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Algebraic view of MTL-filters
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Abstract. This paper deals with filters on MTL-algebras. We introduce some types of filters

on MTL-algebras such as weak implicative and weak positive implicative and attempt to
obtain some of the properties of these filters. Then we investigate some relationships between
these filters and some types of filters that were already defined.
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1. Introduction

In [4], Esteva and Godo introduced a logic weaker than BL [5], with a real-valued
semantics, namely MTL. Although weaker than BL, this logic is strong enough to
prove the residuation property of implication → with respect to &. In [6], MTL has
been shown to be complete with respect to interpretations where & and the corre-
sponding implication → are interpreted as a left-continuous t-norm and its residuum,
respectively. MTL is equivalently obtained as the extension of Höhle’s Monoidal logic
with the pre-linearity axiom (φ → ψ) ∨ (ψ → φ). The logic MTL is also related to
Ono’s family of substructural logics [11], which are different extensions of the Full
Lambek calculus FL. In fact, Höhle’s Monoidal logic is indeed equivalent to the ex-
tension of FL with exchange, i.e. (φ→ (ψ → χ)) → (ψ → (φ→ χ)), and weakening,
i.e. (φ → ψ) → (φ&χ → ψ), denoted FLew, whose algebraic semantics is the vari-
ety of (commutative, integral) residuated lattices. Hence, MTL is equivalent to the
extension of FLew with pre-linearity axiom.

In [2], Borzooei et al. introduced IMTL, EIMTL, associative and strong filters
on MTL-algebras and showed that IMTL and strong filters are related to IMTL
and strong MTL-algebras. They proved that strong filters include some filters such
as implicative, positive implicative and fantastic filters.

In this paper, we extend some Borzooei et al.’s results and prove that associative
filters on MTL-algebras are trivial. We introduce some various types of filters on
MTL-algebras such as weak implicative, weak positive implicative and prime and
obtain some equivalent conditions for EIMTL, weak implicative and weak positive
implicative filters on MTL-algebras. Then we prove that for any positive implicative
filter F , the cut Fa is an EIMTL filter. Also we investigate some relationships
between these filters and some types of filters that were already defined.
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2. Preliminaries

Definition 2.1. [1, 4, 5] A residuated lattice is an algebra (L,∨,∧,⊙,→, 0, 1) of type
(2, 2, 2, 2, 0, 0) such that:
(1) (L,∨,∧, 0, 1) is a bounded lattice with 1 as the greatest element and 0 as the

smallest element,
(2) (L,⊙, 1) is a commutative monoid,
(3) a ≤ b→ c if and only if a⊙ b ≤ c, for all a, b, c ∈ L.
A residuated lattice L is called an MTL-algebra, if (x → y) ∨ (y → x) = 1, for all
x, y ∈ L.

Proposition 2.1. [1, 4, 5, 12] The following properties hold for any residuated lattice
((R1)-(R12)) and MTL-algebra ((R1)-(M2)):
(R1) x ≤ y ⇔ x→ y = 1,
(R2) 1 → x = x, x→ 1 = 1, x→ x = 1, 0 → x = 1 and x→ (y → x) = 1,
(R3) x ≤ y → z ⇔ y ≤ x→ z,
(R4) x→ (y → z) = (x⊙ y) → z = y → (x→ z),
(R5) x ≤ y implies z → x ≤ z → y and y → z ≤ x→ z,
(R6) z → y ≤ (x→ z) → (x→ y) and z → y ≤ (y → x) → (z → x),
(R7) (x→ y)⊙ (y → z) ≤ x→ z,
(R8) x′′′ = x′ and x ≤ x′′, where x′ = x→ 0,
(R9) x′ ∧ y′ = (x ∨ y)′,
(R10) x ∨ x′ = 1 implies x ∧ x′ = 0,
(R11) x⊙ y ≤ x ∧ y,
(R12) x ≤ y implies x⊙ z ≤ y ⊙ z,
(M1) x′ ∨ y′ = (x ∧ y)′,
(M2) x ∨ y = ((x→ y) → y) ∧ ((y → x) → x),

Definition 2.2. [2, 3, 5, 8, 10, 12, 13] Let F be a non-empty subset of MTL-algebra
L containing 1. Then F is called:
(i) a filter if F is closed with respect to ⊙ and x ∈ F , x ≤ y imply y ∈ F , for all

x, y ∈ L,
(ii) an EIMTL-filter if (x→ y)′′ ∈ F and x ∈ F imply y ∈ F , for all x, y ∈ L,
(iii) a fantastic filter if z → (y → x) ∈ F and z ∈ F imply ((x → y) → y) → x ∈ F ,

for all x, y, z ∈ L,
(iv) an associative filter if x → (y → z) ∈ F and x → y ∈ F imply z ∈ F , for all

x, y, z ∈ L,
(v) an IMTL-filter, if F is a filter and x′′ → x ∈ F , for all x ∈ L,
(vi) a strong filter, if F is a filter and (x′′ → x)′′ ∈ F , for all x ∈ L,
(vii) a prime filter if F is a proper filter and x∨ y ∈ F implies x ∈ F or y ∈ F , for all

x, y ∈ L,
(viii) an ultra filter if F is a proper filter and x ∈ F or x′ ∈ F , for all x ∈ L,
(ix) an implicative filter if x→ (y → z) ∈ F and x→ y ∈ F imply x→ z ∈ F , for all

x, y, z ∈ L,
(x) a positive implicative filter if x ∈ F and x → ((y → z) → y) ∈ F imply y ∈ F ,

for all x, y, z ∈ L,
(xi) a Boolean filter if F is a filter such that x ∨ x′ ∈ F , for all x ∈ L.

We note that, any IMTL-filter of MTL-algebra L is an EIMTL-filter and strong
filter (see [2, Theorem 3.14 and Theorem 4.2]).
For any filter F of MTL-algebra L we can define a relation ≡F on L by x ≡F y ⇐⇒
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x → y, y → x ∈ F , for all x, y ∈ L. Then ≡F is a congruence relation on L. Let
A/F = {[x]| x ∈ L}. For all x, y ∈ L, define [x] ∨ [y] = [x ∨ y], [x] ∧ [y] = [x ∧ y],
[x] ⊙ [y] = [x ⊙ y] and [x] → [y] = [x → y]. Then (L/F,∨,∧,⊙,→, [0], [1]) is an
MTL-algebra. It is called the quotient MTL-algebra with respect to F (see [4]).

Lemma 2.2. [2] Let F be a filter of MTL-algebra L. Then F is an EIMTL-filter
if and only if x′′ ∈ F implies x ∈ F , for all x ∈ L.

Theorem 2.3. [2] Any fantastic (positive implicative) filter of MTL-algebra L is an
EIMTL-filter.

Theorem 2.4. [2] Let F be a non-empty subset of MTL-algebra L. Then F is a
positive implicative filter of L if and only if F is an implicative and EIMTL-filter.

Theorem 2.5. [2, 7, 8] Let F be a filter of MTL-algebra L. The following are
equivalent:
(i) F is a positive implicative filter,
(ii) (x→ y) → x ∈ F implies x ∈ F , for all x, y ∈ L,
(iii) (x′ → x) → x ∈ F , for all x ∈ L.

Theorem 2.6. [2, 7, 8] Let F be a non-empty subset ofMTL-algebra L. The following
are equivalent: for all x, y, z ∈ F ,
(i) F is an implicative filter of L,
(ii) 1 ∈ F , z → (y → (y → x)) ∈ F and z ∈ F imply y → x ∈ F ,
(iii) F is a filter and x→ x2 ∈ F ,
(iv) F is a filter and Fa = {x ∈ L| a→ x ∈ F} is a filter of L, for any a ∈ L.

Theorem 2.7. [9] Let F a be filter of MTL-algebra L. Then F is a Boolean filter if
and if it is a positive implicative filter.

Theorem 2.8. [2] Any implicative, positive implicative and fantastic filter of MTL-
algebra L is a strong filter.

Theorem 2.9. [14] Let F be a filter of residuated lattice L. Then F is fantastic filter
if and only if ((x→ y) → y) → ((y → x) → x) ∈ F , for any x, y ∈ L.

3. Some algebraic results on MTL-filters

In this section, (L,∨,∧,⊙,→, 0, 1) or simply L will denote anMTL-algebra, unless
otherwise specified.

Definition 3.1. AnMTL-algebra L is called an EIMTL-algebra if x′′ = 1 ⇔ x = 1,
for any x ∈ L.

Theorem 3.1. Let F be a filter of L. The following conditions are equivalent on L:
for all x, y ∈ L,
(i) F is an EIMTL-filter of L,
(ii) x→ y ∈ F and x′′ ∈ F imply y ∈ F ,
(iii) (x→ y)′′ ∈ F and x′′ ∈ F imply y ∈ F ,
(iv) x→ y′′ ∈ F and x′′ ∈ F imply y ∈ F ,
(v) x→ y′′ ∈ F and x ∈ F imply y ∈ F ,
(vi) L/F is an EIMTL-algebra.

Proof. (i) ⇒ (ii) Let x → y ∈ F and x′′ ∈ F . Then by Lemma 2.2, x → y ∈ F and
x ∈ F , so y ∈ F .
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(ii) ⇒ (iii) Let (x → y)′′ ∈ F and x′′ ∈ F . Since (x → y) → (x → y) ∈ F and
(x → y)′′ ∈ F , then by (ii), x → y ∈ F . On the other hand, x → x ∈ F and x′′ ∈ F ,
so x ∈ F . Therefore, y ∈ F .

(iii) ⇒ (iv) Let x→ y′′ ∈ F and x′′ ∈ F . Then by (x→ x)′′ ∈ F , x′′ ∈ F and (iii),
we get x ∈ F , so y′′ ∈ F . Now, by (y → y)′′ ∈ F and y′′ ∈ F we get y ∈ F .

(iv) ⇒ (v) Let x→ y′′ ∈ F and x ∈ F . Then x→ y′′ ∈ F and x′′ ∈ F and by (iv),
we get y ∈ F .

(v) ⇒ (vi) Let [x]′′ = [1], for some x ∈ L. Then x′′ → 1 and 1 → x′′ ∈ F .
Since 1 ∈ F , then by (v), we get x ∈ F . Hence [x] = [1]. Therefore, L/F is an
EIMTL-algebra.

(vi) ⇒ (i) It follows from Lemma 2.2. �

Now, we want to review Theorem 2.4 in details. We show that the intersection of
the set of all IMTL-filters and the set of all implicative filters of L is exactly the set
of all positive implicative filters of L.

Theorem 3.2. F is a positive implicative filter of L if and only if F is an implicative
and IMTL-filter.

Proof. Let F be a positive implicative filter of L and x ∈ L. Then by Theorem
2.5, (x′ → x) → x ∈ F . Since 0 ≤ x, then x′′ = x′ → 0 ≤ x′ → x and so
(x′ → x) → x ≤ x′′ → x. Therefore, x′′ → x ∈ F and the result is obtained. The
proof of the converse is straight consequent of Theorems 2.4. �

By Theorem 2.7, it can be easily obtained that F is an ultra filter of L if and only
if F is prime and positive implicative. In the next theorem, we want to investigate
relation between positive implicative (ultra) filters and {x ∈ L| a → x ∈ F}, for any
a ∈ L.

Theorem 3.3. Let F be a non-empty subset of L and Fa = {x ∈ L| a → x ∈ F},
for all a ∈ L.
(i) F is a positive implicative filter of L if and only if Fa is an EIMTL-filter of L,

for all a ∈ L,
(ii) Let F be a filter of L. Then F is an ultra filter if and only if {Fx| x ∈ L} =

{F,L}.

Proof. (i) Suppose that F is a positive implicative filter of L and a ∈ L. Let (x →
y)′′ ∈ Fa and x ∈ Fa, for some x, y ∈ L. Then a → (x → y)′′ ∈ F and a → x ∈ F .
Since F is a filter and

(a→ (x→ y)′′) → (a→ (x→ y)) ≥ ((x→ y)′′) → (x→ y) ∈ F,

(by Theorem 3.2), then we conclude that a → (x → y) ∈ F . Since each positive
implicative filter is implicative, we obtain a→ y ∈ F and so y ∈ Fa. Therefore, Fa is
an EIMTL-filter of L. Conversely, let Fa be an EIMTL-filter of L, for any a ∈ L.
First, we show that F is a filter of L. Let x → y ∈ F and x ∈ F . Then 1 → x ∈ F
and 1 → (x → y) ∈ F and so x, x → y ∈ F1. Since F1 is a filter, then we have
y ∈ F1 and so y = 1 → y ∈ F . Hence F is a filter. Now, by Theorem 2.6, F is an
implicative filter of L. Suppose that x′′ ∈ F , for some x ∈ L. Since x′′ ∈ Fx′′ , then
by assumption, we get x ∈ Fx′′ and so x′′ → x ∈ F . Hence F is an IMTL-filter.
Therefore, by Theorem 3.2, F is a positive implicative filter of L.

(ii) Let F be an ultra filter and x ∈ L. Then by Theorem 2.7 and 2.5, F is an
implicative filter and so by Theorem 3.3(i), Fx is a filter. If x′ ∈ F , then 0 ∈ Fx.
It follows that Fx = L. Now, let x′ /∈ F . Then x ∈ F and so Fx = F . Conversely,
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let {Fx| x ∈ L} = {F,L} and a ∈ L. Then Fa = L or Fa = F . If Fa = L, then
a′ = a→ 0 ∈ F . If Fa = F , then a ∈ Fa = F . Therefore, F is an ultra filter. �

Definition 3.2. Let F be a subset of L. The least EIMTL-filter of L containing F
is called EIMTL-filter generated by F and is defined by ⟨F ⟩E .

By Lemma 2.2, we obtain ⟨F ⟩E = ∩{G| G is an EIMTL-filter of L containing F }.

Theorem 3.4. Let F be a filter of L. Then

⟨F ⟩E = {u ∈ L| (xn → (· · · → (x2 → (x1 → u)′′)′′ · · · )′′)′′ ∈ F, ∃x1, ..., xn ∈ F, ∃n ∈ N}.

Proof. Suppose that

A = {u ∈ L| (xn→(· · ·→(x2 →(x1→u)′′)′′· · · )′′)′′ ∈ F, ∃x1, ..., xn ∈ F, ∃n ∈ N}.

(1) Since (x→ x)′′ = 1 ∈ F , for any x ∈ F , x ∈ A. So, F ⊆ A.
(2) If a′′ ∈ A, for some a ∈ L, then there exists x1, ..., xn ∈ F , such that

(xn → (· · · → (x2 → (x1 → a′′)′′)′′ · · · )′′)′′ ∈ F.

By (R2), we get

(xn → (· · · → (x2 → (x1 → (1 → a)′′)′′)′′ · · · )′′)′′ ∈ F

and so a ∈ A.
(3) Let a→ b ∈ A and a ∈ A. Then there are x1, ..., xn, y1, ..., ym ∈ F such that

α = (xn → (· · · → (x2 → (x1 → a)′′)′′ · · · )′′)′′ ∈ F,

β = (ym → (· · · → (y2 → (y1 → (a→ b))′′)′′ · · · )′′)′′ ∈ F.

In the following, we show that b ∈ A. By (R6) and (R4), we obtain

β→ [α→ [(xn→(· · ·→(x2→(x1→(ym→(· · ·→(y2→(y1→b)′′)′′· · ·)′′)′′)′′)′′· · ·)′′)′′]] ≥

β→[(xn→(· · ·→(x1→a)′′ · · · )′′)→(xn→(· · ·→(x1→(ym→(· · ·→(y1→b)′′ · · · )′′)′′)′′ · · · )′′)] ≥
β→[(xn−1→(· · ·→(x1→a)′′· · · )′′)′′→(xn−1→(· · ·→(x1→(ym→(· · ·→(y1→b)′′· · · )′′)′′)′′· · · )′′)′′] ≥

...

β → [a→(ym→(· · ·→(y1→b)′′· · ·)′′)′′] =
a→β→ [(ym→(· · ·→(y1→b)′′· · ·)′′)′′] ≥

a→ [(ym→(· · ·→(y2→(y1→(a→b))′′)′′· · ·)′′)→(ym→(· · ·→(y1→b)′′· · ·)′′)] ≥
a→ [(ym−1→(· · ·→(y2→(y1→(a→b))′′)′′· · ·)′′)′′→(ym−1→(· · ·→(y1→b)′′· · ·)′′)′′] ≥

...

a → [(a → b) → b] = 1 ∈ F.

Since α ∈ F , β ∈ F and F is a filter, then

(xn → (· · · → (x2 → (x1 → (ym → (· · · → (y2 → (y1 → b)′′)′′ · · · )′′)′′)′′)′′ · · · )′′)′′ ∈ F.

Hence by definition of A, b ∈ A and so A is a filter of L. From (1), (2), (3) and
Lemma 2.2, we obtain A is an EIMTL-filter of L containing F . Clearly A ⊆ G, for
any EIMTL-filter G of L, which is containing F . Therefore, ⟨F ⟩E = A. �

Corollary 3.5. F = {x ∈ L| x′ = 0} is the least EIMTL-filter of L and

θ = {(x, y) ∈ L× L| (x→ y)′ = (y → x)′ = 0}

is the least congruence relation on L such that L/θ is an EIMTL-algebra.
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Proof. Since G = {1} is a filter, then clearly, by Theorem 3.4 and (R8),

⟨G⟩E = {x ∈ L| x′ = 0}

and so F is a filter. Moreover, F ⊆ E, for any EIMTL-filter E of L. By θ =≡F , we
conclude that θ is the least congruence relation on L such that L/θ is an EIMTL-
algebra. �

We know that, in each BL-algebra, the concept of EIMTL-filter and fantastic
filter are the same (see [2, Corollary 3.11]). In the next theorem, we want to answer
this question, “under what condition these concepts are the same?”

Theorem 3.6. Let (L,∨,∧,⊙,→, 0, 1) be a residuated lattice. Then any EIMTL-
filter of L is fantastic if and only if L satisfies the condition (x∆y)′ = 0, where
x∆y = ((x→ y) → y) → ((y → x) → x).

Proof. Assume that L is a residuated lattice such that any EIMTL-filter of L is
fantastic. Let x, y ∈ L. By Corollary 3.5, F = {x ∈ L| x′ = 0} is an EIMTL-filter
of L and so it is fantastic filter. Hence by Theorem 2.9, x∆y ∈ F and so (x∆y)′ = 0.
Conversely, let (x∆y)′ = 0, for any x, y ∈ L and F be an arbitrary EIMTL-filter of
L. For any x, y ∈ L, (x∆y)′′ = 1 ∈ F , so by Lemma 2.2, x∆y ∈ F . By Theorem 2.9,
we conclude that F is a fantastic filter. �

Corollary 3.7. If L is a BL-algebra, then (x∆y)′ = 0, for any x, y ∈ L.

Proof. It follows from [7, Lemma 1], and Theorem 3.6. �

Definition 3.3. Let F be a filter of L. Then F is called a weak implicative filter if
x→ (y → z) ∈ F and x→ y ∈ F imply x→ z′′ ∈ F , for any x, y, z ∈ F .

By x ≤ x′′ and (R5), it can be obtained that any implicative filter of L is weak
implicative.

Example 3.1. Let (L = {0, a, b, c, 1},≤) be a partially ordered set such that 0 < a <
b < c < 1. Consider the following tables:

Table 1 Table 2
→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 b 1 1 1
c 0 a b 1 1
1 0 a b c 1

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a a b b
c 0 a b c c
1 0 a b c 1

Let ∨ and ∧ be min and max on L, respectively. Then (L,∨,∧,⊙,→, 0, 1) is an
MTL-algebra and {1} is a filter of L (see [2, Example 4.16] ). Let F = {1}. It is
easy to show that F is a weak implicative filter of L. Since b → (b → a) = 1 and
b→ a = b /∈ F , then F is not an implicative filter.

Proposition 3.8. Let F be a filter of L. Then the following conditions are equivalent:
(i) F is a weak implicative filter,
(ii) x→ (x2)′′ ∈ F , for any x ∈ L,
(iii) x→ (x→ y) ∈ F implies x→ y′′ ∈ F .

Proof. (i) ⇒ (ii) Let x ∈ L. Since x → (x → x2) = 1 ∈ F and x → x ∈ F , we get
x→ (x2)′′ ∈ F , by (i).
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(ii)⇒ (iii) Let x→ (x→ y) ∈ F , for some x, y ∈ L. Since F is a filter, then by

(x2)′′ → y′′ ≥ x2 → y = x→ (x→ y) ∈ F, by (R6)

(x→ (x2)′′)⊙ ((x2)′′ → y′′) ≤ x→ y′′, by (R7)

we conclude that x→ y′′ ∈ F .
(iii) ⇒ (i) Let x → (y → z) ∈ F and x → y ∈ F . Since y → z ≤ (x → y) → (x →

z), then x → (y → z) ≤ x → ((x → y) → (x → z)) and so x → ((x → y) → (x →
z)) ∈ F . Hence x→ (x→ z) ∈ F . Therefore, x→ z′′ ∈ F . �

We know that any implicative filter of L is a strong filter (see [2]). We will prove
that this result holds for weak implicative filters.

Proposition 3.9. If F is a weak implicative filter of L, then F is a strong filter.

Proof. Assume that F is a weak implicative filter of L and x ∈ L. Then by (R6),

(x′′ → x)′ → (x′′ → x)′′ ≥ (x′′ → x)′ → (x′′ → x),

≥ x′ → (x′′ → x),

= (x′ ⊙ x′′) → x = 0 → x = 1 ∈ F.

Since F is a weak implicative filter, then by Proposition 3.8, (x′′ → x)′ → 0 ∈ F .
Therefore, F is a strong filter of L. �

Theorem 3.10. Let F be an EIMTL-filter of L. Then F is a weak implicative filter
if and only if F is an implicative filter.

Proof. Assume that F is a weak implicative filter of L and x ∈ L. Since F is an
EIMTL-filter, by Proposition 3.9, we conclude that F is an IMTL-filter. By Propo-
sition 3.8, x→ (x2)′′ ∈ F . Since F is an IMTL-filter, then

(x→ (x2)′′) → (x→ x2) ≥ (x2)′′ → x2 ∈ F, by (R6)

and so x → x2 ∈ F . Therefore, by Theorem 2.8, F is an implicative filter of L. The
converse is obvious. �

Corollary 3.11. Let F be an filter of L. Then, F is a positive implicative filter if
and only if F is an EIMTL and weak implicative filter.

Proof. It follows from Theorems 2.4 and 3.10. �

Definition 3.4. A filter F of L is called weak positive implicative filter of L if
(x→ y) → x ∈ F implies x′′ ∈ F , for all x, y ∈ L.

Clearly, if F is a positive implicative filter of L, then F is a weak positive implicative
filter of L. Moreover, a filter F is a positive implicative if and only if it is an EIMTL
and weak positive implicative filter.

Example 3.2. Let L = [0, 1] with ordinary partially order relation. Define x ∨ y =
max{x, y}, x ∧ y = x⊙ y = min{x, y} and

x→ y =

{
1 if x ≤ y,
y if y < x.

Then (L,∨,∧,⊙,→, 0, 1) is an MTL-algebra (see [8, Example 3.12]) and F = [1/2, 1]
is a filter of L. Let (x→ y) → x ∈ F , for some x, y ∈ L.

(i) If x ≤ y, then x = 1 → x = (x→ y) → x ∈ F and so x′′ ∈ F .
(ii) If y < x, then 0 < x and so x′′ = 1 ∈ F .
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Hence F is a weak positive implicative filter of L. But, it is not a positive implica-
tive filter (since (1/3 → 0) → 1/3 = 1 and 1/3 /∈ F ). Therefore, there exists a weak
positive implicative filter, which is not positive implicative.

Theorem 3.12. Let F be a filter of L. Then the following are equivalent:
(i) F is a weak positive implicative filter of L,
(ii) x′ → x ∈ F implies x′′ ∈ F , for any x ∈ L,
(iii) ((x′ → x) → x)′′ ∈ F , for any x ∈ L,
(iv) (x′ → x) → x′′ ∈ F , for any x ∈ L,
(v) x′ ∨ x′′ ∈ F , for any x ∈ L.

Proof. (i) ⇒ (ii) Straightforward.
(ii) ⇒ (iii) Suppose that F is a weak positive implicative filter and x ∈ L.

((x′ → x) → x)′ → ((x′ → x) → x) ≥ (x′ → x) → (((x′ → x) → x)′ → x), by (R4)

≥ ((x′ → x) → x)′ → x′, by (R6)

≥ x→ ((x′ → x) → x), by (R6)

= 1. since x ≤ (x′ → x) → x

Since F is a weak positive implicative filter, then ((x′ → x) → x)′′ ∈ F .
(iii) ⇒ (iv) Let x ∈ L. Since F is a filter of L and

((x′ → x) → x)′′ → ((x′ → x) → x′′) ≥ (x′ → x) → (((x′ → x) → x)′′ → x′′),

≥ (x′ → x) → (((x′ → x) → x) → x),

= ((x′ → x) → x) → ((x′ → x) → x),

= 1 ∈ F.

we get that (x′ → x) → x′′ ∈ F .
(iv) ⇒ (i) Let (x → y) → x ∈ F , for some x, y ∈ L. Since (x′ → x) → x′′ ∈ F ,

((x → y) → x ≤ x′ → x and F is a filter, then we conclude that x′′ ∈ F . Hence F is
a weak positive implicative filter of L.

(v) ⇒ (iv) Let x ∈ L. Since x′ ∨ x′′ ≤ ((x′ → x′′) → x′′) ∧ ((x′′ → x′) → x′), then
we get (x′ → x′′) → x′′ ∈ F . Hence by (R6),

((x′ → x′′) → x′′) → ((x′ → x) → x′′) ≤ (x′ → x) → (x′ → x′′) ≤ x→ x′′ = 1 ∈ F

and so (x′ → x) → x′′ ∈ F .
(ii) ⇒ (v) Let x ∈ L. Then by (R9), we get

(x′ ∨ x′′)′ → (x′ ∨ x′′) = (x′′ ∧ x′) → (x′ → x′′) = 1 ∈ F.

Hence by (ii), (x′ ∨ x′′)′′ ∈ F . Since L is an MTL-algebra, then by (R9) and (M1),
x′ ∨ x′′ ∈ F . �

It has been known that, if F is a positive implicative filter of L, then L/F is
a Boolean lattice. In the next theorem, we want to generalize this result for weak
positive implicative filters. Note that, L/F = L′/F , for any positive implicative filter
F of L.

Theorem 3.13. Let L′ = {x′| x ∈ L}, F be a weak positive implicative filter of L
and L/F be the quotient MTL-algebra with respect to F . Then
(i) x′ ∨ y′ ∈ L′, x′ ∧ y′ ∈ L′ and x′ → y′ ∈ L, for any x, y ∈ L,
(ii) L′/F = {[x]| x ∈ L′} is a Boolean algebra.
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Proof. (i) Let x, y ∈ L. Then by (M1) and (R9) we have x′ ∨ y′ = (x ∧ y)′ ∈ L′ and
x′∧y′ = (x∨y)′ ∈ L′. Moreover, x′ → y′ = x′ → (y → 0) = (x′⊙y) → 0 = (x′⊙y)′ ∈
L′, by (R4).

(ii) Clearly, [0], [1] ∈ L′/F . Let [a], [b] ∈ L′/F . Then there exist x, y ∈ L such
that a ≡F x′ and b ≡F y′. Since by (i), x′ ∨ y′ ∈ L′, then [a] ∨ [b] = [x′] ∨ [y′] =
[x′ ∨ y′] ∈ L′/F . By the similar way, we can show that [a] ∧ [b] ∈ L′/F . Hence L′/F
is a sublattice of L/F containing [0] and [1]. Since L is a distributive lattice, then
clearly, L′/F is distributive. It follows from Theorem 3.12 that [a]∨ [a]′ = [a]∨ [a′] =
[x′] ∨ [x′′] = [x′ ∨ x′′] = [1] and so by (R8) and (R9), we get [a] ∧ [b] = [x′ ∧ x′′] =
[x′′′ ∧ x′′] = [(x′′ ∨ x′)′] = [(x′′ ∨ x′)]′ = ([x′′] ∨ [x′])′ = ([a′] ∨ [a′]) = [1]′ = [0].
Therefore, L′/F is a Boolean algebra. �

Theorem 3.14. Every weak positive implicative filter of L is a weak implicative filter.

Proof. Let F be a weak positive implicative filter of L and x → (x → y) ∈ F , for
some x, y ∈ L. Since by (R6), x → (x → y) ≤ ((x → y) → y) → (x → y) and F is a
weak positive implicative filter, then (x→ y)′′ ∈ F . Moreover,

(x→ y)′′ → (x→ y′′) = x→ ((x→ y)′′ → y′′), by (R4)

≥ x→ ((x→ y) → y), by (R5) and (R8)

= (x→ y) → (x→ y) = 1.

and so x→ y′′ ∈ F . Therefore, by Proposition 3.8, F is a weak implicative filter. �

Corollary 3.15. Every weak positive implicative filter of L is a strong filter.

Proof. It follows from Proposition 3.9 and Theorem 3.14. �

Example 3.3. (i) Consider the MTL-algebra in Example 3.1. It can be easily ob-
tained that {1}, {1, c} are two prime filters of L. But, {1} is not implicative and
{1, c} is not fantastic.

(ii) Let (L = {0, a, b, c, 1},≤) be a partially ordered set such that 0 < a < b < c < 1.
Consider the following tables:

Table 3 Table 4
→ 0 a b c 1
0 1 1 1 1 1
a c 1 1 1 1
b a a 1 1 1
c a a b 1 1
1 0 a b c 1

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 0 0 0 a
b 0 0 b b b
c 0 0 b c c
1 0 a b c 1

Let ∨ and ∧ be min and max on L, respectively. Then (L,∨,∧,⊙,→, 0, 1) is an
MTL-algebra (see [2]) and {1} is a prime (an EIMTL)-filter of L. But, it is not
strong filter. Moreover, {1, c} is a prime filter of L. But, it is not EIMTL-filter.

In the next remark, we will verify the figure which appeared in [2] and attempt to
improve and correct it.

Remark 3.1. Let F be an associative filter of L. Then by 0 → (1 → 0) = 1 ∈ F and
0 → 1 = 1 ∈ F , we obtain 0 ∈ F and so F = L. Hence L does not have any proper
associative filter. Therefore, Theorem 3.18, 3.19 and 3.20, which appeared in [2], are
trivial.
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Figure 1. Relation between filters of MTL-algebras.

Remark 3.2. Let EIMTL, IMTL, PI, Fan, Im, WI, WPI, Prime, Ultra and
Str be the set of all EIMTL-, IMTL-, positive implicative, fantastic, implicative,
weak implicative, weak positive implicative, Prime, ultra and strong filters of L, re-
spectively. Then we have

PI ⊆ WPI ⊆ WI ⊆ Str

PI ⊆ Fan ⊆ IMTL ⊆ EIMTL

PI = IMTL ∩WI = EIMTL ∩WI = EIMTL ∩ Im = IMTL ∩ Im

EIMTL ∩ Str = IMTL

Ultra = Prime ∩PI

In Figure 1, we try to depict the relation between filters in MTL-algebras.
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