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Inequalities involving Mellin transform, integral mean,
exponential and logarithmic mean

A. AcrLi¢ ArjiNnovié

ABSTRACT. In this paper the Mellin transform in complex domain is considered for functions
f which vanish beyond a finite domain [a,b] C [0,00) and such that f’ € Ly [a,b]. New
inequalities involving the Mellin transform of f, integral mean of f, exponential mean and
logarithmic mean of the endpoints of the domain of f are presented.
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1. Introduction

The Mellin transform M (f) of a Lebesgue integrable mapping f : [a,b] — R,
where [a, b] C [0, 00), is defined by

M(f)(2) = / £ (L, (11)

for every z € C for which the integral on the right hand side of (1.1) exists, i.e.
’f; f () t*~1dt| < oo (see for instance [5]).

The exponential mean F (z,w) of two complex numbers z,w € C is defined by

ef—e¥ .
e=<_  if zFw,

E(z,w) = { sw

ev, if z=w. (1.2)

In recent paper [2] bounds of the difference between the Laplace transform

b
L() () = / £ () et

and the product of the exponential mean E (—za, —zb) and the integral mean of f
were obtained.

Theorem 1.1. [2] Assume (p,q) is a pair of conjugate exponents, that is % +1i=1.
Let f : [a,b] — R be absolutely continuous such that f' € L,[a,b]. Then for z # 0,
1 < p < o0, the following inequalities hold

1
2efaRez (b _ a)g

2]

b
L)) = B(-za-2t) [ f(5)ds] < 171, i Rez>0,

and
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Q=

267bRez (b _ a)

2]

b
L)) = B(-za-2t) [ f(5)ds| < 1£1l, i Rez <0,

while for p =1

b —aRez
£(0) )= B(=za.—2b) [ fl)ds| < 7], if Rez >0

IN

and

IN

b 9¢—bRez
L)) = El=za.=2b) [ Fo)ds| < X7, if Rez <0,
a

Inequalities of the similar type involving the Fourier transform of functions in
L, spaces and also of functions of bounded variation were obtained in [1] and [4]
respectively.

The aim of this paper is to obtain analogue inequalities for the Mellin transform
M (f) (2) in the complex domain for functions f : [a,b] — R, [a,b] C [0,00), and
f' € L,[a,b]. Beside integral and exponential means these inequalities involve also
the logarithmic mean L (a,b) of a,b € R, defined by

a=b if a#b,

L(a,b) — { Ina—Inbd’ (13)

a, if a="5.

In Section 2 estimate of difference between Mellin transform M (f) (z) and

E(zlna,zInd) (L (a,b)) / f(s

is given. In Section 3 two further generalizations of the inequality from Section 2 are
obtained by means of the difference between two weighted integral means.

2. Estimates of difference between Mellin transform and product of inte-
gral, exponential and logarithmic mean

Next theorem is the analogue of Theorem 1.1 for the Mellin transform M (f) (2)
in the complex domain.

Theorem 2.1. Assume (p,q) is a pair of conjugate exponents, that is % + 5 = 1.
Let f : [a,b] — R be absolutely continuous such that [a,b] C (0,00) and f' € L, [a,b].
Then for z #0, 1 < p < oo, the following inequalities hold

1 lb pReZ (b _ o)%
M(f) () - Elena.zInb) /f §2|(Z)|f|| if Res > 0,
and
Re z %
M(f) (z) - Zln“lnb/f Sw\lfll if Rez <0,
|2
while for p =1
] lb bRez
M(f) (z) — ElzIna,z1nd) /f S| < T Il i Rez =0,
and .
1 lb oz
M(f) () - Elzlna.zinb) /f _272| 1l if Rez <o.
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Here E (z,w) is exponential mean given by (1.2) and L (a,b) is logarithmic mean given
by (1.3).
Proof. Montgomery identity states (see [6]):

bia/abf(8>d8+/:P(tas)f/(s)d&

where P (t, s) is the Peano kernel, defined by
= a<s<t,
P(t,s) =

Multiplying the Montgomery identity by ¢+*~! and then integrating from a to b with
respect to t we have

b
M(f) () = / £ ()t

_ bla/ab [/:f(s)dw/at(s—a)f'(s)ds+/tb(s—b)f’(s)ds] #1dt.

Since 4% = zt*~! for z € C and thus ff t*ldt = bz;“z, by an interchange of the
order of integration we get

F(Lroe)era £ () [ (555) o

z

ft) =

ezInb _ pzlna b b b
—7/ f(s)ds =E(zInb,zlna) <ln)/ f(s)ds,
z a a a

So we have

zlna,zIn b b g
M) ) - EEREERD) [ p s == [ g5

T (a,b)
[ () [2 (Z:Z)f%s)ds].

+
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For 1 < p < o0, by applying Holder inequality we obtain

‘M(f)(z)— (zlna, zlnb/f
b z _ b? h— z

/ [—i+(22)z+(b2) 7]
< 57 s—a\ b? b—s\ a* ,
—H‘z+(b_4>z+(b_a>z

Now, if Rez > 0, by applying the triangle inequality we have

7i+ s—a b:Jr b—s)\ a*
z b—a) z b—a) z

)

s—a b:+ b—s f

b—a/ z b—a) z p
s—a zlnb+ b—s zlna
b—a b—a z

SZ

z

<

‘ \

zlns

IA
a

q

a)

1
aq

eRczlnb ||1H N s—a N b—s
|z] q b—a b-a

and if Rez < 0 we have

_sz+ s—a b:+ b—s i
z b—a) z b—a/) z p

_ 26Rcz1nb (b _

a)

1
a

eRezlna s—a b—s
< (In °- =
< (| G2 =0)

Similarly for p = 1 we have

b
wMi) () - ZEEEED [ s

< f+ s—a b:+ b—s f
- z b—a) z b—a) z |
IfRez>0

s (ama\ B (bos) @
z b—a/ z b—a) z |,
Rezlnb s b—s
< 1
<o (| G +5=2)
and if Rez < 0 we have
e %% s—a)\ e b* b—s)\ e 9%
z b—a z b—a Z o
eRezlna —a b—s
< |1
< (e + | (=5 +5=3)

and the proof is done.

10y -

ZeRezlna (b _
. ||

QeRezlnb
’oo) ol

’ ) QeRezlna
o) I

)

)



INEQUALITIES INVOLVING MELLIN TRANSFORM 281

Remark 2.1. In case a = 0 and Rez > 0 proceeding in the same way as in the

previous proof and using the fact that 0 =0 and b(b_“a) = ? we obtain
bz—l b 2bRcz+%
‘M(f)(z)— . / f(s)ds ST“-}NHP’
and
pr—1 b opRe =
«mew — [ r@as < Z s

3. Further generalizations by means of the difference between two weighted
integral means

Let w : [a,b] — R be an integrable weight function such that f t)dt # 0 and

W (z) = [ w(t)dt, x € [a,b]. Then weighted Montgomery 1dent1ty states (given
by Pecari¢ in [7])

1 b b
f@—ﬁ@ﬁ/f@wwﬁi/%@ﬁﬂwﬁ (31)
w a a
where P, (t,s) the weighted Peano kernel, defined by
W, a<s<u,
Py (z,t) = (3.2)
%871, x<s<b

By subtracting two weighted Montgomery identities, one for the interval [a, b] and the
other for [c,d], the next result is obtained (see [1]).

Lemma 3.1. Let f : [a,b] U [¢c,d] — R be an absolutely continuous function on
[a,b] U [e,d], w : [a, b] — R and u : [¢,d] — R some weight functions, such that

[Pw(tydt #0, [Tu(t)dt #0 and

07 t < a, 0, t< C,
W (z) = f%w(t)dt, a<t<b, U(x)={ [Tult)dt, c<t<d,
f w(t)dt, t>b, [Tutydt, t>d,
and [a,b] N [e,d] # 0. Then, for both cases [c,d] C [a,b] and [a,b] N [c,d] = [¢,b], (and
also for [a,b] C |[c, ] and [a,b] N [c,d] = [a,d]) the next formula is valid
L [wwsw L [fuwswa= [T koro
S wtftdt—i/utftdt:/ K (&) f (t)dt
f; w (t) dt Ja fcd U (t) dt Je min{a,c}
(3.3)
where
K (t) = P, (z,t) — Py (z,t), t € [min{a, ¢}, max {b, d}]
and P, (z,t), Py (x,t) are given by
. a<s<us vH e<s<a,
P, (z,t) = Wit) , Py(x,t) = U
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thus
VVI%Z;’ t € la,,
K@t)= -y +oa teled, i ledClabl], (3.4)
- g, teldb,
—ngg, t € la,c],
K@) = —wa+e8 teleb), if [abn[ed=I[cd] (3.5)
FH -1, teld,

Remark 3.1. It is easy to check that weighted Montgomery identity (3 1) and the

previous Lemma hold also for w : [a,b] — C integrable and such that f t)dt # 0.
In case w (t) =t*~1, t € [a,b] we have

b* — a”®

AzMoﬁ £0

z

since for z = x + iy
b =a® & M=t o N (cog(yInd) +isin (ylnb)) < a=b.

Remark 3.2. The Lemma 3.1 for normalized weight function w, i.e. such that
f;w (t)dt =1, was proved in [3].

Next, we apply identity for the difference of the two weighted integral means (3.3)
with two special weight functions: uniform weight function and kernel of the Mellin
transform. In such a way new generalizations of the results from the previous section
are obtained. In the special case, for ¢ = a and d = b, both reduce to the results of
the Theorem 2.1.

Theorem 3.1. Assume (p,q) is a pair of conjugate exponents, that is %—l— L—1. Let
f:]a,b] = R be absolutely continuous, [a,b] C (0,00), f" € L,a,b] and c,d € [a,b],
c<d. Then for z#0, Rez >0 and 1 < p < oo, the following inequality holds

d—c (zlna, zInb)
L) (o) - P [y

—c bfa%_1
<bRez ( )|(Z| ) ||f/Hpa

while for p =1 it holds
LA

d_cM(f)(z)— zlnazlnb/f O dt =

Here E (z,w) and L (a,b) are exponential and logarithmic mean given by (1.2) and
(1.3) respectively.

Proof. If we apply identity (3.3) with w (t) = t*71, t € [a, ] and u( )= 7=, t€[c,d
again we have W(t)z%(t—a),te[a,b];U() ¢,te[c,d] and

d b
(ba)é((,(zliz)a,zlnb)M(f)(Z)_dlc/c f(t)dt:/a K (t) f'(t)dt
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Since [¢, d] C [a,b] we use (3.4) so

t—a F(zlna,zInt) L(a,b)

" b—a E(zIna,zInb) L(a,t)’ te [a,c],
In Int) L(a,b —c
K(t) =4 —i= Eilniilnfﬂ LEZt;—i—fi—c’ t € (c,d),
—q E(zlna,zInt) L(a,b)
1- It)iE(zlnazlnb) L(a,t)’ te [d’b]
Thus
d—c zlna zlnb zlna zlnb
() (o) BRI, [y ) gy g EEROID [

and by taking the modulus and applying Holder inequality we obtain

d_CM(f)(z)— zlna zlnb / £t dt

(zlna zlnb)

Now, for 1 < p < oo (for 1 < g < 00) we have
t—aFE(zlna,zInt)|?

q:<LCb—a L(a,t)

+/d t—aFE(zlna,zlnt) t—cE(zlna,zlnb)|*
. |b—a L (a,t) d—c L (a,b)
b
<,
d

1
q q
dt
zlnt_ezlna

z(t—a)
c 2€Rez1nb q 2€Rez1nb q

dtg/ () dt:(c—a)<> ,
o \(b—a)lz] (b—a)lz|

t—aFE(zlna,zlnt) t—cE(zlna,zInbd) 1
b—a L(a,t) d—c L (a,b)

1 ¢ d—t zlna l—c zIlnbd zlnt
= G=arr ), i *d—ce )

< 1 /d d—t zlna t— zlnb
~((b—a) )T \ /e

d—c* df
eqRezlnb d
<
~ ((b=a)lz])* /c

ot

dt

dt

t—aFE(zlna,zInt) FE(zlng zlnb)
b—a L (a,t) L(a,b)

E(zlna,zlnt)| __

L(a,t)

24Rezlnb
< |Pz||t7a\ for t € [a, b], we have

and since ‘

r
r

t—aE(zlna,zInt)|?
b—a L{(a,t)

dt

q

dt

dt4-J/ ezt | dt)

d—1t t— q 2(d — qRezlnb
+ (:ﬁ+/|ﬁﬁ><( c)e

d—c d-c (b=a)lz)? ~
b t—aF(zlna,zlnt) B E(zlna,zInb)|? B 1 b p2inb _ zint|d
/d b—a  L(a,t) L(a,b) dt = ((b—a) |Z|)q/d | et
1 b eRezlnb p B (QeRezlnb)q(b_d)
< ey J, O = S
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Thus

E(zlna,zInbd)
L(a,b)

K Seﬁczlnb(2q<c—a>+2<d—c>+2q<b—d>)5

((b—a)lz])!

q
i1
< bReZQ(b_ a)q
- ||

and the first inequality is proved. For p = 1 we have

HE(Zmannm](@ﬂLJZHMX{SUP

t—aE(zlna,zlnt)‘

L (av b) t€la,c] b—a L (aa t)
< t—aFE(zna,zInt) t—cE(zlna zInb)
epalb—a L(at) d—c  L(ab) |’
sup t—aE(zlna,zlnt) E(zlna,zlnb)‘
te(d,b] b—a L (Cl, t) L (CL, b)
and
taE(zlna,zlnt)‘ 2¢efezInb
sup = ’
t€la,c] b—a L(aat) (b—a)|z|
< t—aFE(zna,zInt) t—cE(zlna zInd)
epalb—a L(at) d—c  L(ab)
1 d—1 zlna t—c zlnb zlnt
= sup e —e —e
b ol oryla—e i
eRezlnb d—t+ LL—C+1’ 2€Rezlnb
> sup =N
(b—a)lz] tejea|d—c  d—c (b—a)lz|
sup t—aFE(zna,zInt) FE(zlna zlnb)
tejap |b—a L (a,t) L(a,b)
1 zlnbd zlnt QeRezlnb
——— Sup |e —e < —.
pCEnIERGA = G-an
Thus
E(zlna,zInbd) 2pRe
——— K (t <
R el I e
and the proof is completed. ([

Remark 3.3. The inequalities from the previous Theorem hold for Rez > 0. Simi-
larly it can be proved that in case Rez < 0 and 1 < p < oo the following inequality
holds

d—c zlna zlnb
) )~ BT [ )

es2(d—c b—a)i !
<o 220y

while for Rez < 0 and p =1 it holds

d—c E(zlna,zInbd)
) o) - B [ )

aRez 2( )
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Theorem 3.2. Assume (p,q) is a pair of conjugate exponents, that is %+% =1. Let
f:]a,b] = R be absolutely continuous, [a,b] C (0,00), f" € L,a,b] and c,d € [a,b],
c<d. Then for z#0, Rez >0 and 1 < p < oo, the following inequality holds

d—ck zlnc zlnd d o 2(b v
1 L rwa- [ o a0y
a c |2
while for p =1 it holds
d—ckE zlnc zlnd 4 oy 2
e [ rwa [ <t

Here E (z,w) and L (a,b) are exponential and logarithmic mean given by (1.2) and
(1.3) respectively.

Proof. We apply identity (3. ) again with w (t) = 7=, t € [a,b] and u(t) = 771,
t € [e,d], so we have W (t) = (=2, ¢ € [a,b]; U () = (t — ¢) ZEEES ¢ € [c, d]; and

b c d b
(bia)/ F0dt =G c)ELEzli)c 2Ind) / T () dt :/ K (t) f' (t) dt.

Since [¢, d] C [a,b] we use (3.4) so

_2:2’ te[avc],
_ t—c E(zlnc,zInt) L(c,d) t—
K (t) - d—cc E(zlnc,zInd) L(c,t) ﬁ’ te <C7 d> ’

=t t€d,b].

—a?

d—cE( 1 ld d
b_; (zlnc 2 In /f t)dt — /tz’lf(t)dt

_(d— BlzInczlnd) zlnc zlnd / K

and by taking the modulus and applying Holder inequality we obtain

—cE(zlnc, 21 ¢
Z_; zncznd/f —/tz_lf(t)dt

(zlne, zlnd)
L q

Thus

< (d—¢)

Now, for 1 < p < oo (for 1 < ¢ < 00) we have

U

t—aE(zlnc zInd) th

e

b—a L{(c,d)
+/d t—cE(zlnc,zlnt) t—aFE(zlnczlnd) th
. |[d—c  Lie) b—a L(c,d)

b—t E(zlnc,zInd)|? ‘
dt
b—a L(c,d)

b
/
d
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. E(zlnc,zInt)
and since ‘ D

ezlnt_ zlne

z(t—c)

26Rezlnd
= zlt—

for ¢ € [¢, d] we have

/C t—aF(zlnc zlnd) thi E(zlnc,zInd)|? (¢ (t—a th
. |b—a L(c,d) N L (e, d) . \b—a
_|E(zlnc,znd)|? (¢ —a)™! 21¢aRezind (o _ g)0t!
L(c,d) (@+1)(0—a) = (¢+1)(Iz[(d—c) (b—a)?
/d t—cE(zlnc,zlnt) t—aFE(zlncznd) th
. |d—c L(c,t) b—a L(c,d)
1 diy _ _ q
_ - / b—t zlnc t zlnd — e Int dt
((d=ao)lzD? ). |b—a bfa
1 No—t e t—a mal® 7 sineia
< zinc z 1n zIn
= @=ap" (f = | [ e a

_ e‘]Rezlnd / |1|th QeqRezlnd(d C)
((d=c) (d=o)]2))"

b—t E(zlnc,zInd)|? E(zlne,zInd)|?

b b _ q
/ (=Y
d d b—a

b—a Lc,d) L{(c,d)
‘E(ﬂngzmd)q (b—d)r! 2ueaRezlnd (p _ gyat!
- L(c,d) (@+1)b—a)® = (¢+1)(|z](d—c) (b—a)®

Thus

HE(ZIHC’Zlnd)K(t)

L(c,d)

q

1
29(c—a)?t? q | 29(b=d)itt\ 9
<eRczlnd q+1 +2(d*6) (bia) + q+1
((d—=c)(b—a)lz])

Q=

2(b—a)

dRez
(d—c)lz|

and the first inequality is proved. For p = 1 we have

b

E(zlnc,zInd) t—aFE(zlne zInd)
ZREMGEND) il =
H L(c,d) ()Hm max{t;g)c] b—a L (e, d)

t—cE(zln¢,zInt) t—aE(zlne zInd)

wpgld—c  L(et)  b—a  L(cd |
sup b—tE(zlnc,zlnd)‘}
te[dp |b—a  L(cd)
and
sup taE(zlnc,zlnd)‘ < 2¢eRezlnd (o g)
tefa,c] b—a L(c,d) (d—c) (b—a)|z|’
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sup

t—cE(zlnc zInt) t—aE(zlnc,zlnd)‘

tefe,a) | d—c L (c,t) b—a L(c,d)
:# sup b_tezlnc t_aezlnd_ezlnt

@ o S =" Tha
eRezlnd d—1t t—c 26Rez1nd
< ————— sup ++1’:7
(d=c)lz] teeq|d—c  d—c (d—c)|z|

b—tE(zlnc,zlnd)‘ 2efezInd ( ()
sup <

teldy |0 —a L (c,d) T (d=c)(b—a)lz|’
Thus
E(zlne zInd) Re,Mmax{(c—a),(b—a),(b—d)} 2dRe>
)| < 2dRe* =
L(c,d) o (d—c)(b—a)lz| (d—=o) |z
and the proof is completed. O

Remark 3.4. The inequalities from the previous Theorem hods for Rez > 0. Sim-
ilarly it can be proved that in case Rez < 0 and 1 < p < oo the following inequality

holds
d—ck zlnc zlnd d 0s2(b
‘ [ rwa [ <20y,

Q=

b—a
while for Rez < 0 and p =1 it holds

d—cFE zlnc zlnd
i-ckl L[ rwa- [feswal < a2,

Remark 3.5. The results of the Theorems 3.1 and 3.2 in case ¢ = a and d = b reduce
to the results of the Theorem 2.1.

Remark 3.6. In case a = 0 and whenever Re z > 0 all inequalities from the Theorem

2 and Theorem 3 hold with the term g instead of W. In casea =c=0
dzfl

and whenever Rez > 0 all inequalities from the Theorem 4 hold with the term “——

instead of W (see Remark 1).
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