On a result by Niculescu and Spiridon

Aurelia Florea

Abstract. In the present paper we are concerned with the Jensen type inequality based on the recent results for a class of functions which are not totally convex on their domain of definition.

1991 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
Key words and phrases. Convex function, Jensen inequality.

Recently, Niculescu and Spiridon [3] have proved the following result, which extends Jensen's inequality to the framework of almost convex functions:
Theorem 1. Suppose that $f:[-b, b] \rightarrow \mathbb{R}$ is an odd function, whose restriction to $[0, b]$ is convex and $p:[-b, b] \rightarrow[0, \infty)$ is a nondecreasing function that does not vanish on $(-b / 3, b]$. Then for every $a \in[-b / 3, b)$,

$$
\begin{equation*}
f\left(\frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} x p(x) d x\right) \leq \frac{1}{\int_{a}^{b} p(x) d x} \int_{a}^{b} f(x) p(x) d x \tag{1}
\end{equation*}
$$

The discrete version of this theorem (see Corollary 3 in [3]) allows easily to extend the validity of some classical concrete inequalities outside the realm of convexity, for example,

$$
\begin{equation*}
\tan \left(\frac{x+y+z}{3}\right) \leq \frac{\tan x+\tan y+\tan z}{3} \tag{2}
\end{equation*}
$$

for all $x, y, z \in(-\pi / 6, \pi / 2)$, with $x+y+z+\min \{x, y, z\} \geq 0$.
The aim of the present note is to prove that actually the inequality (2) works for all $x, y, z \in(-\pi / 2, \pi / 2)$, with $x+y+z+\min \{x, y, z\} \geq 0$. This follows easily from the following general result:
Theorem 2. Suppose that $f:(-a, a) \rightarrow \mathbb{R}$ verifies the following three properties:
(a) f is convex on $[0, a)$;
(b) f is an odd function;
(c) $f(x)+f(y) \leq f(x+y)$, for all $x, y \in[0, a)$, with $x+y<a$.

Then we have the inequality:

$$
\begin{equation*}
f\left(\frac{x+y+z}{3}\right) \leq \frac{f(x)+f(y)+f(z)}{3} \tag{3}
\end{equation*}
$$

for all $x, y, z \in(-a, a)$, such that

$$
\begin{equation*}
x+y+z+\min \{x, y, z\} \geq 0 \tag{4}
\end{equation*}
$$

Proof. Without loss of generality we can assume that $x \leq y \leq z$. The case $x \geq 0$ is clear. Assume $-a<x<0 \leq y \leq z<a$ and put $t=-x \in(0, a)$ and $v=(y+z) / 2-t$.

By (4), we obtain $v \in[0, a)$. Under the property (b), the inequality (3) becomes:

$$
3 f\left(\frac{1}{3} t+\frac{2}{3} v\right) \leq-f(t)+f(y)+f(z)
$$

Hence we obtain:

$$
\begin{aligned}
& 3 f\left(\frac{x+y+z}{3}\right)=3 f\left(\frac{1}{3} t+\frac{2}{3} v\right) \stackrel{(a)}{\leq} 3\left(\frac{1}{3} f(t)+\frac{2}{3} f(v)\right) \\
& =f(t)+2 f(v)=-f(t)+2(f(t)+f(v)) \\
& \stackrel{(c)}{\leq}-f(t)+2 f(t+v)=-f(t)+2 f((y+z) / 2) \stackrel{(a)}{\leq}-f(t)+f(y)+f(z) \\
& =f(x)+f(y)+f(z)
\end{aligned}
$$

Finally, let us discuss the case where $x \leq y<0 \leq z$. We put $t=-x \in(0, a), s=-y$ and $v=z-s-2 t$. From (4) it follows that $v \in[0, a)$. Then,

$$
3 f\left(\frac{x+y+z}{3}\right)=3 f\left(\frac{v+t}{3}\right)
$$

$$
\stackrel{(a)}{\leq} f(v)+2 f(t / 2)=-f(t)-f(s)+[f(t)+f(s)+2 f(t / 2)+f(v)]
$$

Using the mathematical induction we infer from (c) that

$$
\sum_{k=1}^{n} f\left(x_{k}\right) \leq f\left(\sum_{k=1}^{n} x_{k}\right), \forall x_{k} \in[0, a), \quad \sum_{k=1}^{n} x_{k}<a
$$

Therefore

$$
\begin{aligned}
3 f\left(\frac{x+y+z}{3}\right) & \leq-f(t)-f(s)+[f(t)+f(s)+2 f(t / 2)+f(v)] \\
& \leq-f(t)-f(s)+f(v+s+2 t)= \\
& =f(x)+f(y)+f(z)
\end{aligned}
$$

and the proof is complete.
Corollary 1. Suppose that $f:(-a, a) \rightarrow \mathbb{R}$ verifies the following three properties:
(a^{\prime}) f is concave on $[0, a)$;
(b') f is an odd function;
(c') $f(x)+f(y) \geq f(x+y)$, whenever $x, y \in[0, a)$, with $x+y<a$.
Then:

$$
\begin{equation*}
f\left(\frac{x+y+z}{3}\right) \geq \frac{f(x)+f(y)+f(z)}{3} \tag{5}
\end{equation*}
$$

for all $x, y, z \in(-a, a)$, such that

$$
\begin{equation*}
x+y+z+\min \{x, y, z\} \geq 0 \tag{6}
\end{equation*}
$$

Proof. Indeed, if the function f satisfies the properties $\left(a^{\prime}\right)-\left(c^{\prime}\right)$, then $-f$ satisfies (a)-(c) of Theorem 2.

An illustration of this corollary is offered by the following inequality:

$$
\sin \left(\frac{x+y+z}{3}\right) \geq \frac{\sin x+\sin y+\sin z}{3}
$$

for all $x, y, z \in(-\pi, \pi)$, such that $x+y+z+\min \{x, y, z\} \geq 0$.
Many others generalizations of Jensen's inequality maybe found in [1], [2], [4] and [3].

References

[1] A. Florea and C. P. Niculescu, A Hermite-Hadamard inequality for convex-concave symmetric functions, Bull. Soc. Sci. Math. Roum. 50 (98) (2007), No. 2, 149-156.
[2] C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach. CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.
[3] C. P. Niculescu and C. I. Spiridon, Jensen type inequalities for almost convex functions, to appear.
[4] C. P. Niculescu and J. Pečarić, The equivalence of Chebyshev's inequality with the HermiteHadamard inequality, Math. Reports, 12 (62), (2010), No. 2, 145-156.

University of Craiova, Department of Applied Mathematics, Street A. I. Cuza 13,
Craiova, RO-200585, Roumania
E-mail address: aurelia_florea@yahoo.com; floreaurelia@gmail.com

