Localization of $M T L$ - algebras

Antoneta Jeflea and Justin Paralescu

Abstract

The aim of the present paper is to define the localization $M T L$ - algebra of a $M T L$ - algebra A with respect to a topology \mathcal{F} on A. In the last part of the paper is proved that the maximal $M T L$ - algebra of quotients (defined in [15]) and the $M T L$ - algebra of fractions relative to an $\wedge-$ closed system (defined in [3]) are $M T L$ - algebras of localization.

2010 Mathematics Subject Classification. 18B35, 18C05, 06D72, 03G25.
Key words and phrases. MTL - algebra, BL - algebra, residuated lattice, topology, $\mathcal{F}-$ multiplier, strong \mathcal{F} - multiplier, multiplier, $M T L$ - algebra of fractions, maximal $M T L$ algebra of quotients, $M T L$ - algebra of localization.

Basic Fuzzy logic ($B L$ from now on) is the many-valued residuated logic introduced by Hájek in [10] to cope with the logic of continuous t-norms and their residua. Monoidal logic ($M L$ from now on), is a logic whose algebraic counterpart is the class of residuated; $M T L$-algebras (see [5]) are algebraic structures for the EstevaGodo monoidal t-norm based logic ($M T L$), a many-valued propositional calculus that formalizes the structure of the real unit interval $[0,1]$, induced by a left-continuous t-norm. $M T L$ algebras were independently introduced in [6] under the name weak- $B L$ algebras.

A remarkable construction in ring theory is the localization ring $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} on a $\operatorname{ring} A$.

Using the model of localization ring, in [9], G. Georgescu defined for a bounded distributive lattice L the localization lattice $L_{\mathcal{F}}$ of L with respect to a topology \mathcal{F} on L and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals); analogous results we have for lattices of fractions of bounded distributive lattices relative to $\wedge-$ closed systems.

The main aim of this paper is to develop a theory of localization for $M T L$ algebras. Since $B L-$ algebras are particular classes of $M T L-$ algebras, the results of this paper generalize a part of the results from [2] for $B L$ - algebras. The main difference is that the axiom $x \odot(x \rightarrow y)=x \wedge y$ is not valid for $M T L$-algebras.

1. Definitions and preliminaries

Definition 1.1. A residuated lattice ([1], [18]) is an algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ of type ($2,2,2,2,0,0$) equipped with an order \leq satisfying the following:
$\left(a_{1}\right)(A, \wedge, \vee, 0,1)$ is a bounded lattice relative to the order \leq;
$\left(a_{2}\right)(A, \odot, 1)$ is a commutative ordered monoid;
$\left(a_{3}\right)(\odot, \rightarrow)$ is an adjoint pair, i.e. $z \leq x \rightarrow y$ iff $x \odot z \leq y$ for every $x, y, z \in A$.
The class $\mathcal{R} \mathcal{L}$ of residuated lattices is equational (see [11]).
For examples of residuated lattices see [3] and [18].
Received June 11, 2012.

In what follows by A we denote the universe of a residuated lattice. For $x \in A$, we denote $x^{*}=x \rightarrow 0$ and $\left(x^{*}\right)^{*}=x^{* *}$.

We review some rules of calculus for residuated lattices A used in this paper:
Theorem 1.1. ([1], [18]) Let $x, y, z \in A$. Then we have the following:
$\left(c_{1}\right) 1 \rightarrow x=x, x \rightarrow x=1, y \leq x \rightarrow y, x \odot(x \rightarrow y) \leq y, x \rightarrow 1=1,0 \rightarrow x=$ $1, x \odot 0=0 ;$
(c_{2}) $x \leq y$ iff $x \rightarrow y=1$;
(c c_{3}) $x \leq y$ implies $x \odot z \leq y \odot z, z \rightarrow x \leq z \rightarrow y$ and $y \rightarrow z \leq x \rightarrow z$;
$\left(c_{4}\right) x \rightarrow(y \rightarrow z)=(x \odot y) \rightarrow z=y \rightarrow(x \rightarrow z)$, so $(x \odot y)^{*}=x \rightarrow y^{*}=y \rightarrow x^{*}$;
(c. $\left.c_{5}\right) ~ x \odot x^{*}=0$ and $x \odot y=0$ iff $x \leq y^{*}$;

If A is a complete residuated lattice and $\left(y_{i}\right)_{i \in I}$ is a family of elements of A, then:
$\left(c_{6}\right) x \odot\left(\bigvee_{i \in I} y_{i}\right)=\bigvee_{i \in I}\left(x \odot y_{i}\right)$;
$\left(c_{7}\right) x \rightarrow\left(\bigwedge_{i \in I} y_{i}\right)=\bigwedge_{i \in I}\left(x \rightarrow y_{i}\right)$.
By $B(A)$ we denote the set of all complemented elements in the lattice $L(A)=$ $(A, \wedge, \vee, 0,1)$. Complements are generally not unique, unless the lattice is distributive; in the case of residuated lattices, however, although the underlying lattices need not be distributive, the complements are unique ([8]). Also, if b is the complement of a, then a is the complement of $b, b=a^{*}, a^{2}=a$ and $a^{* *}=a([1],[3])$. So, $B(A)$ is a Boolean subalgebra of A, called the Boolean center of A.
Theorem 1.2. ([3]) For $e \in A$ the following assertions are equivalent:
(i) $e \in B(A)$;
(ii) $e \vee e^{*}=1$.

Theorem 1.3. ([3]) If $e, f \in B(A)$ and $x, y \in A$, then:
(c8) $e \odot x=e \wedge x$;
$\left(c_{9}\right) x \odot(x \rightarrow e)=e \wedge x, e \odot(e \rightarrow x)=e \wedge x ;$
$\left(c_{10}\right) e \odot(x \rightarrow y)=e \odot[(e \odot x) \rightarrow(e \odot y)] ;$
$\left(c_{11}\right) x \odot(e \rightarrow f)=x \odot[(x \odot e) \rightarrow(x \odot f)]$.
Definition 1.2. ([5], [6], [7]) A $M T L$ - algebra is a residuated lattice satisfying the preliniarity equation:
$\left(c_{12}\right)(x \rightarrow y) \vee(y \rightarrow x)=1$.
The variety of $M T L-$ algebras will be denoted by $\mathcal{M T} \mathcal{L}$.
Proposition 1.1. ([5]) For a residuated lattice, the following conditions are equivalent:
(i) $A \in \mathcal{M} \mathcal{T} \mathcal{L}$;
(ii) A is a subdirect product of linearly ordered residuated lattices;
(iii) For every $x, y, z \in A$ we have:
$\left(c_{13}\right) x \rightarrow(y \vee z)=(x \rightarrow y) \vee(x \rightarrow z)$;
(iv) For every $x, y, z \in A$ we have:
$\left(c_{14}\right)(x \wedge y) \rightarrow z=(x \rightarrow z) \vee(y \rightarrow z)$.
Corollary 1.1. ([5]) Let $A \in \mathcal{M} \mathcal{T} \mathcal{L}$. Then for every $x, y, z \in A$ we have:
$\left(c_{15}\right)(x \wedge y)^{*}=x^{*} \vee y^{*}$;
$\left(c_{16}\right) x \odot(y \wedge z)=(x \odot y) \wedge(x \odot z) ;$
$\left(c_{17}\right) x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$;
$\left(c_{18}\right) x \vee y=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x)$.

Remark 1.1. From (c_{18}) we deduce that a $M T L$ - algebra is a semi-Boolean lattice (see [13]).
Remark 1.2. Every linearly ordered residuated lattice is a MTL- algebra. A MTLalgebra A is a $B L-$ algebra iff in A is verified the divisibility condition: $x \odot(x \rightarrow$ $y)=x \wedge y$. So, BL- algebras are examples of MTL- algebras; for an example of $M T L-$ algebra which is not BL- algebra consider the residuated lattice defined on the unit interval $A=[0,1]$, for all $x, y \in A$, such that

$$
\begin{gathered}
x \odot y=0 \text { if } x+y \leq \frac{1}{2} \text { and } x \wedge y \text { elsewhere, } \\
x \rightarrow y=1 \text { if } x \leq y \text { and } \max \left\{\frac{1}{2}-x, y\right\} \text { elsewhere (see [18],p.16). }
\end{gathered}
$$

Let $0<y<x, x+y<\frac{1}{2}$. Then $y<\frac{1}{2}-x$ and $0 \neq y=x \wedge y$, but $x \odot(x \rightarrow y)=$ $x \odot\left(\frac{1}{2}-x\right)=0$. This residuated lattice is a chain, so is a MTL-algebra, but the divisibility condition not hold.
Definition 1.3. Let (P, \leq) an ordered set. A nonempty subset I of P is called order ideal if, whenever $x \in I, y \in P$ and $y \leq x$, we have $y \in I$; we denote by $I(P)$ the set of all order ideals of P.

For a $M T L$-algebra A we denote by $I d(A)$ the set of all ideals of the lattice $L(A)$.
Remark 1.3. Clearly, $I d(A) \subseteq I(A)$ and if $I_{1}, I_{2} \in I(A)$, then $I_{1} \cap I_{2} \in I(A)$. Also, if $I \in I(A)$, then $0 \in I$.

2. Topologies on a MTL-algebra

Definition 2.1. A non-empty set \mathcal{F} of elements $I \in I(A)$ will be called a topology on A if the following axioms hold:
$\left(a_{4}\right)$ If $I_{1} \in \mathcal{F}, I_{2} \in I(A)$ and $I_{1} \subseteq I_{2}$, then $I_{2} \in \mathcal{F}$ (hence $A \in \mathcal{F}$);
$\left(a_{5}\right)$ If $I_{1}, I_{2} \in \mathcal{F}$, then $I_{1} \cap I_{2} \in \mathcal{F}$.
Remark 2.1. 1. \mathcal{F} is a topology on A iff \mathcal{F} is a filter of the lattice of power set of A; for this reason a topology on $I(A)$ is usually called a Gabriel filter on $I(A)$.
2. Clearly, if \mathcal{F} is a topology on A, then $(A, \mathcal{F} \cup\{\emptyset\})$ is a topological space.

Any intersection of topologies on A is a topology; so, the set $T(A)$ of all topologies of A is a complete lattice with respect to inclusion.
Example 2.1. If $I \in I(A)$, then the set $\mathcal{F}(I)=\left\{I^{\prime} \in I(A): I \subseteq I^{\prime}\right\}$ is a topology on A.

Remark 2.2. If in particular $A=[0,1]$ is the MTL - algebra from Remark 1.2, then $I(A)=\{[0, x]: x \in A\}$. For $x=0, \mathcal{F}(\{0\})=I(A) ;$ for $x \in(0,1), \mathcal{F}([0, x])=\{[0, y]:$ $x \leq y, y \in A\}$.
Definition 2.2. ([15]) A non-empty set $I \subseteq A$ will be called regular if for every $x, y \in A$ such that $e \wedge x=e \wedge y$ for every $e \in I \cap B(A)$, then $x=y$.
Example 2.2. If we denote $R(A)=\{I \subseteq A: I$ is a regular subset of $A\}$, then $I(A) \cap R(A)$ is a topology on A.
Remark 2.3. Clearly, if $A=[0,1]$ is the MTL -algebra from Remark 1.2, since $B(A)=\{0,1\}=L_{2}$ then only $I=A$ is a regular subset of $A(I=[0, x]$ with $x \neq 1$ are non regular because contain 0 and for example we have $0 \wedge a=0 \wedge b$ for every $a, b \in A$ and $a \neq b)$. So, in this case $\mathcal{F}=I(A) \cap R(A)=\{A\}$.

Example 2.3. A nonempty set $I \subseteq A$ will be called dense (see [9]) if for $x \in A$ such that $e \wedge x=0$ for every $e \in I \cap B(A)$, then $x=0$. If we denote by $D(A)$ the set of all dense subsets of A, then $R(A) \subseteq D(A)$ and $\mathcal{F}=I(A) \cap D(A)$ is a topology on A.

Remark 2.4. As above, for $M T L-$ algebra $A=[0,1]$ from Remark 1.2, $D(A)=\{A\}$ (because $I \in D(A)$ if $1 \in I$).

Definition 2.3. ([3]) A subset $S \subseteq A$ is called $\wedge-$ closed if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.
Example 2.4. For any \wedge - closed subset S of A, the set $\mathcal{F}_{S}=\{I \in I(A): I \cap S \cap$ $B(A) \neq \oslash\}$ is a topology on A.

Remark 2.5. In the case of MTL- algebra $A=[0,1]$ from Remark 1.2, $S \subseteq[0,1]$ is $a \wedge-$ closed subset if $1 \in S$. Since $B(A)=\{0,1\}=L_{2}$ then for $S \subseteq A a \wedge-$ closed system, $\mathcal{F}_{S}=\{I \in I(A): I \cap S \cap\{0,1\} \neq \oslash\}$.

1. If S is a \wedge-closed systems of A such that $0 \in S$ we have $I \cap S \cap B(A) \neq \oslash$ for every $I \in I(A)$, so $\mathcal{F}_{S}=I(A)$.
2. If $0 \notin S$ then $\mathcal{F}_{S}=\{A\}$ (because, if $I \in I(A)$ and $1 \in I$ implies $I=A$).

3. \mathcal{F}-multipliers and localization MTL-algebras

Let \mathcal{F} be a topology on a $M T L$-algebra A and we consider the relation $\theta_{\mathcal{F}}$ of A defined in the following way: $(x, y) \in \theta_{\mathcal{F}} \Leftrightarrow$ there exists $I \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for any $e \in I \cap B(A)$.

Lemma 3.1. $\theta_{\mathcal{F}}$ is a congruence on A.
Proof. See [2] for the case of $B L$ - algebras.
We shall denote by $a / \theta_{\mathcal{F}}$ the congruence class of an element $a \in A$ and by $p_{\mathcal{F}}: A \rightarrow A / \theta_{\mathcal{F}}$ the canonical morphism of $M T L$-algebras.

Proposition 3.1. For $a \in A, a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$ iff there exists $I \in \mathcal{F}$ such that $a \vee a^{*} \geq e$ for every $e \in I \cap B(A)$. So, if $a \in B(A)$, then $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.
Proof. Using Theorem 1.2, for $a \in A$, we have $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right) \Leftrightarrow a / \theta_{\mathcal{F}} \vee\left(a / \theta_{\mathcal{F}}\right)^{*}=$ $1 / \theta_{\mathcal{F}} \Leftrightarrow\left(a \vee a^{*}\right) / \theta_{\mathcal{F}}=1 / \theta_{\mathcal{F}} \Leftrightarrow$ there exist $I \in \mathcal{F}$ such that $\left(a \vee a^{*}\right) \wedge e=1 \wedge e=e$, for every $e \in I \cap B(A) \Leftrightarrow a \vee a^{*} \geq e$, for every $e \in I \cap B(A)$. If $a \in B(A)$, then for every $I \in \mathcal{F}, 1=a \vee a^{*} \geq e$, for every $e \in I \cap B(A)$, hence $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.

Corollary 3.1. If $\mathcal{F}=I(A) \cap R(A)$, then for $a \in A$, $a \in B(A)$ iff $a / \theta_{\mathcal{F}} \in B\left(A / \theta_{\mathcal{F}}\right)$.
Definition 3.1. Let \mathcal{F} be a topology on A. A $\mathcal{F}-$ multiplier is a mapping $f: I$ $\rightarrow A / \theta_{\mathcal{F}}$ where $I \in \mathcal{F}$ and for every $x \in I$ and $e \in B(A)$ the following axioms are fulfilled:
$\left(a_{6}\right) f(e \odot x)=e / \theta_{\mathcal{F}} \wedge f(x)=e / \theta_{\mathcal{F}} \odot f(x) ;$
(a_{7}) $f(x) \leq x / \theta_{\mathcal{F}}$;
$\left(a_{8}\right) x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right)=f(x)$.
Remark 3.1. If A is a $B L$ algebra, then the axiom (a_{8}) is a consequence of (a_{7}) (because in this case $x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right)=x / \theta_{\mathcal{F}} \wedge f(x) \stackrel{a_{\mathcal{F}}}{=} f(x)$, for every $x \in I$).

By $\operatorname{dom}(f) \in \mathcal{F}$ we denote the domain of f; if $\operatorname{dom}(f)=A$, we called f total.
To simplify language, we will use \mathcal{F} - multiplier instead partial \mathcal{F} - multiplier, using total to indicate that the domain of a certain \mathcal{F} - multiplier is A.

If $\mathcal{F}=\{A\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of A so a \mathcal{F} - multiplier is a total multiplier in sense of [15], Definition 3, which verify the conditions M_{1}, M_{2} and M_{3}.

The maps $\mathbf{0}, \mathbf{1}: A \rightarrow A / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=0 / \theta_{\mathcal{F}}$ and $\mathbf{1}(x)=x / \theta_{\mathcal{F}}$ for every $x \in A$ are $\mathcal{F}-$ multipliers in the sense of Definition 3.1.

Also, for $a \in B(A), f_{a}: A \rightarrow A / \theta_{\mathcal{F}}$ defined by $f_{a}(x)=a / \theta_{\mathcal{F}} \wedge x / \theta_{\mathcal{F}}$ for every $x \in A$, is a \mathcal{F} - multiplier. If $\operatorname{dom}\left(f_{a}\right)=A$, we denote f_{a} by $\overline{f_{a}}$; clearly, $\overline{f_{0}}=\mathbf{0}$.

We shall denote by $M\left(I, A / \theta_{\mathcal{F}}\right)$ the set of all the \mathcal{F} - multipliers having the domain $I \in \mathcal{F}$ and $M\left(A / \theta_{\mathcal{F}}\right)=\bigcup_{I \in \mathcal{F}} M\left(I, A / \theta_{\mathcal{F}}\right)$. If $I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}$ we have a canonical mapping $\varphi_{I_{1}, I_{2}}: M\left(I_{2}, A / \theta_{\mathcal{F}}\right) \rightarrow M\left(I_{1}, A / \theta_{\mathcal{F}}\right)$ defined by $\varphi_{I_{1}, I_{2}}(f)=f_{\mid I_{1}}$ for $f \in$ $M\left(I_{2}, A / \theta_{\mathcal{F}}\right)$. Let us consider the directed system of sets
$\left\langle\left\{M\left(I, A / \theta_{\mathcal{F}}\right)\right\}_{I \in \mathcal{F}},\left\{\varphi_{I_{1}, I_{2}}\right\}_{I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}}\right\rangle$ and denote by $A_{\mathcal{F}}$ the inductive limit (in the category of sets) $A_{\mathcal{F}}=\lim _{\bar{I} \in \mathcal{F}} M\left(I, A / \theta_{\mathcal{F}}\right)$. For any \mathcal{F} - multiplier $f: I \rightarrow A / \theta_{\mathcal{F}}$ we shall denote by $\widehat{(I, f)}$ the equivalence class of f in $A_{\mathcal{F}}$.
Remark 3.2. If $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}, i=1,2$, are \mathcal{F} - multipliers, then $\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right)}$ (in $A_{\mathcal{F}}$) iff there exists $I \in \mathcal{F}, I \subseteq I_{1} \cap I_{2}$ such that $f_{1 \mid I}=f_{2 \mid I}$.
Proposition 3.2. If $I_{1}, I_{2} \in \mathcal{F}$ and $f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right), i=1,2$, then
$\left(c_{19}\right) f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right]=f_{2}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right]$, for every $x \in I_{1} \cap I_{2}$.
Proof. For $x \in I_{1} \cap I_{2}$ we have $f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right] \stackrel{a_{8}}{=} x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot$ $\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)=\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right] \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \stackrel{a_{8}}{=} f_{2}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.f_{1}(x)\right]$.

Let $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}$, (with $\left.I_{i} \in \mathcal{F}, i=1,2\right), \mathcal{F}$-multipliers. Let us consider the mappings $f_{1} \wedge f_{2}, f_{1} \vee f_{2}, f_{1} \odot f_{2}, f_{1} \rightarrow f_{2}: I_{1} \cap I_{2} \rightarrow A / \theta_{\mathcal{F}}$ defined by

$$
\begin{gathered}
\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x),\left(f_{1} \vee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x), \\
\left(f_{1} \odot f_{2}\right)(x)=f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right] \stackrel{c_{19}}{=} f_{2}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right] \\
\left(f_{1} \rightarrow f_{2}\right)(x)=x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightarrow f_{2}(x)\right],
\end{gathered}
$$

for any $x \in I_{1} \cap I_{2}$, and let

$$
\begin{gathered}
\left.\left.\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right) \curlywedge \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right), \widehat{\left(I_{1}, f_{1}\right.}\right) \curlyvee \widehat{\left(I_{2}, f_{2}\right.}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right) \\
\left(\widehat{\left(I_{1}, f_{1}\right)}\right) \otimes \widehat{\left(I_{2}, f_{2}\right)}=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \odot f_{2}\right),\left(\widehat{\left(I_{1}, f_{1}\right.}\right) \longmapsto \widehat{\left(I_{2}, f_{2}\right)}=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \rightarrow f_{2}\right) .
\end{gathered}
$$

Clearly, the definitions of the operations $\curlywedge, \curlyvee, \otimes$ and \longmapsto on $A_{\mathcal{F}}$ are correct.
Lemma 3.2. $f_{1} \wedge f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. It is suffice to verify only a_{8} (for a_{6} and a_{7}, see [2]).
For every $x \in I_{1} \cap I_{2}$ we have $x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\left(f_{1} \wedge f_{2}\right)(x)\right]=x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.\left(f_{1}(x) \wedge f_{2}(x)\right)\right] \stackrel{c_{7}}{=} x / \theta_{\mathcal{F}} \odot\left[\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \wedge\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right] \stackrel{c_{16}}{=}\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.$ $\left.\left.f_{1}(x)\right)\right] \wedge\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right] \stackrel{a_{8}}{=} f_{1}(x) \wedge f_{2}(x)=\left(f_{1} \wedge f_{2}\right)(x)$, that is, $f_{1} \wedge f_{2} \in$ $M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Lemma 3.3. $f_{1} \vee f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. The axioms a_{6} and a_{7} are verified as in the case of $B L$-algebras (see [2]). To verify a_{8}, let $x \in I_{1} \cap I_{2}$. Then $x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\left(f_{1} \vee f_{2}\right)(x)\right]=x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.\left(f_{1}(x) \vee f_{2}(x)\right)\right] \stackrel{c_{13}}{=} x / \theta_{\mathcal{F}} \odot\left[\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \vee\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right] \stackrel{c_{6}}{=}\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.$ $\left.\left.f_{1}(x)\right)\right] \vee\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right] \stackrel{a_{8}}{=} f_{1}(x) \vee f_{2}(x)=\left(f_{1} \vee f_{2}\right)(x)$, that is, $f_{1} \vee f_{2} \in$ $M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.

Lemma 3.4. $f_{1} \odot f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. By using c_{10}, a_{6} and a_{7} are verified as in the case of $B L$-algebras (see [2]). For a_{8} let $x \in I_{1} \cap I_{2}$ and denote $f=f_{1} \odot f_{2}$.

To prove the equality $x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right)=f(x)$ it is suffice (using c_{1}) to prove that $f(x) \leq x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right)$. We have $f(x)=f_{1}(x) \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)=x / \theta_{\mathcal{F}} \odot$ $\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)$ and $x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right)=x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.\left(f_{1}(x) \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right)\right]=x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.\right.$ $\left.\left.f_{2}(x)\right)\right)$]. So, to prove that $f(x) \leq x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f(x)\right)$ it is suffice to prove that $x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right) \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right) \leq x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.\right.$ $\left.\left.\left.f_{1}(x)\right) \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right)\right]$, that is, $\alpha \leq x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot \alpha\right)$ (with $\alpha \stackrel{\text { not }}{=}\left(x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.\left.f_{1}(x)\right) \odot\left(x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right)\right)$, which is clearly, since $\alpha \rightarrow\left[x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot \alpha\right)\right] \stackrel{c_{4}}{=}$ $\left(\alpha \odot x / \theta_{\mathcal{F}}\right) \rightarrow\left(x / \theta_{\mathcal{F}} \odot \alpha\right)=1$, that is, $f_{1} \odot f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Lemma 3.5. $f_{1} \rightarrow f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.
Proof. By using c_{10}, a_{6} and a_{7} are verified as in the case of $B L$-algebras (see [2]). For a_{8}, let $x \in I_{1} \cap I_{2}$ and denote $f=f_{1} \rightarrow f_{2}$; then $f(x)=x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightarrow f_{2}(x)\right]$. We have $f_{1}(x) \rightarrow f_{2}(x) \leq x / \theta_{\mathcal{F}} \rightarrow\left[x / \theta_{\mathcal{F}} \odot\left(f_{1}(x) \rightarrow f_{2}(x)\right)\right]$, hence $x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightarrow\right.$ $\left.f_{2}(x)\right] \leq x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot\left(f_{1}(x) \rightarrow f_{2}(x)\right)\right)\right] \Leftrightarrow f(x) \leq x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $f(x)] \stackrel{c_{1}}{\Leftrightarrow} f(x)=x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow f(x)\right]$, that is, $f_{1} \rightarrow f_{2} \in M\left(I_{1} \cap I_{2}, A / \theta_{\mathcal{F}}\right)$.

Proposition 3.3. $\left.\left(A_{\mathcal{F}}, \curlywedge, \curlyvee, \otimes, \longmapsto, \mathbf{0}=\widehat{(A, 0}\right), \mathbf{1}=\widehat{(A, \mathbf{1})}\right)$ is a MTL-algebra.
Proof. We verify the axioms of $M T L$-algebras.
$\left(a_{1}\right)$. Obviously $\left.\left.\left(A_{\mathcal{F}}, \curlywedge, \curlyvee, \mathbf{0}=\widehat{(A, \mathbf{0}}\right), \mathbf{1}=\widehat{(A, \mathbf{1}}\right)\right)$ is a bounded lattice.
$\left(a_{2}\right)$. As in the case of $B L-$ algebras (see [2]), by using c_{19} and a_{8}.
$\left(a_{3}\right) . f_{i} \in M\left(I_{i}, A / \theta_{\mathcal{F}}\right)$ where $I_{i} \in \mathcal{F}, i=1,2,3$.
Since $f_{1} \leq f_{2} \rightarrow f_{3}$ for $x \in I_{1} \cap I_{2} \cap I_{3}$ we have $f_{1}(x) \leq\left(f_{2} \rightarrow f_{3}\right)(x) \Leftrightarrow f_{1}(x) \leq$ $x / \theta_{\mathcal{F}} \odot\left[f_{2}(x) \rightarrow f_{3}(x)\right]$. So, by $c_{3}, f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right] \leq x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.f_{2}(x)\right] \odot\left[f_{2}(x) \rightarrow f_{3}(x)\right] \stackrel{a_{8}}{\Leftrightarrow} f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right] \leq f_{2}(x) \odot\left[f_{2}(x) \rightarrow f_{3}(x)\right] \leq$ $f_{3}(x) \Leftrightarrow\left(f_{1} \odot f_{2}\right)(x) \leq f_{3}(x)$, for every $x \in I_{1} \cap I_{2} \cap I_{3}$, that is, $f_{1} \odot f_{2} \leq f_{3}$. Conversely, if $\left(f_{1} \odot f_{2}\right)(x) \leq f_{3}(x)$ we have $f_{2}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right] \leq f_{3}(x)$, for every $x \in I_{1} \cap I_{2} \cap I_{3}$. Obviously, $x / \theta_{\mathcal{F}} \rightarrow f_{1}(x) \leq f_{2}(x) \rightarrow f_{3}(x) \stackrel{c_{3}}{\Leftrightarrow} x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.f_{1}(x)\right) \leq x / \theta_{\mathcal{F}} \odot\left(f_{2}(x) \rightarrow f_{3}(x)\right) \Leftrightarrow f_{1}(x) \leq\left(f_{2} \rightarrow f_{3}\right)(x)$. So $f_{1} \leq f_{2} \rightarrow f_{3}$ iff $f_{1} \odot f_{2} \leq f_{3}$ for all $f_{1}, f_{2}, f_{3} \in M\left(A / \theta_{\mathcal{F}}\right)$ and so $\left.\widehat{\left(I_{1}, f_{1}\right)} \leq \widehat{\left(I_{2}, f_{2}\right.}\right) \longmapsto \widehat{\left(I_{3}, f_{3}\right)}$ iff $\widehat{\left(I_{2}, f_{2}\right)} \otimes \widehat{\left(I_{1}, f_{1}\right)} \leq \widehat{\left(I_{3}, f_{3}\right)}$. Since the preliniarity equation c_{12} is proved as in the case of $B L$ - algebras (see [2]) we deduce that $\left.\left.\left(A_{\mathcal{F}}, \curlywedge, \curlyvee, \otimes, \longmapsto, \mathbf{0}=\widehat{(A, \mathbf{0}}\right), \mathbf{1}=\widehat{(A, \mathbf{1}}\right)\right)$ is a $M T L$-algebra.

Remark 3.3. $\left(M\left(A / \theta_{\mathcal{F}}\right), \wedge, \vee, \odot, \rightarrow, \mathbf{0}, \mathbf{1}\right)$ is a $M T L$-algebra.
Definition 3.2. The $M T L$-algebra $A_{\mathcal{F}}$ will be called the localization $M T L$-algebra of A with respect to the topology \mathcal{F}.
Definition 3.3. ([5], [7]) A $M T L$-algebra A is called
(i) An IMTL-algebra (involutive algebra) if it satisfies the equation
(I) $x^{* *}=x$;
(ii) a $S M T L$-algebra if it satisfies the equation
$(S) x \wedge x^{*}=0$;
(iii) a $W N M$-algebra (weak nilpotent minimum) if it satisfies the equation $(W)(x \odot y)^{*} \vee[(x \wedge y) \rightarrow(x \odot y)]=1 ;$
(iv) a $\Pi S M T L-$ algebra if it is a $S M T L$-algebra satisfying the equation
$(\Pi)\left[z^{* *} \odot((x \odot z) \rightarrow(y \odot z))\right] \rightarrow(x \rightarrow y)=1$.
Theorem 3.1. If MTL-algebra A is a $B L$-algebra (resp. an IMTL-algebra, a $S M T L$-algebra, a $W N M$-algebra, a $\Pi S M T L$-algebra), then $A_{\mathcal{F}}$ is also a $B L$-algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a ПSMTL-algebra).

Proof. Suppose that A is a $B L$-algebra (see Remark 1.2). Since for $\left.\widehat{\left(I_{1}, f_{1}\right.}\right), \widehat{\left(I_{2}, f_{2}\right)} \in$ $A_{\mathcal{F}}$, where $I_{i} \in \mathcal{F}, i=1,2, \widehat{\left(I_{1}, f_{1}\right)} \otimes\left(\widehat{\left(I_{1}, f_{1}\right)} \longmapsto \widehat{\left(I_{2}, f_{2}\right)}\right)=\widehat{\left(I_{1}, f_{1}\right)} \curlywedge \widehat{\left(I_{2}, f_{2}\right)} \Leftrightarrow$ $\left(I_{1} \cap I_{2}, \widehat{f_{1} \odot(} f_{1} \rightarrow f_{2}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right)$, to prove that $A_{\mathcal{F}}$ is a $B L$-algebra, it is suffice to prove that for every $x \in I_{1} \cap I_{2},\left(f_{1} \odot\left(f_{1} \rightarrow f_{2}\right)\right)(x)=\left(f_{1} \wedge f_{2}\right)(x) \Leftrightarrow$ $\left(f_{1} \rightarrow f_{2}\right)(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right]=f_{1}(x) \wedge f_{2}(x) \Leftrightarrow x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightarrow f_{2}(x)\right] \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.f_{1}(x)\right]=f_{1}(x) \wedge f_{2}(x) \Leftrightarrow\left(x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{1}(x)\right]\right) \odot\left[f_{1}(x) \rightarrow f_{2}(x)\right]=f_{1}(x) \wedge f_{2}(x)$ $\stackrel{a_{g}}{\Leftrightarrow} f_{1}(x) \odot\left[f_{1}(x) \rightarrow f_{2}(x)\right]=f_{1}(x) \wedge f_{2}(x)$, which is true because A is supposed a $B L$-algebra, so $A / \theta_{\mathcal{F}}$ is also a $B L$-algebra.

Suppose that A is an $I M T L$-algebra; obviously, $A / \theta_{\mathcal{F}}$ is also an $I M T L$-algebra. For $\alpha=\widehat{(I, f)} \in A_{\mathcal{F}}$, where $I \in \mathcal{F}$, we have $f^{* *}=(f \rightarrow \mathbf{0}) \rightarrow \mathbf{0}$ so $f^{* *}(x)=x / \theta_{\mathcal{F}} \odot$ $\left[x / \theta_{\mathcal{F}} \odot(f(x))^{*}\right]^{*} \stackrel{c_{4}}{=} x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow(f(x))^{* *}\right] \stackrel{(I)}{=} x / \theta_{\mathcal{F}} \odot\left[x / \theta_{\mathcal{F}} \rightarrow f(x)\right] \stackrel{a_{8}}{=} f(x)$, for $x \in I$, hence $\alpha^{* *}=\alpha$, that is, $A_{\mathcal{F}}$ is an $I M T L$-algebra.

Suppose that A is a $S M T L$-algebra; obviously, $A / \theta_{\mathcal{F}}$ is also a $S M T L$-algebra. If $\alpha=\widehat{(I, f)} \in A_{\mathcal{F}}$, then the equation $\alpha \curlywedge \alpha^{*}=\mathbf{0}$ is equivalent with $f \wedge(f \rightarrow$ $\mathbf{0})=\mathbf{0} \Leftrightarrow f(x) \wedge\left[x / \theta_{\mathcal{F}} \odot(f(x))^{*}\right]=0$, for every $x \in I$, which is clearly (since $\left.f(x) \wedge\left[x / \theta_{\mathcal{F}} \odot(f(x))^{*}\right] \leq f(x) \wedge(f(x))^{*}=0\right)$, hence $\alpha \curlywedge \alpha^{*}=\mathbf{0}$, that is, $A_{\mathcal{F}}$ is a $S M T L$-algebra.

Suppose that A is a $W N M$-algebra. Let $\alpha=\widehat{(I, f)}, \beta=\widehat{(J, g)}$ and denote $a=f(x), b=g(x)$ for $x \in I \cap J$. We have $(\alpha \otimes \beta)^{*} \curlyvee((\alpha \curlywedge \beta) \longmapsto(\alpha \otimes \beta))=$ $\left.\left.\left[I \cap J,(f \odot g)^{*} \widehat{\vee((f} \wedge g\right) \rightarrow(f \odot g)\right)\right]$ and $\left((f \odot g)^{*} \vee((f \wedge g) \rightarrow(f \odot g))\right)(x)=$ $\left((f \odot g)^{*}(x)\right) \vee\left(x / \theta_{\mathcal{F}} \odot((f \wedge g)(x) \rightarrow(f \odot g)(x))\right)=\left(x / \theta_{\mathcal{F}} \odot\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.\right.$ $\left.b))^{*}\right) \vee\left(x / \theta_{\mathcal{F}} \odot\left((a \wedge b) \rightarrow\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)\right)\right) \stackrel{c_{6}}{=} x / \theta_{\mathcal{F}} \odot\left(\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)^{*} \vee((a \wedge b) \rightarrow\right.$ $\left.\left.\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)\right)\right)$.

Since $b \leq x / \theta_{\mathcal{F}} \rightarrow b$ we deduce that $a \wedge b \leq a \wedge\left(x / \theta_{\mathcal{F}} \rightarrow b\right)$, hence, using c_{3}, $\left(a \wedge\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right) \rightarrow\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right) \leq(a \wedge b) \rightarrow\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)$.

Since A is supposed a $W N M$-algebra we deduce that $A / \theta_{\mathcal{F}}$ is also a $W N M$-algebra, so we obtain $1 / \theta_{\mathcal{F}}=\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)^{*} \vee\left(\left(a \wedge\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right) \rightarrow\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)\right)$ $\leq\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)^{*} \vee\left((a \wedge b) \rightarrow\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)\right)$, hence $\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)^{*} \vee((a \wedge b) \rightarrow$ $\left.\left(a \odot\left(x / \theta_{\mathcal{F}} \rightarrow b\right)\right)\right)=1 / \theta_{\mathcal{F}}$. Then $\left((f \odot g)^{*} \vee((f \wedge g) \rightarrow(f \odot g))\right)(x)=x / \theta_{\mathcal{F}} \odot 1 / \theta_{\mathcal{F}}=$ $x / \theta_{\mathcal{F}}=\mathbf{1}(x) \Leftrightarrow(\alpha \otimes \beta)^{*} \curlyvee((\alpha \curlywedge \beta) \longmapsto(\alpha \otimes \beta))=\mathbf{1}$, that is $A_{\mathcal{F}}$ is a $W N M-$ algebra.

Suppose now A is a $\Pi S M T L$-algebra, so $A / \theta_{\mathcal{F}}$ is also a $\Pi S M T L$-algebra. From the condition $x \wedge x^{*}=0(x \in A)$, we deduce that $x^{*} \vee x^{* *} \stackrel{c_{15}}{=}\left(x \wedge x^{*}\right)^{*}=0^{*}=1$, that is, $x^{*} \in B(A)$. Let $\alpha=\widehat{(I, f)}, \beta=\widehat{(J, g)}, \gamma=\widehat{(K, h)} \in A_{\mathcal{F}}$. Consider $x \in I \cap J \cap K$ and denote $a=f(x), b=g(x)$ and $c=h(x)$. Then $h^{* *}(x)=x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow c^{* *}\right) \stackrel{c_{9}}{=}$ $x / \theta_{\mathcal{F}} \wedge c^{* *} \stackrel{c_{8}}{=} x / \theta_{\mathcal{F}} \odot c^{* *},\left[h^{* *} \odot((f \odot h) \rightarrow(g \odot h))\right](x)=\left[x / \theta_{\mathcal{F}} \rightarrow h^{* *}(x)\right] \odot$ $\left[x / \theta_{\mathcal{F}} \odot[(f \odot h)(x) \rightarrow(g \odot h)(x)]\right]=\left[x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot c^{* *}\right)\right] \odot\left[x / \theta_{\mathcal{F}} \odot\left[\left(\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.\right.\right.$ $\left.\left.a) \odot c) \rightarrow\left(\left(x / \theta_{\mathcal{F}} \rightarrow b\right) \odot c\right)\right]\right]=\left[x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow\left(x / \theta_{\mathcal{F}} \odot c^{* *}\right)\right)\right] \odot\left[\left(\left(x / \theta_{\mathcal{F}} \rightarrow a\right) \odot c\right) \rightarrow\right.$ $\left.\left(\left(x / \theta_{\mathcal{F}} \rightarrow b\right) \odot c\right)\right] \stackrel{c_{1}}{\leq}\left(x / \theta_{\mathcal{F}} \odot c^{* *}\right) \odot\left[\left(\left(x / \theta_{\mathcal{F}} \rightarrow a\right) \odot c\right) \rightarrow\left(\left(x / \theta_{\mathcal{F}} \rightarrow b\right) \odot c\right)\right]=x / \theta_{\mathcal{F}} \odot$ $\left[c^{* *} \odot\left[\left(\left(x / \theta_{\mathcal{F}} \rightarrow a\right) \odot c\right) \rightarrow\left(\left(x / \theta_{\mathcal{F}} \rightarrow b\right) \odot c\right)\right]\right] \stackrel{(\Pi)}{\leq} x / \theta_{\mathcal{F}} \odot\left[\left(x / \theta_{\mathcal{F}} \rightarrow a\right) \rightarrow\left(x / \theta_{\mathcal{F}} \rightarrow\right.\right.$
$b)] \stackrel{c_{4}}{=} x / \theta_{\mathcal{F}} \odot\left[\left(x / \theta_{\mathcal{F}} \odot\left(x / \theta_{\mathcal{F}} \rightarrow a\right)\right) \rightarrow b\right] \stackrel{a_{8}}{=} x / \theta_{\mathcal{F}} \odot(a \rightarrow b)=(f \rightarrow g)(x)$, hence $\left[\gamma^{* *} \otimes((\alpha \otimes \gamma) \longmapsto(\beta \otimes \gamma))\right] \longmapsto(\alpha \longmapsto \beta)=\mathbf{1}$, so $A_{\mathcal{F}}$ is a ПSMTL-algebra.

Remark 3.4. If $M T L$ - algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L-$ algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a $\Pi S M T L$-algebra), then $M T L$ algebra $\left(M\left(A / \theta_{\mathcal{F}}\right), \wedge, \vee, \odot, \rightarrow, \mathbf{0}, \mathbf{1}\right)$ is a $B L-$ algebra (resp. an IMTL-algebra, a SMTL-algebra, a WNM-algebra, a ПSMTL-algebra).

Remark 3.5. If $M T L-$ algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L-$ algebra in [2] will be called $\left(A_{\mathcal{F}}, \curlywedge, \curlyvee, \otimes, \longmapsto, \mathbf{0}=\widehat{(A, \mathbf{0})}, \mathbf{1}=\widehat{(A, \mathbf{1})}\right)$ the localization $B L$-algebra of A with respect to the topology \mathcal{F}.
Lemma 3.6. Let the map $v_{\mathcal{F}}: B(A) \rightarrow A_{\mathcal{F}}$ defined by $v_{\mathcal{F}}(a)=\widehat{\left(A, \overline{f_{a}}\right)}$ for every $a \in B(A)$. Then:
(i) $v_{\mathcal{F}}$ is a morphism of MTL-algebras;
(ii) For $a \in B(A), \widehat{\left(A, \overline{f_{a}}\right)} \in B\left(A_{\mathcal{F}}\right)$;
(iii) $v_{\mathcal{F}}(B(A)) \in R\left(A_{\mathcal{F}}\right)$.

Proof. (i), (iii). As in the case of $B L-$ algebras (see [2]).
(ii). For $a \in B(A)$ we have $a \vee a^{*}=1$, hence $(a \wedge x) \vee\left[x \odot(a \wedge x)^{*}\right] \stackrel{c_{15}}{=}(a \wedge$ $x) \vee\left[x \odot\left(a^{*} \vee x^{*}\right)\right] \stackrel{c_{6}}{=}(a \wedge x) \vee\left[\left(x \odot a^{*}\right) \vee\left(x \odot x^{*}\right)\right] \stackrel{c_{5}}{=}(a \wedge x) \vee\left[\left(x \odot a^{*}\right) \vee 0\right) \stackrel{c_{8}}{=}$ $(a \wedge x) \vee\left(x \wedge a^{*}\right) \stackrel{c_{17}}{=} x \wedge\left(a \vee a^{*}\right)=x \wedge 1=x$, for every $x \in A$. Since $A \in \mathcal{F}$ we deduce that $(a \wedge x) / \theta_{\mathcal{F}} \vee\left[x / \theta_{\mathcal{F}} \odot\left((a \wedge x) / \theta_{\mathcal{F}}\right)^{*}\right]=x / \theta_{\mathcal{F}}$ hence $\overline{f_{a}} \vee\left(\overline{f_{a}}\right)^{*}=\mathbf{1}$, that is, $\left.\left(\widehat{A, \overline{f_{a}}}\right) \curlyvee\left(\widehat{A, \overline{f_{a}}}\right)^{*}=\widehat{(A, \mathbf{1}}\right)$, so $\widehat{\left(A, \overline{f_{a}}\right)} \in B\left(A_{\mathcal{F}}\right)$.

4. Applications

In the following we describe the localization $M T L$-algebra $A_{\mathcal{F}}$ in some special instances.

1. If $I \in I(A)$, and \mathcal{F} is the topology $\mathcal{F}(I)=\left\{I^{\prime} \in I(A): I \subseteq I^{\prime}\right\}$ (see Example 2.1), then $A_{\mathcal{F}}$ is isomorphic with $M\left(I, A / \theta_{\mathcal{F}}\right)$ and $v_{\mathcal{F}}: B(A) \rightarrow A_{\mathcal{F}}$ is defined by $v_{\mathcal{F}}(a)=\overline{f_{a \mid I}}$ for every $a \in B(A)$.

If I is a regular subset of A, then $\theta_{\mathcal{F}}$ is the identity, hence $A_{\mathcal{F}}$ is isomorphic with $M(I, A)$ (see [15], Definition 3, conditions M_{1}, M_{2} and M_{3}), which in generally is not a Boolean algebra. For example, if $I=A=[0,1]$ is the Lukasiewicz structure (see [18]) then $A_{\mathcal{F}}$ is not a Boolean algebra (see [2]).
Remark 4.1. If consider MTL-algebra $A=[0,1]$ from Remark 1.2, then

1. If $I=\{0\}$, then $\mathcal{F}(\{0\})=I(A)$ (see Remark 2.2), so $A_{\mathcal{F}} \approx M\left(I, A / \theta_{\mathcal{F}}\right)=$ $M\left(\{0\}, A / \theta_{\mathcal{F}}\right)=\mathbf{0}$.
2. If $I=A$, then $\mathcal{F}(A)=\{A\}$ and $\theta_{\mathcal{F}}$ is the identity, so $A_{\mathcal{F}} \approx M(A, A)$. Since $B(A)=L_{2}=\{0,1\}$, then $f \in M(A, A)$ iff $f(x) \leq x$ and $x \odot(x \rightarrow f(x))=f(x)$, for every $x \in A$. So, $f(0)=0$. For $x \geq \frac{1}{2}$ if we denote $f(x)=y$, then $y \leq x$ and we deduce that $x \odot(x \rightarrow f(x))=x \odot(x \rightarrow y)=x \odot \max \left(\frac{1}{2}-x, y\right)=$ $x \odot y=x \wedge y=y=f(x)$, so for $x \geq \frac{1}{2}, f \in M(A, A)$ iff $f(x) \leq x$. If consider $f \in A_{\mathcal{F}}=M(A, A)$ such that $f\left(\frac{3}{4}\right)=\frac{1}{2}$, then $\left(f \vee f^{*}\right)\left(\frac{3}{4}\right)=f\left(\frac{3}{4}\right) \vee f^{*}\left(\frac{3}{4}\right)=$ $f\left(\frac{3}{4}\right) \vee\left[\frac{3}{4} \odot\left(f\left(\frac{3}{4}\right)\right)^{*}\right]=\frac{1}{2} \vee\left[\frac{3}{4} \odot\left(\frac{1}{2}\right)^{*}\right]=\frac{1}{2} \vee\left(\frac{3}{4} \odot 0\right)=\frac{1}{2} \vee 0=\frac{1}{2} \neq \mathbf{1}\left(\frac{3}{4}\right)=\frac{3}{4}$, hence f is not a boolean element in $A_{\mathcal{F}}$ (hence in this case $A_{\mathcal{F}}$ is not a Boolean algebra). Also, f is not a principal multiplier (because $B(A)=\{0,1\}$ hence the only principal multipliers are $f_{0}=\mathbf{0}$ and $f_{1}=\mathbf{1}$).
3. If $I=[0, x]$ with $x \neq 0,1, \mathcal{F}(I)=\{[0, a]: x \leq a, a \in(0,1]\}$. Since $0 \in[0, a], a \neq 1$ and $0 \wedge x=0 \wedge y$, then $(x, y) \in \theta_{\mathcal{F}}$ for every $x, y \in A$, hence in this case $A_{\mathcal{F}} \approx M(I, \mathbf{0})=0$.
4. Main remark. To obtain the maximal $M T L$-algebra of quotients $Q(A)$ as a localization relative to a topology \mathcal{F} we have to develope another theory of multipliers (meaning we add new axioms for \mathcal{F}-multipliers).

Definition 4.1. Let \mathcal{F} be a topology on A. A strong $-\mathcal{F}$ - multiplier is a mapping $f: I \rightarrow A / \theta_{\mathcal{F}}$ (where $I \in \mathcal{F}$) which verifies the axioms a_{6}, a_{7} and a_{8} (see Definition 3.1) and
(a9) If $e \in I \cap B(A)$, then $f(e) \in B\left(A / \theta_{\mathcal{F}}\right)$;
$\left(a_{10}\right)\left(x / \theta_{\mathcal{F}}\right) \wedge f(e)=\left(e / \theta_{\mathcal{F}}\right) \wedge f(x)$, for every $e \in I \cap B(A)$ and $x \in I$.
Remark 4.2. If $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $M T L-$ algebra, the maps $\mathbf{0}, \mathbf{1}: A \rightarrow A / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=0 / \theta_{\mathcal{F}}$ and $\mathbf{1}(x)=x / \theta_{\mathcal{F}}$ for every $x \in A$ are strong $-\mathcal{F}-$ multipliers. We recall that if $f_{i}: I_{i} \rightarrow A / \theta_{\mathcal{F}}$, (with $\left.I_{i} \in \mathcal{F}, i=1,2\right)$ are \mathcal{F}-multipliers $f_{1} \wedge f_{2}, f_{1} \vee$ $f_{2}, f_{1} \odot f_{2}, f_{1} \rightarrow f_{2}: I_{1} \cap I_{2} \rightarrow A / \theta_{\mathcal{F}}$ defined by $\left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x),\left(f_{1} \vee\right.$ $\left.f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x),\left(f_{1} \odot f_{2}\right)(x)=f_{1}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow f_{2}(x)\right] \stackrel{c_{19}}{=} f_{2}(x) \odot\left[x / \theta_{\mathcal{F}} \rightarrow\right.$ $\left.f_{1}(x)\right],\left(f_{1} \rightarrow f_{2}\right)(x)=x / \theta_{\mathcal{F}} \odot\left[f_{1}(x) \rightarrow f_{2}(x)\right]$, for any $x \in I_{1} \cap I_{2}$ are \mathcal{F}-multipliers. If f_{1}, f_{2} are strong $-\mathcal{F}-$ multipliers then the multipliers $f_{1} \wedge f_{2}, f_{1} \vee f_{2}, f_{1} \odot f_{2}, f_{1} \rightarrow f_{2}$ are also strong $-\mathcal{F}$ - multipliers (the proof is as in the case of $B L$-algebras, see [2]).
Remark 4.3. Analogous as in the case of $\mathcal{F}-$ multipliers if we work with strong- \mathcal{F} multipliers we obtain a $M T L-$ subalgebra of $A_{\mathcal{F}}$ denoted by $s-A_{\mathcal{F}}$ which will be called the strong-localization MTL- algebra of A with respect to the topology \mathcal{F}.

So, if $\mathcal{F}=I(A) \cap R(A)$ is the topology of regular ideals, then $\theta_{\mathcal{F}}$ is the identity congruence of A and we obtain the definition for multipliers on A, so

$$
s-A_{\mathcal{F}}=\lim _{\bar{I} \in \mathcal{F}}(s-M(I, A)),
$$

where $s-M(I, A)$ is the set of strong multipliers of A having the domain I (see [15], Definition 3, conditions $M_{1}-M_{5}$).

In this situation we obtain:
Proposition 4.1. In the case $\mathcal{F}=I(A) \cap R(A), A_{\mathcal{F}}$ is exactly the maximal MTLalgebra $Q(A)$ of quotients of A (introduced in [15]) which is a Boolean algebra (for the proof, see [14] Proposition 6.12, p.194, for the case of BL- algebras). If MTLalgebra A is a $B L$ - algebra, $A_{\mathcal{F}}$ is exactly the maximal $B L$-algebra $Q(A)$ of quotients of A.
Remark 4.4. If consider in particular MTL-algebra $A=[0,1]$ from Remark 1.2, then $\mathcal{F}=\{A\}$, hence $A_{\mathcal{F}} \approx s-M(A, A)$. Consider $f \in s-M(A, A)$. Clearly, $f(0)=0$ and $f(1) \in\{0,1\}$. If $f(1)=0$, then for every $x \in A, x \wedge f(1)=1 \wedge f(x) \Leftrightarrow x \wedge 0=$ $f(x) \Leftrightarrow f(x)=0 \Leftrightarrow f=\mathbf{0}$. If $f(1)=1$ then from $a_{10}, f(x)=x=\mathbf{1}(x)$, hence $f=\mathbf{1}$. So, in this case $s-A_{\mathcal{F}} \approx s-M(A, A)=L_{2}$.
3. Denoting by \mathcal{D} the topology of dense ordered ideals of A, then (since $R(A) \subseteq$ $D(A))$ there exists a morphism of $M T L$-algebras $\alpha: Q(A) \rightarrow s-A_{\mathcal{D}}$ such that the diagrame

$$
\begin{array}{lll}
B(A) & \xrightarrow{\overline{v_{A}}} & Q(A) \\
v_{D} \searrow & & \alpha \swarrow \\
& s-A_{\mathcal{D}} & \alpha \swarrow
\end{array}
$$

is commutative (i.e. $\alpha \circ \overline{v_{A}}=v_{\mathcal{D}}$). Indeed, if $[f, I] \in Q(A)$ (with $I \in I(A) \cap R(A)$ and $f: I \rightarrow A$ a strong multiplier in the sense of [15]) we denote by $f_{\mathcal{D}}$ the strong -\mathcal{D}-multiplier $f_{\mathcal{D}}: I \rightarrow A / \theta_{\mathcal{D}}$ defined by $f_{\mathcal{D}}(x)=f(x) / \theta_{\mathcal{D}}$ for every $x \in I$. Thus, α is defined by $\alpha([f, I])=\left[f_{\mathcal{D}}, I\right]$.
4. Let $S \subseteq A$ a \wedge-closed system of $M T L$ - algebra A. Consider the following congruence on $A:(x, y) \in \theta_{S} \Leftrightarrow$ there exists $e \in S \cap B(A)$ such that $x \wedge e=y \wedge e$ (see [3]). $A[S]=A / \theta_{S}$ is called in [3] the MTL-algebra of fractions of A relative to the \wedge-closed system S.

As in the case of $B L$-algebras we obtain the following result:
Proposition 4.2. If \mathcal{F}_{S} is the topology associated with $a \wedge$-closed system $S \subseteq A$, then the $M T L$-algebra $s-A_{\mathcal{F}_{S}}$ is isomorphic with $B(A[S])$.

Remark 4.5. In the proof of Proposition 4.2 the axiom a_{10} is not necessarily.
Remark 4.6. If A is MTL- algebra $A=[0,1]$, from Remark 1.2, since $B(A)=$ $\{0,1\}=L_{2}$ then for $S \subseteq A a \wedge-$ closed system, $\mathcal{F}_{S}=\{I \in I(A): I \cap S \cap\{0,1\} \neq \oslash\}$ and $s-A_{\mathcal{F}_{S}}$ is isomorphic with $B(A[S])$:

1. If S is a \wedge-closed systems of A such that $0 \in S$, then $\mathcal{F}_{S}=I(A)$ (see Remark 2.5) and $s-A_{\mathcal{F}_{S}}=s-A_{I(A)} \approx B(A[S])=B(\mathbf{0})=\mathbf{0}$.
2. If $0 \notin S, \mathcal{F}_{S}=A$ (see Remark 2.5) and $s-A_{\mathcal{F}_{S}}=s-A_{A} \approx B(A[S])=B(A)=$ $\{0,1\}=L_{2}$.

Concluding remarks

Since in particular a $M T L$ - algebra is a $B L-$ algebra we obtain a part of the results about localization of $B L$ - algebras (see [2]), so we deduce that the main results of this paper are generalization of the analogous result relative to $B L$ - algebras from [2].

We use in the construction of localization $M T L-$ algebra $A_{\mathcal{F}}$ the Boolean center $B(A)$ of $M T L$ - algebra A; as a consequence of this fact, $s-A_{\mathcal{F}}$ is a Boolean algebra in some particular cases.

A very interesting subject for future research would be a treatment of the localization for $M T L$ algebras or residuated lattices without use the Boolean center.

References

[1] T. S. Blyth, M. F. Janovitz, Residuation Theory, Pergamon Press, 1972.
[2] D. Buşneag, D. Piciu, Localization of BL-algebras, Soochow Journal of Mathematics 32, no. 1 (2006), 127-159.
[3] D. Buşneag, D. Piciu, Residuated lattices of fractions relative to an \wedge-closed system, Bull. Math. Soc. Math. Roumanie, Tome 49, (97), no. 1 (2006), 13-24.
[4] W. H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra 32 (1974), 339-355.
[5] F. Esteva, L. Godo, Monoidal t-norm based logic : towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (2001), 271-288.
[6] P. Flondor, G. Georgescu, A. Iorgulescu, Pseudo t-norms and pseudo-BL algebras, Soft Computing 5, no. 5 (2001), 355-371.
[7] H. Freytes, Injectives in residuated algebras, Algebra Universalis 51 (2004), 373-393.
[8] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at structural logic, Studies in Logic and the foundations of math., Vol. 151, Elsevier Science, 2007.
[9] G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis 21 (1985), 181-197.
[10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
[11] P. M. Idziak, Lattice operations in BCK-algebras, Mathematica Japonica 29 (1984), 839-846.
[12] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
[13] W. Nemitz, Semi-Boolean lattices, Notre Dame Journal of Formal Logic 10, no. 3 (1969), 235-238.
[14] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
[15] D. Piciu, A. Jeflea, MTL-algebra of fractions and maximal MTL-algebra of quotients, submitted to Bull. Soc. Sci. Math. Roumanie.
[16] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics 6, no. 3 (1980).
[17] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai 33, Szeged, Hungary, (1980).
[18] E. Turunen, Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999.
(Antoneta Jeflea, Justin Paralescu) Faculty of Bookkeeping Financial Management, University Spiru Haret, 32-34, Unirii st., Constantza, Romania, Department of Mathematics, University of Craiova, 13 A.I. Cuza Street, Craiova, 200585, Romania
E-mail address: antojeflea@yahoo.com, paralescu_iustin@yahoo.com

