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On a result by Niculescu and Spiridon
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ABSTRACT. In the present paper we are concerned with the Jensen type inequality based on
the recent results for a class of functions which are not totally convex on their domain of
definition.
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Recently, Niculescu and Spiridon [3] have proved the following result, which extends
Jensen’s inequality to the framework of almost convex functions:
Theorem 1. Suppose that f : [=b,b] — R is an odd function, whose restriction
to [0,b] is convex and p : [—b,b] — [0,00) is a nondecreasing function that does not
vanish on (—b/3,b]. Then for every a € [—b/3,b),

1 b 1 b
f(w/a :Up(x)dx) <f(fp(.’1})d$~/a f(@)p(z)dz. (1)

The discrete version of this theorem (see Corollary 3 in [3]) allows easily to extend
the validity of some classical concrete inequalities outside the realm of convexity, for
example,

tan(w—i—g;—i—z) gtanx—i—ta;ly—&—tanz’ @)

for all z,y,z € (—7/6,7/2), with  + y + z + min {z,y, z} > 0.

The aim of the present note is to prove that actually the inequality (2) works for
all z,y,z € (=7 /2,7/2), with * + y + z + min {z,y, 2} > 0. This follows easily from
the following general result:

Theorem 2. Suppose that f : (—a,a) — R verifies the following three properties:
(a) f is convez on [0,a);

(b) f is an odd function;

(c) F(@)+ F(y) < f(z+y), for all 2,y € [0,a), with = +y < a.

Then we have the inequality:
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IHE) < W) Q
for all z,y, z € (—a,a), such that

x +y+ z+min{z,y, 2} > 0. (4)

Proof. Without loss of generality we can assume that < y < z. The case x > 0 is
clear. Assume —a <z <0<y<z<gandputt=—z € (0,a) andv = (y+=z)/2—t.
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By (4), we obtain v € [0,a). Under the property (b), the inequality (3) becomes:

3f(Lt420) < —f£(8) + fy) + F(2).
3 3

Hence we obtain:

31 (“g“) 3y (;t + §@> < (;f(t) + gf@))
= () 20(0) = —F(1) + 20£() + £(0)
D) 2 0) = — )+ 20+ 2)/2) © —FO) + ) + )
= f@) + () + ().

Finally, let us discuss the case where x <y <0< z. Weput t = —z € (0,a), s = —y
and v = z — s — 2¢. From (4) it follows that v € [0,a). Then,

3f(m+g+z) _3f(v+t)

< F)+2f(t/2) = =ft) = f(s) + [f() + f(s) + 2f(/2) + f(v)].

Using the mathematical induction we infer from (c) that

ika <f<2xk> V xi € [0,a), Zxk<a

k=1
Therefore
3f (TUEE) < f(0 - £+ [0+ 1(5) +20(0/2) + 1)
< —f@)=f(s)+ flv+s+2t)
= fl@)+ fly)+ f(z)
and the proof is complete. [

Corollary 1. Suppose that [ : (—a,a) — R verifies the following three properties:
(a’) f is concave on [0,a);

(b’) f is an odd function;

(c’) f(z)+ f(y) > f(z+y), whenever x,y € [0,a), with x +y < a.

Then:
f(:c+§+z> Zf(x)+f;y)+f(2)7 (5)
for all z,y,z € (—a,a), such that
r+y+2z+min{z,y,z} > 0. (6)

Proof. Indeed, if the function f satisfies the properties (a’)-(¢’), then —f satisfies
(a)-(¢) of Theorem 2. O

An illustration of this corollary is offered by the following inequality:
. (:c+y+z> sinzx + siny + sin z
sin >

3 3 ’
for all z,y,z € (—m,w), such that © + y + z + min{x, y, z} > 0.

Many others generalizations of Jensen’s inequality maybe found in [1], [2], [4] and
[3].
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