset of A, then 0 is the identity, hence Ax is isomorphic with
M(I,A) (see [15], Definition 3, conditions M7, My and M3), which in generally is not
a Boolean algebra. For example, if I = A = [0,1] is the Lukasiewicz structure (see
[18]) then Ar is not a Boolean algebra (see [2]).

Remark 4.1. If consider MTL—algebra A = [0,1] from Remark 1.2, then

1. If I = {0}, then F({0}) = I(A) (see Remark 2.2), so Ay = M(I,A/0F) =
M({0}, A/6r) = 0.

2. If I = A, then F(A) = {A} and OF is the identity, so Ax =~ M(A, A). Since
B(A) = Ly ={0,1}, then f € M(A,A) iff f(z) <z and 2O (z — f(z)) = f(x),
for every x € A. So, f(0) = 0. For x > L if we denote f(z) =y, theny <z
and we deduce that x ® (z — f(z)) = 2 © (z — y) = v ©® max(5 — z,y) =
rOy=xAy=y=f(z), soforz>3% fe MAA iff f(zx) <. If consider
f € Ar = M(A,A) such that f(2) = 1, then (£ v f)(3) = f( YV 3 =
FOVEeUENT=3VE0G) =3V ({e0)=5v0=73 751(2) =4,
hence f is not a boolean element in Ax (hence in this case Ax is not a Boolean
algebra). Also, f is not a principal multiplier (because B(A) = {0,1} hence the
only principal multipliers are fo =0 and f; = 1).
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3. IfI:[(),x}withx;éOlf() {[0,a] : z < a,a € (0,1]}. Since 0 € [0,a],a # 1
and 0Nz = 0 Ay, then (z,y) € O for every x,y € A, hence in this case
Ay~ M(I,0) = 0,

2. Main remark. To obtain the maximal MTL -algebra of quotients Q(A) as a
localization relative to a topology F we have to develope another theory of multipliers
(meaning we add new axioms for F-multipliers).

Definition 4.1. Let F be a topology on A. A strong - F— multiplier is a mapping
f:I— A/0x (where I € F) which verifies the axioms ag, a7 and ag (see Definition
3.1) and
(ag) If e € IN B(A), then f(e) € B(A/0r);
(a10) (z/0£) A fe) = (e/0F) A f(z), for every e € IN B(A) and z € I.

Remark 4.2. If (A,A,V,0,—,0,1) is a MTL— algebra, the maps 0,1: A — A/0x
defined by 0(x) = 0/0F7 and 1(x) = x/0F for every x € A are strong - F— multipliers.
We recall that if f; : I; — A0 , (with I; € F, i =1,2) are F—multipliers fi A fa, f1V
f2, 1 © fas i = fo: LN o — A/0F defined by (fi A f2)(z) = fi(z) A fa(2), (f1 V
f)(@) = fi(x) V f2(2), (f1 © fo)(2) = filz) © [2/0F — fo(x)] E fo(2) © [z/0F —
fi@)], (f1 = fo)(x) = 2/0r O [f1(x) — fa(z)], for any x € I, NIy are F—multipliers.
If f1, f2 are strong - F— multipliers then the multipliers fiAfa, f1V fa, f1O fa, f1 — fo
are also strong - F— multipliers (the proof is as in the case of BL—algebras, see [2]).

Remark 4.3. Analogous as in the case of F— multipliers if we work with strong-F—
multipliers we obtain a MTL— subalgebra of Ar denoted by s — Ax which will be
called the strong-localization MT L— algebra of A with respect to the topology F.

So, if F = I(A) N R(A) is the topology of regular ideals, then 0x is the identity
congruence of A and we obtain the definition for multipliers on A, so
s—Ar =lim(s— M(I, A)),
IeF
where s — M (I, A) is the set of strong multipliers of A having the domain I (see [15],
Definition 3, conditions M; — Ms).
In this situation we obtain:

Proposition 4.1. In the case F = I(A) N R(A), Ar is exactly the maximal MTL-
algebra Q(A) of quotients of A (introduced in [15]) which is a Boolean algebra (for
the proof, see [14] Proposition 6.12, p.194, for the case of BL— algebras). If MT L—

algebra A is a BL— algebra, Ax is exactly the mazimal BL-algebra Q(A) of quotients
of A.

Remark 4.4. If consider in particular MTL- algebra A = [0,1] from Remark 1.2,
then F = {A}, hence Ar = s—M(A, A). Consider f € s—M(A, A). Clearly, f(0) =0
and f(1) € {0,1}. If f(1) =0, then for everyx € A, x A f(1 ):1/\ flz) xzn0=
fl@)e flz)=0< f=0.If f(1) = 1 then from ayo, f(xz) =2 = 1(x), hence f = 1.
So, in this case s — Ar =~ s — M(A, A) = Lo
3. Denoting by D the topology of dense ordered ideals of A, then (since R(A) C

D(A)) there exists a morphism of MTL -algebras « : Q(A) — s — Ap such that the
diagrame

B(A) Q4)

D\, o/

S—AD
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is commutative (i.e. aovy = vp). Indeed, if [f,I] € Q(A) (with I € I(A) N R(A)
and f: I — A a strong multiplier in the sense of [15]) we denote by fp the strong -
D—multiplier fp : I — A/6p defined by fp(z) = f(x)/0p for every x € I. Thus, « is
defined by a([f,I]) = [fp,I].

4. Let S C A a A—closed system of MTL- algebra A. Consider the following
congruence on A : (z,y) € 0g < there exists e € SN B(A) such that tAe=yAe
(see [3]). A[S] = A/0s is called in [3] the MT L-algebra of fractions of A relative to
the N—closed system S.

As in the case of BL—algebras we obtain the following result:

Proposition 4.2. If Fg is the topology associated with a N—closed system S C A,
then the MT L-algebra s — Az, is isomorphic with B(A[S]).

Remark 4.5. In the proof of Proposition 4.2 the axiom a1y is not necessarily.

Remark 4.6. If A is MTL— algebra A = [0,1], from Remark 1.2, since B(A) =
{0,1} = Ly then for S C A a A— closed system, Fs ={I € I(A) : INSN{0,1} # @}
and s — Ar, is isomorphic with B(A[S]):
1. If S is a A—closed systems of A such that 0 € S, then Fs = I(A) (see Remark
2.5 ) and s — Ars = s — Apay = B(A[S]) = B(0) = 0.
2. If0¢ S, Fs = A (see Remark 2.5) and s — Ary = s — Aa = B(A[S]) = B(4) =
{0,1} = L.

Concluding remarks

Since in particular a MT L— algebra is a BL— algebra we obtain a part of the results
about localization of BL— algebras (see [2]), so we deduce that the main results of
this paper are generalization of the analogous result relative to BL— algebras from
[2].

We use in the construction of localization MT L— algebra Az the Boolean center
B(A) of MTL— algebra A; as a consequence of this fact, s — A is a Boolean algebra
in some particular cases.

A very interesting subject for future research would be a treatment of the localiza-
tion for MT'L algebras or residuated lattices without use the Boolean center.
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